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Properties of a Glass-Forming System as Derived from Its Potential Energy Landscape

Andreas Heuer
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(Received 23 December 1996)

Many properties of glass-forming systems can be explained in terms of their multidimensional
potential energy landscape. Here the total potential energy landscape of a small glass-forming
system with periodic boundary conditions is determined numerically. An appropriate one-dimensional
projection is introduced. It allows one to visualize how crystalline and amorphous regions are separated
from each other and to find a direct explanation of prominent dynamic features observed in molecular
dynamics simulations. The energy landscape and the occurrence of tunneling systems is elucidated for
different densities. [S0031-9007(97)03185-2]
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The properties of glasses at very low temperatur
(Kelvin regime) are typically described by postulating
the existence of tunneling systems [1,2]. They can b
envisaged as localized groups of atoms or molecules c
operatively moving between two configurations with com
parable energy [3,4]. Also the dynamics around the gla
transition temperatureTg is often related to cooperative
jump processes [5,6]. For rationalizing the properties
glass-forming systems close toTg and below, many au-
thors have used the concept of the multidimensional p
tential energy landscape in configuration space [5,7–1
The dynamical processes can be interpreted as transiti
between adjacent local minima. Also for the analysis
proteins the concept of an energy landscape has beco
an important tool [18]. In contrast, the mode-couplin
theory describes the onset of freezing from the liqu
state [19].

Qualitatively, the energy landscape of glass-formin
systems is usually sketched as a 1D potential containin
large number of hills and valleys [20]; see Fig. 1(a). Th
crystalline state corresponds to the lowest energy min
mum, here minimum A. In order to obtain aquantita-
tive version of Fig. 1(a), two steps are involved. Firs
one has to fully characterize the high-dimensional ener
landscape; second, one has to find an appropriate pro
tion scheme on a 1D potential. Since to the best of o
knowledge no general projection scheme exists, presen
tion of 1D potentials is mainly of qualitative value.

Analysis of the total energy landscape requires nume
cal simulations. For small spin glass clusters the ener
landscape has been calculated already many years
[21]. In recent years, progress has been achieved
determining thetotal energy landscape of small noble
gas clusters with at most 13 atoms [22,23]. Since th
number of minima exponentially grows with the numbe
of particles, extension to larger clusters is not possib
in a complete way [17,24,25]. Obviously, the physica
properties of small clusters are largely dominated b
surface effects. If one is interested in the simulation
bulklike properties or pressure effects for small systems
is essential to use periodic boundary conditions.
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For the first time we determine the total energy land
scape of a glass-forming system with periodic bounda
conditions and introduce a projection scheme on a 1
potential which keeps relevant features (to be specifie
below) of the high-dimensional potential. From the 1D
potential, information is accessible which allows direc
interpretation of features seen in MD simulations in th
supercooled regime [7]. Furthermore, direct connectio
of the energy landscape to the low-temperature anom
lies is possible.

The whole procedure is exemplified for a Lennard
Jones– (LJ-) type model system taken from the work o
Stillinger and Weber [7], containing 32 particles. The
simulated densities arer ­ 1 and r ­ 1.075 in units
of the nearest-neighbor distancea and unit mass. For
a polymer glass the density difference corresponds
an applied pressure of approximately 4 kbar [26]. Th
energy of the fcc crystalEcrystsrd has its minimum for
r ­ 1 fEcryst ; Ecrystsr ­ 1d ­ 2192 in LJ units [7] ].
The analysis of different densities is motivated by th
experimental observation that the density of tunnelin
systems in a glassy polymer significantly decreases up
application of pressure [26].

In a first step, about 105 conjugate gradient minimiza-
tion procedures, starting from arbitrarily chosen initia
configurations, were performed in order to get a (hope
fully) complete list of energy minimaEskd. We found
367 minima with different energy forr ­ 1 and 75 for

FIG. 1. (a) A simple 1D energy landscape, (b) a schemat
representation of (a), (c) the potential minima are rearrange
In all cases the transfer matrix̃V sk1, k2d is identical. The
horizontal lines are discussed in the text.
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r ­ 1.075. Their distribution is plotted in Fig. 2. The
number forr ­ 1 is approximately twice as large as pre
viously reported for the identical model [7], showing tha
high-energy minima are rather difficult to detect. Where
the crystalline minimum turns out to be stable upon i
creasing density, this does not hold for most amorpho
minima. This is already reflected by the observation th
the absolute number of minima decreases by more th
a factor of 4 when going fromr ­ 1 to r ­ 1.075 (see
Ref. [27] for a similar result). Performing the minimiza
tion with variabledensity we observed that the number o
different minima dramatically increases so that a syste
atic search is no longer possible. This partly explains t
observation of why the number of energy minima of 1
particles in a cluster with no constraints on density is
the same order as that of 32 particles in a fixed volume

