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First-Principles Determination of the Soft Mode in Cubic ZrO,
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A direct approach to calculate the phonon dispersion usingtaimitio force constant method is
introduced. The phonon dispersion and structural instability of cubic Am® found using a supercell
method in the local-density approximation. The force constants are determined from the Hellmann-
Feynman forces induced by the displacement of an atom i2tke2 X 2 fcc supercell. This size
of the supercell gives “exact” phonon frequenciesl'akX, L, W Brillouin zone points. The phonon
dispersion curves show a pronounced soft mode atXthgint, in agreement with the experimentally
observed cubic to tetragonal phase transition. [S0031-9007(97)03230-4]

PACS numbers: 63.20.—e, 61.50.Ks, 63.70.+h

The calculation of phonon frequencies of the crystallinewhere B(n, u; L, ») are the (3 X 3) harmonic force
structure is one of the fundamental subjects when coneonstant matrices relating atortis, u) and (L, »). Here
sidering the phase stability, phase transitions, and them is the index of the primitive unit cell. We denote
modynamics of crystalline materials. The approaches ofy L indices of the lattice constants of the supercell.
ab initio calculations fall into two classes: thmear re- The u and » are indices of atoms in the primitive unit
sponse methofl] and thedirect method In the first ap- cell. Because of the periodic boundary conditions, on
proach, the dynamical matrix is expressed in terms of theach atom of the supercell acts a force coming from
inverse dielectric matrix describing the response of the vathe atom displaced inside the supercell, and from the
lence electron density to a periodic lattice perturbation [1lequivalent atoms displaced in all images of the supercell.
(for a review, see Ref. [2]). For a number of systems thelThe summation over supercelsin Eq. (1) takes care of
linear-response approach is difficult, since the dielectrichis fact. It is straightforward to introduce the cumulant
matrix must be calculated in terms of the electronic eigenforce constant matrix
functions and eigenvalues of the perfect crystal.

There are two variants of the direct method. In the Bs(n, ©;0,v) = ZB(n,,u;L,y) 2
frozen-phonon method [3], the phonon energy is calcu- L
lated as a function of the displacement amplitude in term
of the difference in the energies of the distorted and ide 3 X 3) Bs matrix can be equally well represented as a

lattices. This approach is restricted to phonons whosg, . 1 : _
) ) . L column matrixBs, so that(B = (By);; and
wavelength is compatible with the periodic boundary con- _ 3()1- — 1)+ j. Itis isefm to (detz:g{uplégigz)téj part

ditions applied to the supercell used in the calculations. : ; : .

Another approach of the direct method uses the forceé;l gf Slmen5|ons(9 x p) and partPy of dimensions

calculated via the Hellmann-Feynman theorem in the

total energy calculations, derives from them the values Bs(n, u;0,v) = A(n, ©;0,v) - Ps(n, ©;0,v). (3)

of the force constant matrices assuming a finite range

interaction, and hence the dynamical matrix and phono

dispersion curves [4]. This method has been applied t S ; . )

alkali metals [4]. Similar calculations, using the ultra- o T% Wh'ChE'S C:rsaracte][_lzgd by the potential. Inserting

soft pseudopotentials have been carried out successfuIE/q' (3) into Eq. (1), one finds

for diamond and graphite [5], and for perovskite PbJiO F(mn,u) = — U0, 7) - A, u;0,7) - Px(n, u;0,v),

[6]. The linear response method has been applied to ideal (4)

cubic perovskite structure as well. For KNb{T] the lin- .

earized augmented plane-wave method calculations cotthere the displacement vectar(0, ») has been con-

firmed that a soft mode at thE point is responsible for Verted into the(3 X 9) matrix ‘U(0, »), with elements

the cubic to tetragonal phase transition. of u(0,») such that the multiplication rulesB - u
The ab initio force constant approach is based on thén Ed. (1) are fulfilled. Denoting C(n, u;0,») =

supercell with periodic boundary conditions [4,5]. In —UW(0,») - A(m, u;0, ), Eq. (4) is simplified to

such a supercell, a displacemand, ») of a single atom _ . ) .

induces force®(n, u) acting on all other atoms, Fn, p) = €, p30,v) - Px(n, p:0,7), ©)

Fn,p) = —> B, u;L,v) - u©,»), (1)
L

hich has the same symmetry Bén, u;0, v) [8]. The

he matrix A is determined by symmetry considerations
only, and is independent of the potential strength, contrary

