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There is increasing experimental evidence that the superconducting energy gapD0 in the underdoped
cuprates is independent of doping concentrationx while the superfluid density is linear inx. We show
that under these conditions thermal excitation of the quasiparticles is very effective in destroying
superconducting state, so thatTc is proportional toxD0 and part of the gap structure remains in the
normal state. We then estimateHc2 and predict it to be proportional tox2. We also discuss to what
extent the assumptions that go into the quasiparticle description can be derived in the U(1) and S
formulations of thet-J model. [S0031-9007(97)03242-0]

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.– i
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While the anomalous properties of cuprate superco
ductors have been discussed from the very beginning
has become clear in the past several years that it is in
underdoped region that the cuprates deviate most stron
from conventional materials, both in the normal and s
perconducting states. NMR [1], neutron [2], andc-axis
optical conductivity [3] indicate the existence of a pseud
gap in the normal state, and photoemission experime
[4,5] reveal that the pseudogap is of the same size a
k dependence as the superconducting gap. Furtherm
as the doping concentratingx is reduced from optimal
doping, the superconducting gap is constant or may
slightly increasing, while the transition temperatureTc is
reduced. Thus a strong deviation from the BCS ra
between energy gap andTc is to be expected. At the
same time, London penetration depth and optical cond
tivity [6] show that the Drude weight in the normal stat
as well as the superfluid density in the superconduct
state are proportional tox, and a linear relation between
Tc and the superfluid density have been noted [7]. T
small superfluid density has led a number of authors
suggest that phase fluctuation may be the determin
factor of Tc and that the pseudogap may be interpret
as superconducting fluctuations [8,9]. A related interpr
tation in terms of Bose condensation of pairs has a
been suggested [7,10]. A second school of thought sta
with strongly correlated models such as thet-J model
and interprets the pseudogap as the spin excitation
in some resonating-valence-bond singlet state. In parti
lar, this scenario is realized in a decomposition of th
electron into a fermion which carries spin and a bos
which represents a vacancy in order to enforce the c
straint of no double occupation of thet-J model. At the
mean field level, spin and charge are separated, and
the underdoped region of the mean field phase diagr
the fermions are paired in some intermediate tempe
ture range, and become ad-wave superconductor only
below the Bose condensation temperature of the bos
[11,12]. Very recently, a modification of this mean fiel
theory was proposed, which incorporates an SU(2) sy
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metry known to be important at half filling [13]. It
was argued that the new SU(2) formulation allows
smoother connection to half filling and includes low lyin
fluctuations ignored in the original U(1) formulation. Fea
tures in the photoemission data are qualitatively explain
by this approach, but so far discussions have been limi
to the normal state.

In this Letter we examine the superconducting state
the underdoped cuprates. We begin with a phenome
logical approach, based on the existence of well defin
quasiparticles in the superconducting states. We sh
that the combination of a large energy gap and small s
perfluid density leads to unusual features. A key result
that the superconducting state is destroyed by the therm
excitation of just the low lying quasiparticles, leaving th
large energy gap intact. We believe this is a more effe
tive mechanism of destroying superconductivity than th
phase fluctuation scenario. With very few assumptio
we derive expressions for the temperature dependence
rs and for Tc and Hc2. We then consider whether the
quasiparticle approach can be derived from the micr
scopic treatments of thet-J model. We conclude that the
U(1) formulation fails to obtain the correct temperatur
dependence ofrs, even if gauge fluctuations are include
in the Gaussian approximation. We then indicate how t
assumptions of the phenomenology can be derived fro
the SU(2) formulation, provided that quantum fluctuation
of low lying excitations are taken into account.

We limit our discussion to clean superconducto
and assume that the elementary excitations in the
perconducting state are well defined quasiparticles w
dispersion Eskd ­ fs´k 2 md2 1 D

2
kg1y2, where Dk ­

1
2 D0scoskxa 2 coskyad is a d-wave gap with a maxi-
mum of D0 at s0, pd. In a tight binding parametrization,
´k ­ 2tfscoskxa 1 coskyad. There are four nodal
points. In the vicinity of the nodes nears p

2 , p
2 d, we have

the anisotropic Dirac spectrumEskd ­ sy2
fk2

1 1 y
2
2k2

2d1y2,
wherek1 ­

°
kx 1 ky 2 pya

¢
y
p

2, k2 ­ skx 2 kydy
p

2,
y2 ­ 1p

2
D0a, and yf ø 2

p
2 tfa for m ø 0. We now

make the key assumption that the presence of a vec
© 1997 The American Physical Society 4111
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potential shifts the quasiparticle spectrum according to

Esk, Ad ­ Eskd 1
e
c

yk ? A , (1)

whereyk ­ d´kydk is the normal state velocity. Equa
tion (1) is correct to first order inA in the BCS theory. It
has the consequence that the current carried by the qu
particle is2cdEydA ­ 2eyk , i.e., it is the same as the
current in the normal state and is different from the gro
velocity dEkydk. The difference arises from the fact tha
the superconducting quasiparticle is a superposition of p
ticle and hole states. For highTc superconductivity, we do
not have the equivalence of BCS theory, so Eq. (1) m
be regarded as an assumption, albeit a very reasonable
This is particularly so near the node, where it is reasona
to believe that at the node the superconducting quasip
ticle should be the same as the normal quasiparticle, so
its current should be given byyk.

