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There is increasing experimental evidence that the superconducting energy gathe underdoped
cuprates is independent of doping concentratiomhile the superfluid density is linear in We show
that under these conditions thermal excitation of the quasiparticles is very effective in destroying the
superconducting state, so thBt is proportional toxA, and part of the gap structure remains in the
normal state. We then estimaf&, and predict it to be proportional te?>. We also discuss to what
extent the assumptions that go into the quasiparticle description can be derived in the U(1) and SU(2)
formulations of ther-J model. [S0031-9007(97)03242-0]

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.—i

While the anomalous properties of cuprate superconmetry known to be important at half filling [13]. It
ductors have been discussed from the very beginning, iwvas argued that the new SU(2) formulation allows a
has become clear in the past several years that it is in trEmoother connection to half filling and includes low lying
underdoped region that the cuprates deviate most strongfiuctuations ignored in the original U(1) formulation. Fea-
from conventional materials, both in the normal and sutures in the photoemission data are qualitatively explained
perconducting states. NMR [1], neutron [2], anéhxis by this approach, but so far discussions have been limited
optical conductivity [3] indicate the existence of a pseudo-o the normal state.
gap in the normal state, and photoemission experiments In this Letter we examine the superconducting state of
[4,5] reveal that the pseudogap is of the same size anithe underdoped cuprates. We begin with a phenomeno-
k dependence as the superconducting gap. Furthermoiegical approach, based on the existence of well defined
as the doping concentrating is reduced from optimal quasiparticles in the superconducting states. We show
doping, the superconducting gap is constant or may bghat the combination of a large energy gap and small su-
slightly increasing, while the transition temperatdieis  perfluid density leads to unusual features. A key result is
reduced. Thus a strong deviation from the BCS ratiahat the superconducting state is destroyed by the thermal
between energy gap arifl. is to be expected. At the excitation of just the low lying quasiparticles, leaving the
same time, London penetration depth and optical condudarge energy gap intact. We believe this is a more effec-
tivity [6] show that the Drude weight in the normal state tive mechanism of destroying superconductivity than the
as well as the superfluid density in the superconductinghase fluctuation scenario. With very few assumptions
state are proportional to, and a linear relation between we derive expressions for the temperature dependence of
T. and the superfluid density have been noted [7]. Thep, and forT. and H.,. We then consider whether the
small superfluid density has led a number of authors tguasiparticle approach can be derived from the micro-
suggest that phase fluctuation may be the determiningcopic treatments of theJ model. We conclude that the
factor of T, and that the pseudogap may be interpretedJ(1) formulation fails to obtain the correct temperature
as superconducting fluctuations [8,9]. A related interpredependence o, even if gauge fluctuations are included
tation in terms of Bose condensation of pairs has alsin the Gaussian approximation. We then indicate how the
been suggested [7,10]. A second school of thought starsssumptions of the phenomenology can be derived from
with strongly correlated models such as thd model the SU(2) formulation, provided that quantum fluctuations
and interprets the pseudogap as the spin excitation gagf low lying excitations are taken into account.
in some resonating-valence-bond singlet state. In particu- We limit our discussion to clean superconductors
lar, this scenario is realized in a decomposition of theand assume that the elementary excitations in the su-
electron into a fermion which carries spin and a bosorperconducting state are well defined quasiparticles with
which represents a vacancy in order to enforce the cord|sper3|on E(k) = [(ex — w)* + A7]V2, where Ay =
straint of no double occupation of the/ model. At the 1A,(cosk,a — cosk ya) is a d-wave gap with a maxi-
mean field level, spin and charge are separated, and mum of A, at (0, 77) In a tight binding parametrization,
the underdoped region of the mean field phase diagramy, = 2¢4(cosk,a + cosk,a). There are four nodal
the fermions are paired in some intermediate temperadoints. In the vicinity of the nodes ne&% %), we have
ture range, and become &wave superconductor only the anisotropic Dirac spectruBik) = (Ufk] + v3k3)1/?,
below the Bose condensation temperature of the bosomzherek1 = (ke + ky — 7/a)/V2, ky = — ky)/2,
[11,12]. Very recently, a maodification of this mean field v, = —Aoa and vy = 2\/_tfa for u = 0 We now
theory was proposed, which incorporates an SU(2) symmake the key assumption that the presence of a vector
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potential shifts the quasiparticle spectrum according to effective way of destroying the superconducting state by
_ e driving p* to zero. By extrapolating Eq. (4) tp* = 0,
E(k,A) = E(k) + PR A, (1) wecan estimat&, as
wherewv, = de;/dk is the normal state velocity. Equa- . _
tion (1) is correct to first order ir in the BCS theory. It kTe = 1.13xRo(ta/1y). (5)