This equation can be written in the global matrix form
F=C-Ps, (6)
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where F, C, and Py are 3ns X 1), (3ns X p), and the approximate and conventional dynamical matrices are
(p X 1) dimensional matrices, respectively. Herejs equal, D (ky) = D(ky). Hence, the phonon dispersion
the number of atoms in the superceil;is the number curves calculated by the new direct method are exact at
of force fields. A force field is a set din Hellmann- discrete wave vectorky, given by Eq. (9). Usually, the
Feynman forces obtained for a run with a single displaced, wave vectors correspond to high-symmetry points of
atom. Usually, a single input force field is not sufficient the Brillouin zone. However, increasing the size of the
for finding all parameters. The minimum number of forcesupercell, one increases the density of the wave vector
fields is equal to the number of nonequivalent atoms irgrid ky; in this way better accuracy of the phonon
the crystal primitive unit cell multiplied by a number of dispersion curves is achieved. The advantage of the
independent, y, z coordinates in the site symmetry of a introduced direct method is that it does not impose any
given atom. limit to the range of interaction. An interaction with
As a rule, the number of force field data is considerabljthe range far beyond the supercell will also give exact
greater than the number of parameters, i3as > p,  solutions at the wave vectokg,. The method interpolates
and the system, Eg. (6), is overdetermined. To solvéhe dispersion curves between exact points; however, if
it we apply the single value decomposition method [9]the force constants outside the supercell are so small
to the matrix C, and express the parameters in termshat they could be neglected, then the dispersion curves
of forces Ps = C! - F. This method produces a are exact for all the wave vectors. Thus, flor# ky,
solution, which is the best approximation in the least-the deviation from correct solution might increase with
squares sense, and is able to treat problems with then increasing range of interaction. The referred method
singular matrixC. combines the frozen phonon [3] and the direct approach
The aim of the referred direct method is to describe thawith a finite range of interaction [4]. Knowledge of the
dynamical matrixD(k) of the crystal, which is defined as A(n, u;0, v) matrices allows us to use crystal symmetry in
1 order to reduce the statistical errors of Hellmann-Feynman
D(k; uv) = W ZB(O, psm, v) forces. This technique can be applied to crystals of any
Ty m complexity, provided sufficient memory and computer
X ex{—2mik - [R(0,u) — R(m,»)]}. (7)  time are avaliable to solve Eq. (6).
Here the summationn runs over all atomsM,, M, In this Letter we apply theab inito force constant
andR(0, ), R(m, ») are masses and positions of atoms,@PProach to calculate phonons in cubic Zr(irconia).
respectively. Using the cumulant force constants, Eq. (2)n the highest temperature phase, the cubic »Zf@s
one may define an approximate dynamical matrix as @ Simple fluorite structuregn3m, Z = 1). At about
| 2600 K with decreasing temperature, it undergoes a cubic
Dk; pv) = —— ZWMBE(O,MQMv v) to tetragonal P4,/nmc, Z = 2) phase transition, driven
VMM, by the irreducible representatiak, [10] from the X
X exp{—2mik - [R(0, ) — R(M, v)]}. point at the boundary of the fcc Brillouin zone. The
8 total energy calculation for cubic ZsQ using the full-
. . potential linear augmented plane wave method have been
The atom(0,x) is always placed in the center of the o formeq already in Ref. [11]. The linear combination
supercell. One defines an ('-:~x'tended superce_ll, W_h'Ch hagt atomic orbitals method has been used to study the band
the same vo[ume as the original one, but which includegy oy re and density of states [12]. The potential induced
atoms on all its surfaces, and restores the local symmetyeihing model has been applied to calculate the equation
around a given atom0, u). Of course, the extended ¢ qiate and elasticity of ZrO[13]. A simple model with
supercell contains more atoms than the conventional ONGair-wise force constants and only four free parameters
To guarantee the Hermitian property @ (k), EQ. (8),  [14] has been used to calculate the phonon dispersion
the summationM must run over all neighbors inside . es along thd'-X line in the cubic phase. The free

the extel?ded_suplercil. _Thle dsudr\wmatiﬁn c&v?_r _ir_nagesf Harameters have been fitted to the elastic constants and
supercellsL 'is already Included in the definition of {4, the |ongwaver,, Raman-active vibrational frequency

cumulant force constanBs(n, x;0,») in Eq. (2). It 115 One phonon branch underwent a drop to the low
could happen, however, that atoms located at the surfac quency at the boundas, but it did not become soft.