We next argue that the superfluid tensor defined
jm ­

e
c

rs
mn

m An can be written as 1
m rs

mn ­
1
m rssT ­

0ddmn 2
1
m rn

mn , where rssT ­ 0dym ­ xya2m is di-
rectly measured by the weight of the Drude peak
the normal state and byl22

L , where lL is the London
penetration depth in the superconducting state. By tak
lL ­ 1600 Å for YBa2Cu3O6.95 (YBCO6.95) andx ­ 0.2,
we find m ­ 2.1me. It is convenient to fit this mass to
the bottom of a tight binding bandwidth with hoppin
integral th, and we haveth ­ s2ma2d21 ­ 0.122 eV
which happens to be very close toJ. On the other hand,
1
m rn

mn is given by the quasiparticle response to theA
field. This we can calculate by writing the free energy
terms of noninteracting quasiparticles, i.e.,

FsA, T d ­ 2kT
X
k,s

lns1 1 e2bEsk,Add (2)

and differentiating twice with respect toA. We note that
the neglect of quasiparticle interaction is justified in th
limit of small T and A because the density of states o
quasiparticles vanishes linearly with energy, in contrast
the case of a Fermi liquid. As explained by Leggett [14
the Landau parameters enter in the form of mean fie
theory in Fermi liquid theory. The vanishing of the fre
quasiparticle response functions implies that the Land
parameters play no role in this limit. We therefore obta

1
m

rn
mn ­ 22

X
k

dE
dAm

dE
dAn

≠f
≠E

. (3)

Strictly speaking, there is an additional term of the for
2

P
ks≠2Ey≠Am≠AndfsEd. This term vanishes in BCS

theory due to particle-hole symmetry and we shall assu
that it is also negligible in the present case. Using Eq. (
we replacedEydAm by the normal state velocityym and
rssT d can be evaluated in a straightforward way

rs

m
sTd ­

x
a2m

2 aT , (4)

where a ­ f2 lns2dypgyFyy2 ­ f8 lns2dypgtfyD0. We
see that for smallx, the quasiparticle excitation is an
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effective way of destroying the superconducting state
driving rs to zero. By extrapolating Eq. (4) tors ­ 0,
we can estimateTc as

kTc ø 1.13xD0sthytfd . (5)

If we assume thatD0 is independent ofx for underdoped
cuprates, we see thatTc is proportional tox [or more
precisely torssT ­ 0dym], thus providing an explanation
of Uemura’s plot [7]. We shall see thatthytf ø 1.8, so
that while the value ofTc given by Eq. (5) is too large
by a factor of 2, it is lower than the estimates based
phase fluctuation or Bose condensation, which typica
gives Tc ø xth. We emphasize that our mechanism
completely different from these other pictures, in that th
quasiparticle spectrum and the energy gapD0 comes into
play. Obviously, Eq. (5) implies a strong deviation from
the BCS ratio betweenTc andD0 for smallx.

Another important implication is that superconductiv
ity is destroyed when only a small fraction of the quas
particles (with energy#xD0) are thermally excited. Thus
the gap nears0, pd must remain intact in the normal state
leaving a strip of thermal excitations which extend a di
tance proportional tox from the nodal points. This is quali-
tatively in agreement with the photoemission experime
Of course our phenomenological picture does not prov
a description of the normal state. It simply states that t
normal state gap is an inescapable consequence of a fi
D0 and a vanishingly small superfluid density asx ! 0.

The fact thatdrsydT is independent ofx and that both
rs and Tc are proportional tox means that a scaled plo
of rssT dyrss0d vs TyTc should be independent ofx for
smallTyTc. In fact, such a scaled plot for YBCO6.95 and
YBCO6.60 shows a remarkable universality over the e
tire temperature range [15]. We can use the data to
tract the ratioyFyy2 using Eq. (4). Using the YBCO6.95
data, we obtain a velocity anisotropyyFyy2 ­ 6.8, a
slightly smaller ratio (by about 15%) as obtained from th
YBCO6.60 data. With our parametrization of the gap func
tions, we findtfyD0 ­ 1.7. If we assumeD0 ­ 40 meV,
we find tf ­ 68 meV, so thatthytf ­ 1.8 as mentioned
earlier. Our value oftf implies a half-filled bandwidth
,4tf ø 270 meV which is consistent with the photoemis
sion data. This givesyf ­ 1.18 3 107 cmysec.