has the consequence that the current carried by the quagiwe assume thad is independent of for underdoped
particle is—cdE/dA = —ewy, i.e., itis the same as the cuprates, we see that, is proportional tox [or more
current in the normal state and is different from the groupprecisely top,(T = 0)/m], thus providing an explanation
velocity dEy/dk. The difference arises from the fact that of Uemura’s plot [7]. We shall see that/t; ~ 1.8, so
the superconducting qua5|part|cle is a superposition of pakhat while the value of,. given by Eq. (5) is too large
ticle and hole states. For high superconductivity, we do by a factor of 2, it is lower than the estimates based on
not have the equivalence of BCS theory, so Eq. (1) musphase fluctuation or Bose condensation, which typically
be regarded as an assumption, albeit a very reasonable o@ses 7, ~ x7,. We emphasize that our mechanism is
This is particularly so near the node, where it is reasonablgompletely different from these other pictures, in that the
tO believe that at the node the Superconduictlng quaSlpaqUasiparticle Spectrum and the energy %momes into
ticle should be the same as the normal quasiparticle, so thgfay. Obviously, Eq. (5) implies a strong deviation from

its current should be given by _ _ the BCS ratio betweefi, andA, for smallx.

We next argue that the superfllf|d tensor defined by Another important implication is that superconductiv-
Ju = f%AV can be written asy p;, = p°(T = ity is destroyed when only a small fraction of the quasi-
0)8,, — %me where p*(T = 0)/m = x/a’m is di- Pparticles (with energy=xA,) are thermally excited. Thus

rectly measured by the weight of the Drude peak inthe gap nea0, 77) must remain intact in the normal state,
penetration depth in the superconducting state. By takin%?r}ce proportional te from the nodal points. This s quali-

Az = 1600 A for YBa,CusOg 05 (YBCOg05) andx = 0.2, atively in agreement with the photoemission experiment.
we findm = 2.1m,. Itis convenient to fit this mass to Of course our phenomenological picture does not provide
the bottom of a tight binding bandwidth with hopping & description of the normal state. It simply states that the
integral ¢,, and we haver, = (2ma®) ' = 0.122 ev  hormal state gap is an inescapable consequence of a finite
1 The fact thatdp,/dT is independent of and that both

Py 1S given by the quasiparticle response to the i
field. This we can calculate by writing the free energy in?s @nd 7. are proportional tor means that a scaled plot

terms of noninteracting quasiparticles, i.e., of py(T)/ps(0) vs T/T. should be independent aof for
smallT/T,.. Infact, such a scaled plot for YBG@; and

