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First-Principles Determination of the Soft Mode in Cubic ZrO2
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A direct approach to calculate the phonon dispersion using anab initio force constant method is
introduced. The phonon dispersion and structural instability of cubic ZrO2 are found using a supercell
method in the local-density approximation. The force constants are determined from the Hellman
Feynman forces induced by the displacement of an atom in the2 3 2 3 2 fcc supercell. This size
of the supercell gives “exact” phonon frequencies atG, X, L, W Brillouin zone points. The phonon
dispersion curves show a pronounced soft mode at theX point, in agreement with the experimentally
observed cubic to tetragonal phase transition. [S0031-9007(97)03230-4]

PACS numbers: 63.20.–e, 61.50.Ks, 63.70.+h
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The calculation of phonon frequencies of the crystalli
structure is one of the fundamental subjects when c
sidering the phase stability, phase transitions, and th
modynamics of crystalline materials. The approaches
ab initio calculations fall into two classes: thelinear re-
sponse method[1] and thedirect method. In the first ap-
proach, the dynamical matrix is expressed in terms of
inverse dielectric matrix describing the response of the
lence electron density to a periodic lattice perturbation
(for a review, see Ref. [2]). For a number of systems
linear-response approach is difficult, since the dielec
matrix must be calculated in terms of the electronic eige
functions and eigenvalues of the perfect crystal.

There are two variants of the direct method. In t
frozen-phonon method [3], the phonon energy is cal
lated as a function of the displacement amplitude in ter
of the difference in the energies of the distorted and id
lattices. This approach is restricted to phonons wh
wavelength is compatible with the periodic boundary co
ditions applied to the supercell used in the calculatio
Another approach of the direct method uses the for
calculated via the Hellmann-Feynman theorem in t
total energy calculations, derives from them the valu
of the force constant matrices assuming a finite range
interaction, and hence the dynamical matrix and phon
dispersion curves [4]. This method has been applied
alkali metals [4]. Similar calculations, using the ultra
soft pseudopotentials have been carried out success
for diamond and graphite [5], and for perovskite PbTiO3

[6]. The linear response method has been applied to id
cubic perovskite structure as well. For KNbO3 [7] the lin-
earized augmented plane-wave method calculations c
firmed that a soft mode at theG point is responsible for
the cubic to tetragonal phase transition.

The ab initio force constant approach is based on t
supercell with periodic boundary conditions [4,5]. I
such a supercell, a displacementus0, nd of a single atom
induces forcesFsn, md acting on all other atoms,

Fsn, md ­ 2
X
L

Bsn, m; L, nd ? us0, nd , (1)
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where Bsn, m; L, nd are the s3 3 3d harmonic force
constant matrices relating atomssn, md and sL, nd. Here
n is the index of the primitive unit cell. We denote
by L indices of the lattice constants of the superce
The m and n are indices of atoms in the primitive unit
cell. Because of the periodic boundary conditions, o
each atom of the supercell acts a force coming fro
the atom displaced inside the supercell, and from t
equivalent atoms displaced in all images of the superc
The summation over supercellsL in Eq. (1) takes care of
this fact. It is straightforward to introduce the cumulan
force constant matrix

BSsn, m; 0, nd ­
X
L

Bsn, m; L, nd (2)

which has the same symmetry asBsn, m; 0, nd [8]. The
s3 3 3d BS matrix can be equally well represented as
s9 3 1d column matrixBBBS, so thatsBBBSdk ­ sBSdi,j and
k ­ 3si 2 1d 1 j. It is useful to decoupleBBBS to part
AAA of dimensionss9 3 pd and partPPP S of dimensions
sp 3 1d

BBBSsn, m; 0, nd ­ AAAsn, m; 0, nd ? PPP Ssn, m; 0, nd . (3)

The matrixAAA is determined by symmetry consideration
only, and is independent of the potential strength, contra
to PPP S which is characterized by the potential. Insertin
Eq. (3) into Eq. (1), one finds

Fsn, md ­ 2UUUs0, nd ? AAAsn, m; 0, nd ? PPP Ssn, m; 0, nd ,
(4)

where the displacement vectorus0, nd has been con-
verted into thes3 3 9d matrix UUUs0, nd, with elements
of us0, nd such that the multiplication rulesB ? u
in Eq. (1) are fulfilled. Denoting CCC sn, m; 0, nd ­
2UUUs0, nd ? AAAsn, m; 0, nd, Eq. (4) is simplified to

Fsn, md ­ CCC sn, m; 0, nd ? PPP Ssn, m; 0, nd . (5)

This equation can be written in the global matrix form

FFF ­ CCC ? PPP S , (6)
© 1997 The American Physical Society 4063
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where FFF , CCC , and PPP S are s3ns 3 1d, s3ns 3 pd, and
sp 3 1d dimensional matrices, respectively. Here,n is
the number of atoms in the supercell;s is the number
of force fields. A force field is a set of3n Hellmann-
Feynman forces obtained for a run with a single displac
atom. Usually, a single input force field is not sufficien
for finding all parameters. The minimum number of forc
fields is equal to the number of nonequivalent atoms
the crystal primitive unit cell multiplied by a number o
independentx, y, z coordinates in the site symmetry of
given atom.