Equation (1) implies that in the presence of a magne
field, the quasiparticle spectrum is shifted so that som
of the quasiparticles are occupied in the ground st
and a finite density of states is generated at the Fe
energy [16]. It was pointed out by Yip and Sauls [17
that this gives rise to a contribution for the supercurre
which is nonlinear inA. The quasiparticle contribution
to the current is obtained by differentiating Eq. (2) wit
respect toA. For A in the x̂ or ŷ direction and for
yf ? eAyc ¿ kT , we find up to orderA2

jsA, T d ­ 2

µ
e2rssTd

mc
2

e2
p

2 2pc

y
2
f

y2

Ç
e
c

A
Ç∂

A . (6)
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The second term is in agreement with Yip and Sauls [1
while the first term is given by Eq. (4).

We now use this picture to estimate the size of t
vortex core and estimateHc2. The idea is to identify the
core size as the point where the critical current is reach
The critical current (i.e., the maximum ofj as a function
of A) is estimated by settingdjydA ­ 0 in Eq. (6). The
field e

c A should be replaced by the gauge invariant loc
velocity 1

2 s=u 2
2e
c Ad. Near the core=u dominates

and we can replaceeAyc by s2Rd21Â. We obtain the
following estimate for the core size when it is approach
in the x̂ or ŷ direction,

R1 ­
1

p
2 2p

y
2
f

y2

m
rs . (7)

At T ­ 0 we can use our parametrization ofDskd to
write it as R1 ­ x21syfypD0d stfy

p
2 thd. Note that it

is greater than the BCS coherence lengthyfypD0 by the
factor x21. On the other hand, using theTc estimate in
Eq. (5), we can write

R1 ­ yFys1.25pkTcd , (8)

which is quite close to the BCS coherence length writt
in terms ofTc instead ofD0. The two ways of writing
the coherence length are of course equivalent in B
theory, but very different for underdoped cuprates.
main conclusion of this Letter is that Eq. (8) is the prop
expression for the coherence length.

When the core is approached from the (1,1) directio
similar considerations show that the core size is givenp

2 R1. Thus the core takes on an approximately squa
shape. We estimateHc2 by assuming that the squar
vortex cores are closed packed, so that

Hc2 ­ shcy2edy4R2
1 . (9)

Because of the crudeness of the extrapolation process
expect both theTc and Hc2 expressions to be overesti
mates. An estimate may be made by using Eq. (8) forR1

and using the experimentalTc and we obtain for YBCO6.6
R1 ø 38 Å and Hc2 ø 56 T which is close to the mea-
sured value of 50 T [18]. While the absolute value ofHc2
is quite uncertain, the prediction thatHc2 is proportional
to x2 [or more accurately tor2

s sT ­ 0d], as long asD0

is constant for underdoped cuprates, should be amena
to experimental test. The ideal systems to test this cor
lation are underdoped YBCO or Hg cuprates, which fa
on the Uemura plot [7] so thatrssT ­ 0d is proportional
to Tc and can be accurately determined. In principle t
linear atomic-cell-orbital method is a good testing groun
becausex can be varied. Unfortunately, there are serio
disorder effects forx # 0.1 and the nominally pure com-
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poundx ­ 0.15 is off the Uemura plot, for reasons which
are not presently understood. Equation (1) breaks dow
in the presence of disorder, restricting our results to th
clean limit.

At finite T the prediction thatHc2sTd , r2
s sT d which

follows from Eqs. (7) and (9) is also interesting, in that
we predict a linear decrease ofHc2 with increasingT for
low temperatures. In view of Eq. (8), the conditionyf ?

eAyc ø yfy2R1 ¿ kT which was used in the derivation
of Eq. (6) is satisfied forT , Tc. Thus the scaling ofHc2
with r2

s should be satisfied as long asT is not too close to
Tc when critical fluctuations become important.

Next we comment on whether existing microscopic
models can reproduce the assumptions of the quasipartic
description. In the U(1) formulation of thet-J model
the normal state in the underdoped limit is described
by d-wave pairing of fermions, so that there exists an
energy gapD0 which remains finite asx ! 0 in the
normal state [11,12]. Superconductivity is driven by
condensation of bosons and well defined quasiparticle
are formed. The superconductingTc occurs as an energy
scale of 4pxth at the mean field level, and may be
suppressed by gauge fluctuations [19]. In this theory th
superfluid density is given by the Ioffe-Larkin rule [20],
rssT d21 ­ r

s21
f 1 r

s21
b . Since the energy gap appears

in the fermion spectrum, we expectr
s
f sTd ­ s1 2 xd 2

TyD0 while r
s
b ø x with a higher power inT correction.

