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Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity
and Interlayer Adhesion
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To study the shape formation process of carbon nanotubes, a string equation describing the possible
existing shapes of the axis curve of multishell carbon tubes (MCTs) is obtained in the continuum limit
by minimizing the shape energy. It is shown that there exists a threshold relation of the outmost and
inmost radii that gives a parameter regime in which a straight MCT will be bent or twisted. Among
the deformed shapes, the regular coiled MCTs are shown to be one of the solutions of the string
equation. In particular, the optimal ratio of pitchp and radiusr0 for such a coil is found to be equal
to 2p, which is in good agreement with recent observation of coil formation in MCTs by Zhanget al.
[S0031-9007(97)03213-4]

PACS numbers: 61.48.+c, 68.65.+g, 68.70.+w
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Since the discovery of straight and multishell carbo
nanotubes (MCTs) in arc discharges [1], many uniqu
and novel properties have been predicted for the tub
Among them, an especially intriguing one is their struc
tural stability; the mechanical properties of MCTs are ex
pected to be significantly stiffer than any presently know
materials [2]. However, in the recent synthesis by th
catalytic decomposition of gas such as acetylene, a s
nificant fraction of the produced MCTs exhibits variou
curved shapes [3], of which the most striking shapes a
helices, i.e., the regular coils. It has been pointed out th
the tubes can be twisted and deformed by an abrupt
lease of energy and a singularity in the stress-strain cur
[4]. In Ref. [3] the regular coil formation was explained
by a periodic distribution of pentagon-heptagon-pair di
locations (PHPDs), but why the PHPDs are distributed p
riodically rather randomly still remains an open questio
Dunlap pointed out that the regularity could be cause
by defect-defect interactions and constraints on the o
timal heptagon-pentagon nanotube bend [5]. In Ref. [
the bent carbon tubes were simulated by classical mole
ular dynamics based on the three-body Tersoff-Brenn
interatomic potential, but it is rather difficult to extract the
essential physics from such a numerical approach.

Therefore, the general questions can be posed as
lows: What is the mechanism of the curved deformatio
for the MCTs, and can we derive the deformed shape?

In this Letter, we analytically obtain the genera
equilibrium-shape equation of the axis curve of the MC
in the continuum limit by taking account of competition
among the curvature elasticity, the adhesion of th
interlayer van der Waals bonding, and the tension of t
outer and inner surfaces of a MCT. The sum of the
three energies can be understood as the shape forma
energy (see below for details). We find that the variatio
of the shape formation energy yields an equation of rig
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string, which has been studied extensively in different
geometry [7]. Straight line and regular coil are two exa
solutions of the equation. We show that under certa
geometric conditions the shape formation energy of
straight MCT could become negative, in other words, t
straight MCT becomes unstable in a quenchlike formati
process, and as a result, bent or twisted MCTs will
formed spontaneously to keep the equilibrium conditio
(i.e., the zero shape formation energy). Taking in
consideration the equilibrium condition in the quenchlik
cooling processes, the above argument provides an ins
for the mechanism of the curved deformation for th
MCTs. The optimal ratio of the pitches and radii o
the regular coils formed in such processes is sho
impressively to be equal to2p . Our result is in good
agreement with recent observation of the coil formatio
in MCTs by Zhanget al. [3].

Generally, when the hydrocarbons are thermally deco
posited [3], the carbon molecules are condensed mostl
form an isotropic smecticlike crystal, i.e., the carbonaceo
mesophase (CM), while the remaining space is filled
platelike molecules [8]. Thus the MCT formation is quit
similar to the tube formation of a smectic-A phase grown
from isotropic phase in liquid crystal [9]. As shown in
Ref. [9], the shape formation energy is the additional e
ergy of an MCT with respect to CM, which is a sum o
the following three terms: (i) the net difference of the vo
ume free energy between MCT and CM, i.e.,FV  2g0V
whereV is the volume of the MCT and2g0 is the adhesion
energy density of the interlayer van der Waals bonding; (
the surface energyFA  gsAo 1 Aid whereg is the sur-
face tension,Ao andAi are the areas of the outmost an
inmost surfaces, respectively; and (iii) the curvature elas
energy of the layers.

We consider first the third term of the shape formatio
energy, the curvature elastic energy. MCTs can be trea
© 1997 The American Physical Society 4055
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as a set of curved graphite layers [1]. For a single lay
the curvature elastic energy is an incremental part
the in-layer covalent energy due to the layer curvatu
Following Lenoskyet al. [10], the curvature elastic energy
of a single layer curved graphite carbon has the form

E
ssd
b  e1

X
i

√X
k jl

uij

!2

1 e2

X
ki,jl

s1 2 ni ? njd

1 e3

X
ki,jl

sni ? uijd snj ? ujid , (1)

whereuij is a unit vector pointing from carbon atomi to its
neighborj, andni is a unit vector normal to the fullerene
surface at atomi. The summation

P
k jl is taken over the

three nearest neighborj atoms to atomi, and the sums
of the last terms are taken over only the nearest neigh
atoms. The superscriptssd emphasizes that the energyEb

is for a single layer. Our first task is to reduce Eq. (1) in
a continuum form.