F(A,T) = —kTZIn(l + ¢ BEWA) (2) YBCOsg4, shows a remarkable universality over the en-
ko tire temperature range [15]. We can use the data to ex-
and differentiating twice with respect #. We note that tract the ratiovr /v, using Eq. (4). Using the YBC§s
the neglect of quasiparticle interaction is justified in thedata, we obtain a velocity anisotropyr/v, = 6.8, a
limit of small T and A because the density of states of slightly smaller ratio (by about 15%) as obtained from the
quasiparticles vanishes linearly with energy, in contrast torBCOg 49 data. With our parametrization of the gap func-
the case of a Fermi liquid. As explained by Leggett [14],tions, we findi; /Ay = 1.7. If we assume\, = 40 meV,
the Landau parameters enter in the form of mean fielave find 7, = 68 meV, so thatr, /7, = 1.8 as mentioned
theory in Fermi liquid theory. The vanishing of the free earlier. Our value of; implies a half-filled bandwidth
quasiparticle response functions implies that the Landaw-4¢, ~ 270 meV which is consistent with the photoemis-
parameters play no role in this limit. We therefore obtainsion data. This gives; = 1.18 X 107 cm/sec.
1., _ _22 dE dE of 3) Equation (1) implies that in the presence of a magnetic
m Py ~ dA, dA, OE " field, the quasiparticle spectrum is shifted so that some
of the quasiparticles are occupied in the ground state
and a finite density of states is generated at the Fermi
nergy [16]. It was pointed out by Yip and Sauls [17]
that this gives rise to a contribution for the supercurrent
which is nonlinear inA. The quasiparticle contribution
to the current is obtained by differentiating Eq. (2) with
respect toA. For A in the ¥ or § direction and for

Strictly speaking, there is an additional term of the form
234 (9*E/0A,0A,)f(E). This term vanishes in BCS
theory due to particle-hole symmetry and we shall assum
that it is also negligible in the present case. Using Eq. (1)
we replacedE/dA, by the normal state velocity, and
ps(T) can be evaluated in a straightforward way

p—(T) = QL — aT, (4) vy - eA/c > kT, we find up to orden?

m a~m 5
where a = [2InQ2)/7Jvr/vs = [8INQ2)/7]t;/Ao. We (AT — — ep’(T) & vy < Na 6
see that for smallr, the quasiparticle excitation is an J(A.T) = me V227me va | ¢ - (6)
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The second term is in agreement with Yip and Sauls [17poundx = 0.15 is off the Uemura plot, for reasons which

while the first term is given by Eq. (4). are not presently understood. Equation (1) breaks down
We now use this picture to estimate the size of then the presence of disorder, restricting our results to the

vortex core and estimat#.,. The idea is to identify the clean limit.

core size as the point where the critical current is reached. At finite T the prediction thatd.,(T) ~ p2(T) which

The critical current (i.e., the maximum gfas a function follows from Eqgs. (7) and (9) is also interesting, in that

of A) is estimated by settindj/dA = 0in Eq. (6). The we predict a linear decrease Bf, with increasingr’ for

field £A should be replaced by the gauge invariant localow temperatures. In view of Eq. (8), the conditien -

velocity 5 (V6 — 2A). Near the coreVe dominates eA/c = vy/2R; > kT which was used in the_deri\}ation
and we can replaceA/c by (2R)"'A. We obtain the ©0f Eq. (6) is satisfied fol' < T... Thus the scaling off .,

following estimate for the core size when it is approachedvith p should be satisfied as long &ss not too close to
in the & or § direction, T. when critical fluctuations become important.

Next we comment on whether existing microscopic

= ) (7)  models can reproduce the assumptions of the quasiparticle
V227 v p? description. In the U(1) formulation of theJ model

At T =0 we can use our parametrization dafik) to  the normal state in the underdoped limit is described

write it as Ry = x~'(v;/mAo) (17/~/21,). Note that it by d-wave pairing' of fermiqns, SO that there .exists an
is greater than the BCS coherence lengfizA, by the ~ €nergy gapA, which remains finite asc — 0 in the

factor x~!. On the other hand, using tHe estimate in Nnormal state [11,12]. Superconductivity is driven by
Eq. (5), we can write condensation of bosons and well defined quasiparticles