Then the U(1) theory predictsrssT d ­ x 2 x2TyD0.
While the T ­ 0 value is correctly given to bex, the
temperature dependence is in strong disagreement wi
Eq. (3) and with experiment in thata is suppressed by
x2. The origin of this difficulty is that the fermion does
not couple directly toA, but to the U(1) gauge field
a while the bosons couple toA 1 a. The externalA
produces a finitea but its magnitude is reduced byx.
In the quasiparticle language, the shift of the spectrum
in the presence ofA is smaller than that given in Eq. (1)
by x. It is difficult to escape from this conclusion in the
U(1) theory, because gauge fluctuations are included
the Gaussian level which should be a good approximatio
in the superconducting state.

It was shown recently [13] that the U(1) formulation
does not connect smoothly to the half-filled limit which is
known to exhibit an SU(2) symmetry. For smallx, there
are indeed low lying gauge fluctuations with energy scal
of order xD0 which are ignored in the U(1) formulation.
A new SU(2) formulation was introduced, which allows
these low energy fluctuations to be described in a natur
way. The low energy effective theory contains a boson
part and a fermion part:Leff ­ Lb 1 Lf . (For details,
see Ref. [13].) The boson part is given by
Lb ­ ibys≠t 2 ieA0 2 ia0t3db 2
1

2m

Ç µ
≠i 2 i

e
c

Ai 2 iait
3

∂
b

Ç2
2

D1

2m
sbybd2 2 mbyb 2 D2

J
2

sjb1j
2 2 jb2j

2d2,

(10)
4113
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where b ­ sb1b2d, and D1,2 are order one coefficients.
The fermions are in a staggered flux phase and cou
only to the am gauge field. Whenjb1j ­ jb2j fi 0, the
system is in a superconducting state [which correspon
to the d-wave paired state in the U(1) formulation]
When b1 fi 0 and b2 ­ 0, the system is in a metallic
state [which corresponds to the staggered flux phase
the U(1) formulation]. SinceD2 . 0 the ground state
is the superconducting state. The normal state at fin
temperatures contains no boson condensation and i
state which fluctuates betweend-wave pairing and the
staggered flux phase of fermions. The fermion spectru
acquires a gapD0 which is finite for smallx.

We note that, in the superconducting state (jb1j ­
jb2j), am andAm decouple under the mean field approx
mation. Therefore the low lying fermion quasiparticles d
not couple to the external electromagnetic gauge fieldAm,
and cannot reduce the superfluid density within mean fie
theory. However, unlike the U(1) case, quantum fluctu
tions of the gauge fields and the quantum fluctuatio
between the two bosons [both are omitted in the U(
formulation] are important even atT ­ 0. Those quan-
tum fluctuations induce a coupling between the fermio
quasiparticles and the gauge potentialA. One such con-
tribution is illustrated in Fig. 1. We find that the shift o
the quasiparticle spectrum is of the form given by Eq. (1
except that theyk ? A is multiplied by a numerical con-
stant of order unity. Thus the SU(2) theory incorporat
the main ingredients underlying the present Letter, i.e.
finite gapD0, a superfluid density proportional tox, and
a quasiparticle spectrum given by Eq. (1). Details of th
microscopic theory will be given elsewhere.

We believe that our prediction thatHc2 , x2 is signifi-
cant for two reasons. First, it is in contrast with mode
based on Bose condensation which should predictHc2 ,
x since the coherence length in that case is the interp
ticle spacingx21y2. Second,Hc2 , x2 is a weak field
in the sense that when compared with the hole dens
x, the number of Landau levels occupied isx21 ¿ 1
so that we are outside of the quantum Hall limit. Thu
we expect the state forH . Hc2 to be a metallic state
and the key question is what kind of metallic state it i
It is clear from the present discussion that forx ø 1,
the energy gap ats0, pd survives inside the vortex core
and therefore forH . Hc2. The magnetic field drives
a region of gapless excitations in the Brillouin zon
which extends a distancex from the nodal positions,
qualitatively similar to the normal state aboveTc. It
seems to us that two possibilities remain. First the gaple
excitations are well defined quasiparticles in the Land
sense. In this case, the Luttinger theorem requires tha
4114
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FIG. 1. Coupling betweenAi and fermion quasiparticles.

breaking of translation symmetry must occur to produ
the energy gap and the metallic state may be understo
as some form of staggered flux phase. Alternative
the gapless excitations are not Landau quasiparticl
but acquire residual width due to quantum fluctuation
making this state a genuine non-Fermi liquid state. Th
latter scenario is an exciting possibility which deserve
further investigation.
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