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Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity
and Interlayer Adhesion
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To study the shape formation process of carbon nanotubes, a string equation describing the possible
existing shapes of the axis curve of multishell carbon tubes (MCTSs) is obtained in the continuum limit
by minimizing the shape energy. It is shown that there exists a threshold relation of the outmost and
inmost radii that gives a parameter regime in which a straight MCT will be bent or twisted. Among
the deformed shapes, the regular coiled MCTs are shown to be one of the solutions of the string
equation. In particular, the optimal ratio of pitghand radiusr, for such a coil is found to be equal
to 277, which is in good agreement with recent observation of coil formation in MCTs by Zkaay
[S0031-9007(97)03213-4]

PACS numbers: 61.48.+c, 68.65.+g, 68.70.+w

Since the discovery of straight and multishell carbonstring, which has been studied extensively in differential
nanotubes (MCTs) in arc discharges [1], many uniquegeometry [7]. Straight line and regular coil are two exact
and novel properties have been predicted for the tubesolutions of the equation. We show that under certain
Among them, an especially intriguing one is their struc-geometric conditions the shape formation energy of a
tural stability; the mechanical properties of MCTs are ex-straight MCT could become negative, in other words, the
pected to be significantly stiffer than any presently knownstraight MCT becomes unstable in a quenchlike formation
materials [2]. However, in the recent synthesis by theprocess, and as a result, bent or twisted MCTs will be
catalytic decomposition of gas such as acetylene, a sigormed spontaneously to keep the equilibrium condition
nificant fraction of the produced MCTs exhibits various (i.e., the zero shape formation energy). Taking into
curved shapes [3], of which the most striking shapes areonsideration the equilibrium condition in the quenchlike
helices, i.e., the regular coils. It has been pointed out thatooling processes, the above argument provides an insight
the tubes can be twisted and deformed by an abrupt rder the mechanism of the curved deformation for the
lease of energy and a singularity in the stress-strain curvielCTs. The optimal ratio of the pitches and radii of
[4]. In Ref. [3] the regular coil formation was explained the regular coils formed in such processes is shown
by a periodic distribution of pentagon-heptagon-pair disimpressively to be equal t@7. Our result is in good
locations (PHPDs), but why the PHPDs are distributed peagreement with recent observation of the coil formation
riodically rather randomly still remains an open questionin MCTs by Zhanget al. [3].

Dunlap pointed out that the regularity could be caused Generally, when the hydrocarbons are thermally decom-
by defect-defect interactions and constraints on the opposited [3], the carbon molecules are condensed mostly to
timal heptagon-pentagon nanotube bend [5]. In Ref. [6form an isotropic smecticlike crystal, i.e., the carbonaceous
the bent carbon tubes were simulated by classical moleenesophase (CM), while the remaining space is filled by
ular dynamics based on the three-body Tersoff-Brenneplatelike molecules [8]. Thus the MCT formation is quite
interatomic potential, but it is rather difficult to extract the similar to the tube formation of a smecticphase grown
essential physics from such a numerical approach. from isotropic phase in liquid crystal [9]. As shown in

Therefore, the general questions can be posed as fdRef. [9], the shape formation energy is the additional en-
lows: What is the mechanism of the curved deformatiorergy of an MCT with respect to CM, which is a sum of
for the MCTs, and can we derive the deformed shape? the following three terms: (i) the net difference of the vol-