In a second step, we determined the distances of
pairs sk1, k2d of minima in configuration space. If the
positions of theN particles are given byh$ri1,k1 j andh$ri2,k2j,
one can define the Euclidean distance by

fdsk1, k2dg2 ­
NX

i1­1

f$ri1,k1 2 $ri2si1d,k2 g
2. (1)

The notationi2si1d indicates thata priori it is not evi-
dent which particle of configurationk2 corresponds to
which particle ofk1, so that several mappings have to b
checked. For application of Eq. (1), two further aspec
have to be considered. First, due to the periodic boun
ary conditions the configurationh$ri,kj

j 1 $aj with arbitrary
vector $aj also belongs to energy minimumkj. Hence
for an appropriate definition ofdsk1, k2d one additionally
has to determine the value of$a1 2 $a2 which minimizes
dsk1, k2d. Second, for a 3D cube, one minimum corre
sponds to 48 different configurations which are relat
by symmetry operations like 90± rotations. This number
results from 3! permutations of axes and 23 reflections.
Hence a comparison of two energy minima in reality co
responds to a comparison of one configuration belong
to k1 with 48 symmetry related configurations belongin
to k2. For the determination ofdsk1, k2d, we calculated
the distance for all symmetry related configurations a
chose the minimum value. Since the MD simulations
[7] revealed that for ambient temperatures only config
rations withEskd , s5y6dEcryst are relevant, we restricted

FIG. 2. The energy distribution of minima forr ­ 1 (thick
line) andr ­ 1.075 (thin line).
4052
-
t

as
-

us
at
an

-
f

m-
he
3
of
.
all

e
ts
d-

-
d

r-
ng
g

nd
in
u-

our analysis to these 223 minima. Forr ­ 1.075 we an-
alyzed all minima. Preliminary MD studies show that ad-
jacent amorphous minima in configuration space tend t
have a distance ofd # 2 (in LJ units) [28].

For a given configurationk1, we define dminsk1d ­
mink2 dsk1, k2d. This value is a measure of how close
the relevant configurations are in the high-dimensiona
configuration space. In Fig. 3 the distribution ofd2

min is
plotted for both densities. In agreement with intuition in
both cases the configuration with the largest value ofdmin

corresponds to the crystalline structure. Interestingly, fo
r ­ 1.075 the wholedmin distribution is shifted to larger
values, yielding a gap fordmin , 0.6. Hence for denser
systems the different configurations are farther away from
each other in configuration space. As shown in previou
work, the tunneling systems which dominate the low
temperature properties correspond to pairs of minima wit
an average value ofd ø 0.35 [29]. Hence the present
calculations, at least qualitatively, predict a significan
decrease of the tunneling systems with increasing pressu
in agreement with experiment [26].

The energiesV sk1, k2d at the saddles were estimated
as follows. In the soft potential model the reaction
path between adjacent energy minima is parametrize
by quartic polynomials of the typew2sxyad2 2 w3sxy
ad3 1 w0

4 sxyad4 with constant w0
4 and independently

distributedw2 and w3 (x: Euclidean distance along the
reaction path,a equilibrium nearest-neighbor distance)
[30]. Recent simulations have shownw0

4 ø 10 (in LJ
units) [31]. Postulating thatw0

4 describes the quartic term
of the transition between all pairs of adjacent minima, th
values ofw2 andw3 and thus ofV sk1, k2d can be directly
estimated from knowledge ofdsk1, k2d and the energies
Esk1d, Esk2d. For pairs of minima withdsk1, k2d . 2 we
formally set V sk1, k2d ­ `. The subsequent results are
insensitive to the precise value ofw0

4 and to the definition
of adjacent minimasd # 2d.

The information about the energy landscape is express
by the energiesEskd, the distancedsk1, k2d, and the saddle
point energiesV sk1, k2d. In the spirit of the work of Still-
inger [11], we also define thetransfer matrix Ṽ sk1, k2d

FIG. 3. The distribution of the valued2
min for r ­ 1 (upper

curve) andr ­ 1.075 (lower curve). Note the depopulation of
small values ofd2

min for r ­ 1.075.
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which contains the minimum saddle point energy for a
(indirect and direct) paths from minimumk1 to mini-
mumk2. This matrix expresses the connectivity among a
minima. As discussed in [11],̃V sk1, k2d contains impor-
tant information about the dynamics in glass-forming sy
tems and is the basis for the definition of metabasins. F
a 1D potential, theṼ sk1, k2d are easily determined be-
cause minimak1 and k2 are connected by only a single
path. Now we show that for arbitrary multidimensiona
potentials it is possible to construct a 1D potential with a
identicaltransfer matrix. This enables visualization of im
portant information in 1D and, furthermore, gives a stri
recipe of how 1D representations of multidimensional p
tentials may be interpreted.