are formed. The superconductifig occurs as an energy
Ry = vp/(1.257kT,), @)  scale of 4wxt, at the mean field level, and may be
which is quite close to the BCS coherence length writtersuppressed by gauge fluctuations [19]. In this theory the
in terms of T, instead ofA,. The two ways of writing superfluid density is given by the loffe-Larkin rule [20],
the coherence length are of course equivalent in BC®*(7)"! = pfv*l + pi ' Since the energy gap appears
theory, but very different for underdoped cuprates. Ain the fermion spectrum, we expeg}(T) = (1 — x) —
main conclusion of this Letter is that Eq. (8) is the properT /Ao while p; = x with a higher power irf" correction.
expression for the coherence length. Then the U(1) theory predictp*(T) = x — x2T/A,.
When the core is approached from the (1,1) directionWhile the T = 0 value is correctly given to be, the
similar considerations show that the core size is given byemperature dependence is in strong disagreement with
V2R,. Thus the core takes on an approximately squar&g. (3) and with experiment in that is suppressed by
shape. We estimatél/., by assuming that the square x2. The origin of this difficulty is that the fermion does
vortex cores are closed packed, so that not ﬁ?up::% dk;reCtly toA, |IOUt to the U(ﬁ) gauge Tield
a while the bosons couple td + a. The externalA
Her = (he/2€)/4RY . ©) produces a finiter but its magnitude is reduced by.
Because of the crudeness of the extrapolation process, viie the quasiparticle language, the shift of the spectrum
expect both thel, and H., expressions to be overesti- in the presence of is smaller than that given in Eq. (1)
mates. An estimate may be made by using Eq. (8Rfor by x. It is difficult to escape from this conclusion in the
and using the experimentd] and we obtain for YBCgs  U(1) theory, because gauge fluctuations are included at
R, =~ 38 A and H., = 56 T which is close to the mea- the Gaussian level which should be a good approximation
sured value of 50 T [18]. While the absolute valught  in the superconducting state.
is quite uncertain, the prediction that., is proportional It was shown recently [13] that the U(1) formulation
to x> [or more accurately tp2(T = 0)], as long asA,  does not connect smoothly to the half-filled limit which is
is constant for underdoped cuprates, should be amenabt@aown to exhibit an SU(2) symmetry. For smallthere
to experimental test. The ideal systems to test this correare indeed low lying gauge fluctuations with energy scale
lation are underdoped YBCO or Hg cuprates, which fallof orderxA, which are ignored in the U(1) formulation.
on the Uemura plot [7] so thai,(T = 0) is proportional A new SU(2) formulation was introduced, which allows
to T. and can be accurately determined. In principle thehese low energy fluctuations to be described in a natural
linear atomic-cell-orbital method is a good testing groundway. The low energy effective theory contains a boson
becauser can be varied. Unfortunately, there are seriougpart and a fermion partLs = L, + L;. (For details,
disorder effects for =< 0.1 and the nominally pure com—| see Ref. [13].) The boson part is given by

L vim

R,

1 2
L, = ibT(3, — ieAy — iapm’)b — — <a,- —ifa - ia,-7'3>b
2m c

D J
——L(btb)> — wbtb — Dy (1611 — |b2]?)>,

2m 2
(10)
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where b = (b1b;), and D, are order one coefficients. Ai.
The fermions are in a staggered flux phase and couple |
only to thea, gauge field. Whenb,| = |bs| # 0, the :
system is in a superconducting state [which corresponds ai;
to the d-wave paired state in the U(1) formulation]. I
When b; # 0 and b, = 0, the system is in a metallic .
state [which corresponds to the staggered flux phase in Fermion

the U(1) formulation]. SinceD, > 0 the ground state FIG. 1. Coupling betweenr; and fermion quasiparticles.
is the superconducting state. The normal state at finite

temperatures contains no boson condensation and is Raaking of translation symmetry must occur to produce
state which fluctuates betweefiwave pairing and the he energy gap and the metallic state may be understood
staggered flux phase of fermions. The fermion spectrums some form of staggered flux phase. Alternatively,
acquires a gapo W,h'Ch is finite for Sma”?" the gapless excitations are not Landau quasiparticles,
We note that, in the superconducting staeil(= ¢ acquire residual width due to quantum fluctuations,

|b21), a,. andA,, decouple under the mean field approxi- aying this state a genuine non-Fermi liquid state. This
mation. Therefore the low lying fermion quasiparticles dojatter scenario is an exciting possibility which deserves
not couple to the external electromagnetic gauge fleld ¢ ther investigation.
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