In this Letter, we analytically obtain the general ume free energy between MCT and CM, iBy, = —goV
equilibrium-shape equation of the axis curve of the MCTwhereV is the volume of the MCT aneé g is the adhesion
in the continuum limit by taking account of competition energy density of the interlayer van der Waals bonding; (ii)
among the curvature elasticity, the adhesion of thdhe surface energ§, = y(A, + A;) wherevy is the sur-
interlayer van der Waals bonding, and the tension of théace tensionA, andA; are the areas of the outmost and
outer and inner surfaces of a MCT. The sum of thesénmost surfaces, respectively; and (iii) the curvature elastic
three energies can be understood as the shape formatienergy of the layers.
energy (see below for details). We find that the variation We consider first the third term of the shape formation
of the shape formation energy yields an equation of rigicenergy, the curvature elastic energy. MCTs can be treated
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as a set of curved graphite layers [1]. For a single layerily crossing from atomi to one of its three neighbor
the curvature elastic energy is an incremental part oatoms; on the surface where the carbon atoms embed-
the in-layer covalent energy due to the layer curvatureded, and have one-to-one correspondence to atpms
Following Lenoskyet al. [10], the curvature elastic energy Here, we would like to emphasize that all the expres-
of a single layer curved graphite carbon has the form  sions K(M), t(M), N(M), (M), and b(M) are func-

2 tions of the arc-lengths, where s = ia. Specifying
EY = elz<zu,,> + e (1 —nn) the tube surface described by Eq. (2), in which the
i \(j) (i.J) sp?-bonded curves can be considered approximately as

+ e Z(ni ui) () - uj) (1) geodesies for the curved surfade we have addition-

& ally N(M) =n;, k(M) = ¢, co8 0(M) + c,Sirt (M),

. o L o (M) = (¢; — ¢3)sin@(M) cos# (M) wherec, andc, are
whereu;; is a unit vector pointing from carbon atanto its e g principal curvatures of the surface at atofaca-
neighborj, andn; is a unit vector normal to the fullerene o0 % o "5 — (¢, + ¢,)/2 andK = c1c,, ando(M) are
rce 2l T umat 1 ke o 0 e, ot Ghecon nd ) Connny
of the last terms are taken over only the nearest neighbdr/=! Sir? (M) — 3/2 and2 . sir 9(M) = 9/8, and

: . ubstituting Eq. (4) into Eq. (1), we obtain an important
atoms. The superscrif) _empha5|_zes that the enerdy  formula for the curvature elastic energy of the tube [12],
is for a single layer. Our first task is to reduce Eq. (1) into

a continuum form. (s) 1 ) | =
A curved single-shell tube of radigswithout inclusion Ey" = 34[5 ke(2H)" + kK |dA, (5)

of its two end-caps can be described by

Y(s, ) = r(s) + p[N(s)cos¢p + b(s)sing], (2)

where 0 < ¢ <27, and 0 < s <[ is the arc-length ke = (1/32) (18€; + 24e, + 9e3) (a®/o),  (B)
parameter along the curved tube axis, whereas ce

is the vector representation for the curve of the tube axiswith o = /3a2/4 = 2.62 A2 being the occupied area per
I is the total length of the tubeN(s) and b(s) are the atom, and the saddle-splay modulus is

unit normal and unit binormal vectors ofs), respectively

[11]. Making use of the well-known Frenet formulas [11], = —(8ex + 2€3)k./(6€; + 8e, + 3€3).  (7)

t, = k(s)N, N; = —k(s)t — 7(s)b, b, = 7(s)N,

where the bending elastic constant

Formula (5) is actually a general expression of the elas-

tic energy which is valid also to fluid membranes [13]
where t = dr/ds, t, = dt/ds, N, = dN/ds, b, = and solid shells [14]. If we substituté,, €, €3) into
db/ds, k(s) and 7(s) are the curvature and torsion of Eds. (6) and (7) by the values (.96, 1.29,0.05) eV, re-
r(s), respectively. In Ref.[12], we have derived the spectively, which were calculated by Lenosityal. using
area elementdA = p(1 — pkcos¢)dpds, the mean @ local density approximation [10], we find = 1.17 eV

curvatureH = (2pkcosé — 1)/2p(1 — pkcosg), and andk./k = —1.56. The obtained value of. is in rea-
the Gaussian curvatu€ = —k cos¢/p(1 — pkcosg)  Sonable agreement with the valueldi2 eV calculated by

for the tube surface ofY. It is then easy to prove Tersoff [15] using an atomistic method for straight tubes,
$KdA = 0. According to the Gauss-Bonnet theoremand is excellently close to the value b2 eV extracted
[11], this means the topology of the curved tube is theffom the measured phonon spectrum of graphite [16].
same as that of a straight tube. From the Euler’s theoremihe calculated ratio ok./k is also close to the result