As a rule, the number of force field data is considerab
greater than the number of parameters, i.e.,3ns ¿ p,
and the system, Eq. (6), is overdetermined. To so
it we apply the single value decomposition method [
to the matrix CCC , and express the parameters in term
of forces PPP S ­ CCC 21 ? FFF . This method produces a
solution, which is the best approximation in the leas
squares sense, and is able to treat problems with
singular matrixCCC .

The aim of the referred direct method is to describe t
dynamical matrixDskd of the crystal, which is defined as

Dsk; mnd ­
1p

MmMn

X
m

Bs0, m; m, nd

3 exph22pik ? fRs0, md 2 Rsm, ndgj . (7)

Here the summationm runs over all atoms,Mm, Mn

and Rs0, md, Rsm, nd are masses and positions of atom
respectively. Using the cumulant force constants, Eq. (
one may define an approximate dynamical matrix as

DDD sk; mnd ­
1p

MmMn

X
M

wMBBBSs0, m; M, nd

3 exph22pik ? fRs0, md 2 RsM, ndgj .
(8)

The atom s0, md is always placed in the center of th
supercell. One defines an “extended” supercell, which h
the same volume as the original one, but which includ
atoms on all its surfaces, and restores the local symme
around a given atoms0, md. Of course, the extended
supercell contains more atoms than the conventional o
To guarantee the Hermitian property ofDDD skd, Eq. (8),
the summationM must run over all neighbors inside
the extended supercell. The summation over images
supercellsL is already included in the definition of
cumulant force constantBSsn, m; 0, nd in Eq. (2). It
could happen, however, that atoms located at the surfa
of the extended supercell are separated byL. These
are the equivalent displaced atoms, because of perio
boundary conditions. They influence the central ato
with a similar strength. Therefore, in the definition of th
approximate dynamical matrix, theBBBSs0, m; M, nd must
be taken with fractional weightwM, so that at the wave
vectorkL fulfilling the condition

exps2pikL ? Ld ­ 1 (9)
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the approximate and conventional dynamical matrices
equal,DDD skLd ­ DskLd. Hence, the phonon dispersio
curves calculated by the new direct method are exac
discrete wave vectorskL, given by Eq. (9). Usually, the
kL wave vectors correspond to high-symmetry points
the Brillouin zone. However, increasing the size of th
supercell, one increases the density of the wave vec
grid kL; in this way better accuracy of the phono
dispersion curves is achieved. The advantage of
introduced direct method is that it does not impose a
limit to the range of interaction. An interaction with
the range far beyond the supercell will also give exa
solutions at the wave vectorskL. The method interpolates
the dispersion curves between exact points; however
the force constants outside the supercell are so sm
that they could be neglected, then the dispersion cur
are exact for all the wave vectors. Thus, fork fi kL
the deviation from correct solution might increase wi
an increasing range of interaction. The referred meth
combines the frozen phonon [3] and the direct approa
with a finite range of interaction [4]. Knowledge of the
Asn, m; 0, nd matrices allows us to use crystal symmetry
order to reduce the statistical errors of Hellmann-Feynm
forces. This technique can be applied to crystals of a
complexity, provided sufficient memory and compute
time are avaliable to solve Eq. (6).

In this Letter we apply theab inito force constant
approach to calculate phonons in cubic ZrO2 (zirconia).
In the highest temperature phase, the cubic ZrO2 has
a simple fluorite structure (Fm3̄m, Z ­ 1). At about
2600 K with decreasing temperature, it undergoes a cu
to tetragonal (P42ynmc, Z ­ 2) phase transition, driven
by the irreducible representationX2

2 [10] from the X
point at the boundary of the fcc Brillouin zone. Th
total energy calculation for cubic ZrO2, using the full-
potential linear augmented plane wave method have b
performed already in Ref. [11]. The linear combinatio
of atomic orbitals method has been used to study the b
structure and density of states [12]. The potential induc
breathing model has been applied to calculate the equa
of state and elasticity of ZrO2 [13]. A simple model with
pair-wise force constants and only four free paramet
[14] has been used to calculate the phonon dispers
curves along theG-X line in the cubic phase. The free
parameters have been fitted to the elastic constants
to the longwaveT2g Raman-active vibrational frequency
[15]. One phonon branch underwent a drop to the lo
frequency at the boundaryX, but it did not become soft.