A curved single-shell tube of radiusr without inclusion
of its two end-caps can be described by

Yss, fd  rssd 1 rfNssd cosf 1 bssd sinfg , (2)

where 0 , f , 2p, and 0 , s , l is the arc-length
parameter along the curved tube axis, whereas curverssd
is the vector representation for the curve of the tube ax
l is the total length of the tube.Nssd and bssd are the
unit normal and unit binormal vectors ofrssd, respectively
[11]. Making use of the well-known Frenet formulas [11]

ts  kssdN, Ns  2kssdt 2 tssdb, bs  tssdN ,

(3)

where t  dryds, ts  dtyds, Ns  dNyds, bs 
dbyds, kssd and tssd are the curvature and torsion o
rssd, respectively. In Ref. [12], we have derived th
area elementdA  rs1 2 rk cosfddfds, the mean
curvatureH  s2rk cosf 2 1dy2rs1 2 rk cosfd, and
the Gaussian curvatureK  2k cosfyrs1 2 rk cosfd
for the tube surface ofY. It is then easy to proveH

KdA  0. According to the Gauss-Bonnet theorem
[11], this means the topology of the curved tube is th
same as that of a straight tube. From the Euler’s theor
in topology, the surface can be perfectly embedded by
carbon network of six-member rings as in-plane graph
layer. With the help of the Frenet formula (3), we trans
form the vector functions in Eq. (1) into continuum limi
by expanding them up to the order ofOsa2k2d, where
a  1.42 Å is the bond length in the graphite layer,

uisMd  uij 

∑
1 2

a2

6
k2sMd

∏
tsMd

1

∑
a
2

ksMd 1
a2

6
kssMd

∏
NsMd

2
a2

6
ksMdtsMdbsMd , (4)

where ks  dkyds, M  1, 2, 3 denote three families
of sp2-bonded curves with one curve of each fam
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ily crossing from atomi to one of its three neighbor
atomsj on the surface where the carbon atoms embe
ded, and have one-to-one correspondence to atomj.
Here, we would like to emphasize that all the expre
sions KsMd, tsMd, NsMd, tsMd, and bsMd are func-
tions of the arc-lengths, where s  ia. Specifying
the tube surface described by Eq. (2), in which th
sp2-bonded curves can be considered approximately
geodesies for the curved surfaceY, we have addition-
ally NsMd  ni, ksMd  c1 cos2 usMd 1 c2 sin2 usMd,
tsMd  sc1 2 c2d sinusMd cosusMd wherec1 andc2 are
the two principal curvatures of the surface at atomi loca-
tion, i.e.,H  sc1 1 c2dy2 andK  c1c2, andusMd are
the angles betweenc1 direction andtsMd. ConsideringP3

M1 sin2 usMd  3y2 and
P3

M1 sin4 usMd  9y8, and
substituting Eq. (4) into Eq. (1), we obtain an importa
formula for the curvature elastic energy of the tube [12]

E
ssd
b 

I ∑
1
2

kcs2Hd2 1 kK

∏
dA , (5)

where the bending elastic constant

kc  s1y32d s18e1 1 24e2 1 9e3d sa2ysd , (6)

with s 
p

3a2y4  2.62 Å2 being the occupied area pe
atom, and the saddle-splay modulus is

k  2s8e2 1 2e3dkcys6e1 1 8e2 1 3e3d . (7)

Formula (5) is actually a general expression of the ela
tic energy which is valid also to fluid membranes [13
and solid shells [14]. If we substitutese1, e2, e3d into
Eqs. (6) and (7) by the values ofs0.96, 1.29, 0.05d eV, re-
spectively, which were calculated by Lenoskyet al. using
a local density approximation [10], we findkc  1.17 eV
and kcyk  21.56. The obtained value ofkc is in rea-
sonable agreement with the value of1.02 eV calculated by
Tersoff [15] using an atomistic method for straight tube
and is excellently close to the value of1.2 eV extracted
from the measured phonon spectrum of graphite [1
The calculated ratio ofkcyk is also close to the result
of kcyk  2105.4y88  21.2 measured by Blakeslee
et al. [17]. Therefore, we have sufficient confidence
Eq. (5). Moreover, since it has been averaged over th
nearest neighbors for each site in expression Eq. (1)
Lenoskyet al. [10], we can have only two invariants a
H2dA andKdA in Eq. (5). Therefore, within the same ap
proximation, the free energyF

ssd
b corresponding to Eq. (5)

should be again a linear combination of these two inva
ants only. Consequently,F

ssd
b would have the same for-

mal expression as Eq. (5) with coefficientkc andk being
temperature dependent.