in topology, the surface can be perfectly embedded by &f /k = —105.4/88 = —1.2 measured by Blakeslee
carbon network of six-member rings as in-plane graphitet al.[17]. Therefore, we have sufficient confidence in
layer. With the help of the Frenet formula (3), we trans-Ed. (5). Moreover, since it has been averaged over three
form the vector functions in Eq. (1) into continuum limit nearest neighbors for each site in expression Eq. (1) of
by expanding them up to the order 6f(a2k?), where Lenoskyet al.[10], we can have only two invariants as

a = 1.42 A'is the bond length in the graphite layer, H?dA andKdA in Eq. (5). Therefore, within the same ap-
a proximation, the free energ@;(f) corresponding to Eq. (5)
w(M) = u;; = [1 a3 kz(M)}t(M) should be again a linear combination of these two invari-
a a2 ants only. Consequentlyf,(f) would have the same for-
+ [Ek(M) t e kx(M)i|N(M) mal expression as Eq. (5) with coefficient andk being
g temperature dependent.
— Fk(M)r(M)b(M), 4 To extend the above result to a MCT, one has to

integrate Eq. (5) from its inmost radiys to the outmost
where k; = dk/ds, M = 1,2,3 denote three families radiusp,. We may apply a similar treatment as that of
of sp?-bonded curves with one curve of each fam-[18] which is in fact devoted to the curved smectic crystal
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multilayers, and has a layer structure similar to graphites’be approximated tq1/4) (p2 — p?)k%, and the shape
Replacing k;; with k./d in Eq. (3) of Ref.[18] and formation energy of the MCT, Egs. (9) and (10), can be
neglecting the constant term associated witkdA, we  subsequently simplified to

have
F=FV+FA+F;,=mfds+a]k2ds, (12)

Fy=> F}
where  m = w(k./d)In(p,/pi) + 27y(po + pi) —
= (k¢/2d) f WH2-K mgo(p2 — pi) and  a = (1/4)7(k./d) ((ZZ - pi).

Equation (11) is nothing but a string action [20]. The

— /g2 —

X In(l DH + DvH K>dA, (8) Vvariational equatiod F' = 0 yields the equilibrium-shape
1-DH—-DVH?—-K

equations of the string [7],
where d = 3.4 A is the space between two neighbor

3 _ 2 _m.
graphite layers an® = p, — p; is the thickness of the Zkss + k 2kt a k=0, (12)
MCT. Here, the surface integral is carried out over the K2 — 13
inner surfaces. Using the above expressionsHorK, T = const (13)

anddA and integrating fromp = 0 to 2, we obtained \yherek,, = d?k(s)/ds>.
the curvature elastic energy for the MCT as Following what has been discussed for the derivation of
Po 1+ 41— K2p? curvature elastic energy, in the derivation for these three
Fp = (ch/d)[ |n<f> +1In T+ /T —72.2) |9 terms of the shape formation energy, we have expressed
pi Po all the relevant quantities in terms of geometric language.
Therefore, due to the reason of geometric symmetry on
shape formation energygy and Fa, both of which are the low dimensional manifolds, the corr_esponding free
weak binding energy, i.e., the adhesion energy betweef1€'9y should have the same expression as those of
layers of an MCT. Despite the fact that many of the der_lved shape formation energy with fche coefficients
the structural properties of plane graphites are welP€coming temperature dependent. We will keep such an

understood, the calculation of interlayer adhesion energynderstanding in the discussions above and hereafter.
for curved graphites is still an open question. The It is obvious that a straight line is always a solution

observation in Ref. [1] reveals that the interlayer distancéf the string equations (12) and (13), since ktand
d in MCTs remains to be the same as that in planéd® Z€ro- The corresponding shape formation energy of

graphite, but the in-layer lattice structures for each single@ Straight MCT isF’ = m/. The shape formation energy