Our calculations of the Hellmann-Feynman force
for cubic ZrO2 have been performed using theCASTEP

ab initio program [16], and the results have been o
tained within the local-density-functional approximatio
using a pseudopotential approach and (2 3 2 3 2) fcc
supercell with 96 atoms. The electronic wave functio
were represented as plane waves with cut-off ene
at 700 eV. To describe the ion-electron interaction t
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optimized norm-conserving pseudopotentials accordi
to the kinetic-energy-optimization scheme [17,18] hav
been used to describe the ion-electron interaction. T
atomic configurations4d25s2 for Zr, and 2s23p4 for O
atoms were used to generate the pseudopotentials in
Kleinman-Bylander form [19]. The exchange-correlatio
potential due to Ceperley and Alder as parametrize
by Perdew and Zunger [20] was employed. Brilloui
zone integrations have been carried out using only theG

point. Checking calculations with the (2, 2, 2) mesh ofk
points [21] were also performed and they did not show
significant difference from the result obtained with theG

point only.
With the 2 3 2 3 2 supecell, the phonons calculated

from Hellmann-Feynman forces are exact atG, X, L, W ,
and two other wave vector points, namely, at the midpoi
betweenG and X along k1, 0, 0l and k1, 1, 0l directions.
The positions of Zr­ s0, 0, 0d, Os1d ­ s1y4, 1y4, 1y4d,
and Os2d ­ s3y4, 3y4, 3y4d are fixed by symmetry. The
only free parameter to be found in the optimization is th
lattice constanta0. Figure 1 shows the calculated tota
energy as a function of the lattice constant. The minimu
occurs at a0 ­ 5.13 Å. This may be compared with
the experimental valuea0 ­ 5.256 Å at a temperature of
2600 K [22].

In the direct method the amplitude of the atomic dis
placements has been limited tou0 ­ 60.010a0. Four in-
dependent runs of Hellmann-Feynman force fields ha
been carried out: two for Zr and two for O atoms, all dis
placed alongz. This gives 1152 force field data. The
symmetry analysis of force constants within the supe
cell leads to 68 independent parameters. Solving Eq. (
one finds 59 independent parameters to be nonzero. T
remaining nine parameters vanish due to additional sy
metry imposed by the choice of a2 3 2 3 2 supercell.
Each parameter is a result of averaging over 8 to 32 for

FIG. 1. Ground state total energy of cubic ZrO2 per 1 3
1 3 1 supercell, as a function of the lattice constanta0. The
minimum has been set to zero energy.
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field data. The nearest neighbor force constants betwee
Zr and O atoms are strongly negative, supporting the ten
dency to displace Zr and O. The same behavior is foun
for two nearest neighbor O atoms. A pair of oxygen
atoms diminish the energy when they are simultaneousl
displaced along thek1, 0, 0l direction. Different force con-
stants are found between oxygen atoms ata0

p
3y2 dis-

tance, depending on the presence of an intermediate Z
atom. Namely, the O-Zr-O force constants are by one
order of magnitude greater than these of the direct O-O
bond. We checked the translational invariance condition
which has been satisfied within 0.25%.

The phonon frequencies have been calculated usin
Eq. (8) and are plotted along high-symmetry directions in
Fig. 2. TheG-X, X-W , andL-G lines are alongk1, 0, 0l,
k1, 2, 0l, and k1, 1, 1l directions, respectively. At theG
point the Raman active optical mode ofT2g symmetry
occurs at16.49 THz (550.2 cm21) being lower than the
experimental value (640 cm21) [15,23] by 14%. Unfortu-
nately, the phonon dispersion curves, as given in Fig. 2
cannot be compared directly with experiment, becaus
such data, to the best of our knowledge, do not exist.

In Fig. 2 imaginary phonon frequencies of unstable
modes are represented as negative values. A nondegen
ate mode has been found at theX point. Its value reads
i5.86 THz. It stiffens up rapidly away from theX point.
Examination of the soft mode polarization vector reveals
that it is polarized along thek1, 0, 0l direction. It indi-
cates that neighboring chains of oxygen atoms displace i
opposite directions, towards the structure stabilized in th
tetragonal phase.

In summary, we have shown that the direct method
allows for efficient ab initio calculations of the com-
plete phonon dispersions, including the specification of th
soft mode.

The authors thank Dr. K. Esfarjani, Dr. K. Ohno, and
Dr. M. Sluiter for fruitful and numerous discussions, and
Professor E. Wimmer for encouraging us to undertake

FIG. 2. Calculated phonon dispersions of ZrO2 in the cubic
structure at the extremum lattice constanta0 ­ 5.13 Å.
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