of the extended S“Perce” are separated Iy These. . Our calculations of the Hellmann-Feynman forces
are the equivalent displaced atoms, because of periodig, ., pic ZrO, have been performed using HEasTEP

boundary conditions. They influence the central atomy, initio program [16], and the results have been ob-
with a similar strength. Therefore, in the definition of the (5inad within the local-density-functional approximation

approximate dynamical matrix, th#8x (0, x; M, ») must using a pseudopotential approach adx(2 X 2) fcc
be taken with fractional weighin, so that at the wave supercell with 96 atoms. The electronic wave functions

vectorky, fulfilling the condition were represented as plane waves with cut-off energy
expmiky - L) =1 (9) at 700 eV. To describe the ion-electron interaction the
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optimized norm-conserving pseudopotentials accordindield data. The nearest neighbor force constants between
to the kinetic-energy-optimization scheme [17,18] haveZr and O atoms are strongly negative, supporting the ten-
been used to describe the ion-electron interaction. Thdency to displace Zr and O. The same behavior is found
atomic configurationstd?5s* for Zr, and2s?3p* for O  for two nearest neighbor O atoms. A pair of oxygen
atoms were used to generate the pseudopotentials in tladoms diminish the energy when they are simultaneously
Kleinman-Bylander form [19]. The exchange-correlationdisplaced along thél, 0, 0) direction. Different force con-
potential due to Ceperley and Alder as parametrizedtants are found between oxygen atoms:@f3/2 dis-
by Perdew and Zunger [20] was employed. Brillouintance, depending on the presence of an intermediate Zr
zone integrations have been carried out using onlylthe atom. Namely, the O-Zr-O force constants are by one
point. Checking calculations with the (2, 2, 2) meshkof order of magnitude greater than these of the direct O-O
points [21] were also performed and they did not show @&ond. We checked the translational invariance condition
significant difference from the result obtained with the which has been satisfied within 0.25%.
point only. The phonon frequencies have been calculated using

With the 2 X 2 X 2 supecell, the phonons calculated Eg. (8) and are plotted along high-symmetry directions in
from Hellmann-Feynman forces are exactiatX, L, W,  Fig. 2. Thel'-X, X-W, andL-I" lines are alondl1, 0, 0),
and two other wave vector points, namely, at the midpoint1, 2,0), and(1, 1, 1) directions, respectively. At thé
betweenI” and X along(1,0,0) and(l1, 1,0) directions. point the Raman active optical mode @f, symmetry
The positions of Zr= (0,0,0), O(1) = (1/4,1/4,1/4),  occurs at16.49 THz (550.2 cm™!) being lower than the
and Q2) = (3/4,3/4,3/4) are fixed by symmetry. The experimental valuesg0 cm™!) [15,23] by 14%. Unfortu-
only free parameter to be found in the optimization is thenately, the phonon dispersion curves, as given in Fig. 2,
lattice constantzy. Figure 1 shows the calculated total cannot be compared directly with experiment, because
energy as a function of the lattice constant. The minimurnsuch data, to the best of our knowledge, do not exist.
occurs atay = 5.13 A, This may be compared with In Fig. 2 imaginary phonon frequencies of unstable
the experimental valug, = 5.256 A at a temperature of modes are represented as negative values. A nondegener-
2600 K [22]. ate mode has been found at tkiepoint. Its value reads

In the direct method the amplitude of the atomic dis-i5.86 THz. It stiffens up rapidly away from th¥ point.
placements has been limited#g = +0.010ay. Fourin-  Examination of the soft mode polarization vector reveals
dependent runs of Hellmann-Feynman force fields havéhat it is polarized along thél, 0,0) direction. It indi-
been carried out: two for Zr and two for O atoms, all dis-cates that neighboring chains of oxygen atoms displace in
placed alongz. This gives 1152 force field data. The opposite directions, towards the structure stabilized in the
symmetry analysis of force constants within the superietragonal phase.
cell leads to 68 independent parameters. Solving Eg. (6), In summary, we have shown that the direct method
one finds 59 independent parameters to be nonzero. Tlalows for efficientab initio calculations of the com-
remaining nine parameters vanish due to additional symplete phonon dispersions, including the specification of the
metry imposed by the choice of 2aX 2 X 2 supercell.  soft mode.
Each parameter is a result of averaging over 8 to 32 force The authors thank Dr. K. Esfarjani, Dr. K. Ohno, and

Dr. M. Sluiter for fruitful and numerous discussions, and
Professor E. Wimmer for encouraging us to undertake
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FIG. 1. Ground state total energy of cubic Zr@er 1 X WAVE VECTOR
1 X 1 supercell, as a function of the lattice constagt The  FIG. 2. Calculated phonon dispersions of Zrfd the cubic
minimum has been set to zero energy. structure at the extremum lattice constant= 5.13 A.
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