The algorithm can be outlined as follows. For give
energyE0 we form groups of minima. A group is defined
such thatṼ sk1, k2d # E0 for all members of one group
and Ṽ sk1, k2d . E0 otherwisesk1 fi k2d. For E0 ! `

one has a single group which, during a decrease
E0, continuously splits into smaller groups. ForE0 !
2` no group is left. From checking all differentE0,
indicated in Fig. 1 as horizontal lines, the different group
for the potential in Fig. 1(a) read (A,B,C,D,E), (A,B)
(C,D,E), (D,E). One can easily convince oneself th
it is possible for arbitrary multidimensional potentials t
sort all minimak1, . . . , kN such that all the members of
any group are contiguous. For the potential of Fig.
this is fulfilled for, e.g., ABCDE and ABEDC but not
for, e.g., ABECD, since here the members of the grou
(D,E) are not contiguous. Based on this sorting th
schematic potentials, shown in Figs. 1(b) and 1(c), c
be constructed with identical̃V sk1, k2d as the original
(possibly multidimensional) potential. In order to hav
a unique representation, we further require that, starti
y
FIG. 4. The energy landscape forr ­ 1. The double well potentials and minimum 3 are highlighted. All minima with energ
E , s5y6dEcryst are included.
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from the left, the sequence of energy minima increases
monotonically as possible; see Fig. 1(c). Note that bi
which are adjacent in the 1D projection may have a lar
distance in the real potential landscape like minima B a
E in Fig. 1(c).

In Fig. 4 this schematic potential is shown for the en
ergy landscape of the LJ glass withr ­ 1. First, one can
see the isolated crystalline minimum on the left side.
very high energy has to be reached before the crystal c
“melt.” A precise description of melting, however, is be
yond the scope of this Letter. For the noncrystalline mi
ima, basically two regions I and II can be distinguishe
region I containing minima 3–6 (only minimum 3, having
an energy ofEs3dyEcryst ø 0.895, is relevant), region II
the other relevant amorphous minima. From knowled
of the energy landscape one may predict that the long
time scale of relaxation at low temperatures is related
the transition between both noncrystalline regions I and
and that the time to leave minimum 3 is longer than fo
other minima. This nontrivial prediction is in agreemen
with the MD simulations of Stillinger and Weber (se
Fig. 5 of [7]) and confirmed by MD simulations in our
group [28]. It has been even shown that the value of t
low-temperature activation energy of the density-dens
correlation function roughly agrees with the barrier heig
between regions I and II (ø6 in LJ units). Closer inspec-
tion shows that minimum 3 has some intrinsic symmetri
indicating that this minimum is not purely amorphous.

In the remaining part, we extract the informatio
content of the energy landscape about the low-temperat
anomalies. We start by identifying double well potentia
(DWPs). We define a DWP as adjacent pairs of minim
k1 and k2 such that the energy at its saddle is small
than the energy of all other saddles which can be reach
4053
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either from minimum k1 or k2 (see, e.g., minima D
and E in Fig. 1). This condition guarantees that at lo
temperatures the system can switch between both mini
without escaping to a third minimum. Tunneling system
correspond to DWPs with an asymmetry less than 1
DWPs can be easily identified from the 1D potentia
In Fig. 4 they are marked by squares. Most of the
have a distanced2 ø 1, and hence correspond to ver
close-by configurations. The data of Fig. 4 allow a
estimation of the absolute number of tunneling systems
glasses. Having found 7 DWPs for 223 minima, one h
a probability of 14y223 per minimum that it belongs to a
DWP. Hence a configuration with32 3 223y14 ø 500
particles on average contains one DWP. The avera
asymmetry of the observed DWPs is of the orderĀ ­
0.005 3 Ecryst ø 1.0. For the example of NiP, a binary
glass-forming system, the LJ energy scale corresponds
1000 K and the distance scale to approximately 2 Å [9
If one assumes that the asymmetry of DWPs is equa
distributed, one roughly has one tunneling system p
500 3 s1000 Ky1 Kd 3 Ā ø 5 3 105 particles, yielding
a density of2 3 1046 J21 m23. This value is of the right
order of magnitude if compared with experimental data o
molecular [33] or metallic glasses [34].

In conclusion, a “topographic view of supercoole
liquids” [14] can indeed be very helpful in explaining
properties of glass-forming systems beyond their liqu
regime. Specifically, properties of the melting, the gla
transition, and the low-temperature anomalies can
obtained from quantitative knowledge of the energ
landscape. The 1D representation stresses the comm
origin of the low-temperature anomalies and the gla
transition. One expects that the complexity of the ener
landscape dramatically increases with further increasi
system size. However, this work shows that already ve
small model systems contain relevant information abo
the nature of real glass-forming systems.
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