shell tube in one MCT may have different helicity. In IS regarded as a free energy and the equilibrium threshold

other words, the interlayer lattices are not in perfecondition of /7 = 0 yields the criteria for the growth of a

registry (referred to “incommensurate” or “mismatched” Straight MCT as

lattices). Therefore, the attractive forces between layers in

an MCT cannot be accounted for by conventional forces m = w(k./d)In(p,/pi) + 2my(p, + pi)

in plape graphites [_19]. .However, the adhesion energy — 7go(p2 — p2) = 0. (14)
for mismatched lattices is often smaller than that for

commensurate surfaces. We use a mismatched paramei§{is equation describes the geometric relation between
n to account for the mismatched effect between they,q p: in terms of the physical parameteks, v, andgo
interlayer lattices) < n = 1, andn = 1 corresponds t0  {or 5 straight MCT. Bothy and g, are also dependent on
the commensurate case. Since we are so far not aware gfe formation temperatures and catalyst. So the detailed
more detailed knowledges, as the lowest approximatioryata measured from the produced MCTs can reveal the
we take the following simple energy form properties ofy and g, with the help of Eq. (14). The
- _ 2 _ 2 formation procedure for MCTSs, either a quick growth
Fvt Fa == gom(py pi)f ds in which the temperature can be regarded as constant
or a sudden cooling, is actually a sort of quenchlike
+ 2my(po + pi)] ds., (10) process. As long as the shape formation energy for
where —go — nAE./d, AE, — —330 erg/cn? — the straight MCTs, i.e., deviates downwards from the

. X . threshold condition in the formation procedure, becomes
—2.04 eV/nn? is the interlayer cohesion energy of planar b

. . . . negative, the resultant remnant part of energy will prevent
graphite obtained theoretically by Girifalco and Lad [19],,[hegl straight MCT from keeping stable. Tghyen apshape
and y is the tension of the outmost and inmost surface

S Seformation will be induced, and it would lead to another
of the MCT, which is equal to half of the energy neededsolution of the string equation with its shape formation

to separate two unit-area surfaces, hes= —(1/2)AE.. a0ai . L
I gain being equal to zero. Therefore, by considering

Usually we have the MCTs witlp;k” < 1, then the 0 4reshold conditionF = 0, any outward growth by
expression IH(1 + /1 — k2p7)/(1 + /T — k2p2)] can  increasingp, will make the straight MCT undergo a shape
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deformation as long ag is kept constant. Furthermore, mate go(p2 — p?) =(~1.09-1.7%) X 10* eV/nm, and

go may increase with temperature decreasing, followingr(k./d)In(p,/p;) +27v(p, + p;) =—~68-101 eV/nm.

again Eqg. (14), a straight MCT grown may also be coiledConsidering expression (14), we find that under reason-

under the cooling process. These features give a naturable approximationyz in the practically formed MCT

explanation for the deformation of MCTs. coils always take negative value. Such a fact is notably
Now we would prove that the observed MCT regularconsistent with the above proposed explanation for the

coils shown in Ref. [3] are just the allowed solutions of shape deformation mechanism of MCTs.

Egs. (12) and (13). Mathematically, the regular coils can In summary, by deriving a string action type expression

be described by vectors, for the formation energy of the MCTs as well as its
) equilibrium-shape equation, we have shown that there is
r(s) = (rocosws, roSinws, hws), (15) 4 threshold condition for the formation of straight MCTs;

where the coiled pitclp = 274, ry is the coil radius and below that the straight MCTs become unstable and will
undergo a shape deformation. In particular, we derive

=1 = ./,2 2 i . : .
R =w"" =4ry + h*. One can easily show from the ,her an optimal formation condition/r, = 27 for the

Frenet formulas, Eq. (3), that= w’ro, 7 = —w’h, and  reqular coil solution, which is in good agreement with the
the regular coil curves are the solutions of (12) and (13) itecent experiment observations.
their ro and# satisfy the following equation: This work is partly supported by the National Natural
m 5 Science Foundation of China.
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