To extend the above result to a MCT, one has
integrate Eq. (5) from its inmost radiusri to the outmost
radiusro . We may apply a similar treatment as that o
[18] which is in fact devoted to the curved smectic cryst
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multilayers, and has a layer structure similar to graphites
Replacing k11 with kcyd in Eq. (3) of Ref. [18] and
neglecting the constant term associated with

H
KdA, we

have

Fb 
X

F
ssd
b

 skcy2dd
I

2
p

H2 2 K

3 ln

µ
1 2 DH 1 D

p
H2 2 K

1 2 DH 2 D
p

H2 2 K

∂
dA , (8)

where d  3.4 Å is the space between two neighbo
graphite layers andD  ro 2 ri is the thickness of the
MCT. Here, the surface integral is carried out over th
inner surfaces. Using the above expressions forH, K ,
and dA and integrating fromf  0 to 2p , we obtained
the curvature elastic energy for the MCT as

Fb  spkcydd
Z "

ln

µ
ro

ri

∂
1 ln

√
1 1

q
1 2 k2r

2
i

1 1
p

1 2 k2r2
o

!#
ds .

(9)
We now turn to consider the other two terms of th

shape formation energy,FV and FA, both of which are
weak binding energy, i.e., the adhesion energy betwe
layers of an MCT. Despite the fact that many o
the structural properties of plane graphites are we
understood, the calculation of interlayer adhesion ener
for curved graphites is still an open question. Th
observation in Ref. [1] reveals that the interlayer distanc
d in MCTs remains to be the same as that in plan
graphite, but the in-layer lattice structures for each singl
shell tube in one MCT may have different helicity. In
other words, the interlayer lattices are not in perfec
registry (referred to “incommensurate” or “mismatched
lattices). Therefore, the attractive forces between layers
an MCT cannot be accounted for by conventional force
in plane graphites [19]. However, the adhesion energ
for mismatched lattices is often smaller than that fo
commensurate surfaces. We use a mismatched param
h to account for the mismatched effect between th
interlayer lattices,0 , h # 1, andh  1 corresponds to
the commensurate case. Since we are so far not aware
more detailed knowledges, as the lowest approximatio
we take the following simple energy form

FV 1 FA  2 g0psr2
0 2 r2

i d
Z

ds

1 2pgsr0 1 rid
Z

ds , (10)

where 2g0  hDEcyd, DEc  2330 ergycm2 
22.04 eVynm2 is the interlayer cohesion energy of plana
graphite obtained theoretically by Girifalco and Lad [19]
and g is the tension of the outmost and inmost surface
of the MCT, which is equal to half of the energy neede
to separate two unit-area surfaces, i.e.,g  2s1y2dDEc.

Usually we have the MCTs withr2
ok2 ø 1, then the

expression lnfs1 1

q
1 2 k2r

2
i dys1 1

p
1 2 k2r2

odg can
’.

r

e

e

en
f
ll

gy
e
e
e
e-

t
”
in
s
y
r
eter
e

of
n,

r
,
s

d

be approximated tos1y4d sr2
o 2 r

2
i dk2, and the shape

formation energy of the MCT, Eqs. (9) and (10), can be
subsequently simplified to

F  FV 1 FA 1 Fb  m
Z

ds 1 a
Z

k2ds , (11)

where m  pskcydd lnsroyrid 1 2pgsr0 1 rid 2

pg0sr2
o 2 r

2
i d and a  s1y4dpskcydd sr2

o 2 r
2
i d.

Equation (11) is nothing but a string action [20]. The
variational equationdF  0 yields the equilibrium-shape
equations of the string [7],

2kss 1 k3 2 2kt2 2
m
a

k  0 , (12)

k2t  const, (13)

wherekss  d2kssdyds2.
Following what has been discussed for the derivation o

curvature elastic energy, in the derivation for these thre
terms of the shape formation energy, we have express
all the relevant quantities in terms of geometric language
Therefore, due to the reason of geometric symmetry o
the low dimensional manifolds, the corresponding free
energy should have the same expression as those
the derived shape formation energy with the coefficient
becoming temperature dependent. We will keep such a
understanding in the discussions above and hereafter.

It is obvious that a straight line is always a solution
of the string equations (12) and (13), since itsk and t

are zero. The corresponding shape formation energy
a straight MCT isF  ml. The shape formation energy
is regarded as a free energy and the equilibrium thresho
condition ofF  0 yields the criteria for the growth of a
straight MCT as

m  pskcydd lnsroyrid 1 2pgsro 1 rid

2 pg0sr2
o 2 r2

i d  0 . (14)

This equation describes the geometric relation betweenro

andri in terms of the physical parameterskc, g, andg0

for a straight MCT. Bothg andg0 are also dependent on
the formation temperatures and catalyst. So the detaile
data measured from the produced MCTs can reveal th
properties ofg and g0 with the help of Eq. (14). The
formation procedure for MCTs, either a quick growth
in which the temperature can be regarded as consta
or a sudden cooling, is actually a sort of quenchlike
process. As long as the shape formation energy fo
the straight MCTs, i.e., deviates downwards from the
threshold condition in the formation procedure, become
negative, the resultant remnant part of energy will preven
the straight MCT from keeping stable. Then a shap
deformation will be induced, and it would lead to anothe
solution of the string equation with its shape formation
again being equal to zero. Therefore, by considerin
the threshold conditionF  0, any outward growth by
increasingr0 will make the straight MCT undergo a shape
4057
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deformation as long asg0 is kept constant. Furthermore
g0 may increase with temperature decreasing, follow
again Eq. (14), a straight MCT grown may also be coil
under the cooling process. These features give a nat
explanation for the deformation of MCTs.

Now we would prove that the observed MCT regul
coils shown in Ref. [3] are just the allowed solutions
Eqs. (12) and (13). Mathematically, the regular coils c
be described by vectors,

rssd  sr0 cosvs, r0 sinvs, hvsd , (15)

where the coiled pitchp  2ph, r0 is the coil radius and

R ; v21 
q

r2
0 1 h2. One can easily show from th

Frenet formulas, Eq. (3), thatk  v2r0, t  2v2h, and
the regular coil curves are the solutions of (12) and (13
their r0 andh satisfy the following equation:

r2
0 2 2h2 2

m
a

sr2
0 1 h2d2  0 . (16)

Introducing hyR  sinu and r0yR  cosu, and taking
into account Eq. (16), we haveR2  saymd scos2 u 2

2 sin2 ud, and k2  r2
0 yR4  smyad f1ys1 2 2 tan2 udg.

Therefore, the coil formation energy can be derived fro
(11) as

F  ml

∑
1 1

1
1 2 2 tan2 u

∏
. (17)

Since now we have the coil situation which is qui
different from the straight MCT case, even for th
negative value ofm in Eq. (17), we may treat the
threshold conditionF  0 as tan2 u  h2yr2

0  1 or

p
r0

 2p . (18)

We compare the optimal ratio given by Eq. (18) wi
the experimental results reported in Ref. [3] and find
good agreement. As shown in Fig. 1 of Ref. [3], the
is a fraction (about10%) of MCTs being regularly coiled
with a variety of radiir0 and helix pitchesp. By a direct
evaluation from the figure, we do findpyr0  2p hold
quite well. A rough estimation from the coil shown in th
inset of this figure givesp ø 600 nm andr0 ø 100 nm,
i.e., pyr0 ø 6 ø 2p. Another coil, shown in Fig. 2 of
the same reference, has itsp ø 700 nm andr0 ø 100 nm
which leads topyr0 ø 7, again close to the prediction
of Eq. (18). Moreover, the results corresponding to t
coil are shown in Fig. 3 of Ref. [3], tanu 

p

2 2 f0 ø
2.2y2 ø 1.1, also in good agreement with the prese
prediction of tanu  1, wheref0 is defined within the
context of Ref. [3].

It is also interesting to study the value ofm for
the MCT coil by utilizing the data provided in
Ref. [3], where the experimentally observed valu
of 2ri ,3 7 nm and 2ro ,15 20 nm. Making
use of calculated values,kc  1.17 eV and g0  h 3

2.04 3 1022seVyÅ2dyd  6.03h eVynm3, we can esti-
4058
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matepg0sr2
o 2 r

2
i d  s,1.0h 1.7hd 3 103 eVynm, and

pskcydd lnsroyrid 1 2pgsro 1 rid ,68 101 eVynm.
Considering expression (14), we find that under reaso
able approximation,m in the practically formed MCT
coils always take negative value. Such a fact is notab
consistent with the above proposed explanation for th
shape deformation mechanism of MCTs.

In summary, by deriving a string action type expressio
for the formation energy of the MCTs as well as its
equilibrium-shape equation, we have shown that there
a threshold condition for the formation of straight MCTs
below that the straight MCTs become unstable and w
undergo a shape deformation. In particular, we deriv
further an optimal formation conditionpyr0  2p for the
regular coil solution, which is in good agreement with th
recent experiment observations.
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