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Properties of a Glass-Forming System as Derived from Its Potential Energy Landscape
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Many properties of glass-forming systems can be explained in terms of their multidimensional
potential energy landscape. Here the total potential energy landscape of a small glass-forming
system with periodic boundary conditions is determined numerically. An appropriate one-dimensional
projection is introduced. It allows one to visualize how crystalline and amorphous regions are separated
from each other and to find a direct explanation of prominent dynamic features observed in molecular
dynamics simulations. The energy landscape and the occurrence of tunneling systems is elucidated for
different densities. [S0031-9007(97)03185-2]

PACS numbers: 61.43.Fs, 64.70.Pf, 82.20.Wt

The properties of glasses at very low temperatures For the first time we determine the total energy land-
(Kelvin regime) are typically described by postulating scape of a glass-forming system with periodic boundary
the existence of tunneling systems [1,2]. They can beonditions and introduce a projection scheme on a 1D
envisaged as localized groups of atoms or molecules cgotential which keeps relevant features (to be specified
operatively moving between two configurations with com-below) of the high-dimensional potential. From the 1D
parable energy [3,4]. Also the dynamics around the glaspotential, information is accessible which allows direct
transition temperaturd, is often related to cooperative interpretation of features seen in MD simulations in the
jump processes [5,6]. For rationalizing the properties osupercooled regime [7]. Furthermore, direct connection
glass-forming systems close ¥, and below, many au- of the energy landscape to the low-temperature anoma-
thors have used the concept of the multidimensional polies is possible.
tential energy landscape in configuration space [5,7—17]. The whole procedure is exemplified for a Lennard-
The dynamical processes can be interpreted as transitiodsnes— (LJ-) type model system taken from the work of
between adjacent local minima. Also for the analysis ofStillinger and Weber [7], containing 32 particles. The
proteins the concept of an energy landscape has becorsanulated densities arp = 1 and p = 1.075 in units
an important tool [18]. In contrast, the mode-couplingof the nearest-neighbor distaneeand unit mass. For
theory describes the onset of freezing from the liquida polymer glass the density difference corresponds to
state [19]. an applied pressure of approximately 4 kbar [26]. The

Qualitatively, the energy landscape of glass-formingenergy of the fcc crystaEc . (p) has its minimum for
systems is usually sketched as a 1D potential containing & = 1 [Ecrye = Ecrysi(p = 1) = —192 in LJ units [7]].
large number of hills and valleys [20]; see Fig. 1(a). TheThe analysis of different densities is motivated by the
crystalline state corresponds to the lowest energy miniexperimental observation that the density of tunneling
mum, here minimum A. In order to obtain quantita- systems in a glassy polymer significantly decreases upon
tive version of Fig. 1(a), two steps are involved. First, application of pressure [26].
one has to fully characterize the high-dimensional energy In a first step, about f0conjugate gradient minimiza-
landscape; second, one has to find an appropriate projetien procedures, starting from arbitrarily chosen initial
tion scheme on a 1D potential. Since to the best of ouconfigurations, were performed in order to get a (hope-
knowledge no general projection scheme exists, presentéully) complete list of energy minima (k). We found
tion of 1D potentials is mainly of qualitative value. 367 minima with different energy fop = 1 and 75 for

Analysis of the total energy landscape requires numeri-
cal simulations. For small spin glass clusters the energy EA 9 b) C)
landscape has been calculated already many years ago E f
[21]. In recent years, progress has been achieved in —H
determining thetotal energy landscape of small noble J= "U —__L —_i__
gas clusters with at most 13 atoms [22,23]. Since the | | | |
number of minima (_axponentlally grows WIFh the numper ABCDE ABCDE ABEDC
of particles, extension to larger clusters is not possible N
in a complete way [17,24,25]. Obviously, the physical X
properties of small clugtgrs are Iargely do.mlnat'ed by, IG.1. (a) A simple 1D energy landscape, (b) a schematic
surfa_ce effects.. If one is interested in the simulation O,representation of (a), (c) the potential minima are rearranged.
bulklike properties or pressure effects for small systems ifn all cases the transfer matrik (k, k,) is identical. The
is essential to use periodic boundary conditions. horizontal lines are discussed in the text.
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p = 1.075. Their distribution is plotted in Fig. 2. The our analysis to these 223 minima. Fer= 1.075 we an-
number forp = 1 is approximately twice as large as pre- alyzed all minima. Preliminary MD studies show that ad-
viously reported for the identical model [7], showing that jacent amorphous minima in configuration space tend to
high-energy minima are rather difficult to detect. Whereasave a distance af = 2 (in LJ units) [28].
the crystalline minimum turns out to be stable upon in- For a given configuratiork,, we define dmn(k;) =
creasing density, this does not hold for most amorphouminy, d(k;, k;). This value is a measure of how close
minima. This is already reflected by the observation thathe relevant configurations are in the high-dimensional
the absolute number of minima decreases by more thatonfiguration space. In Fig. 3 the distribution @, is
a factor of 4 when going fromqp = 1 to p = 1.075 (see  plotted for both densities. In agreement with intuition in
Ref. [27] for a similar result). Performing the minimiza- both cases the configuration with the largest valué gf
tion with variable density we observed that the number of corresponds to the crystalline structure. Interestingly, for
different minima dramatically increases so that a systemp = 1.075 the wholed,,, distribution is shifted to larger
atic search is no longer possible. This partly explains thealues, yielding a gap fod,, < 0.6. Hence for denser
observation of why the number of energy minima of 13systems the different configurations are farther away from
particles in a cluster with no constraints on density is ofeach other in configuration space. As shown in previous
the same order as that of 32 particles in a fixed volume. work, the tunneling systems which dominate the low
In a second step, we determined the distances of atemperature properties correspond to pairs of minima with
pairs (ki, k,) of minima in configuration space. If the an average value of = 0.35 [29]. Hence the present
positions of theN particles are given b{#; 4, } and{r;,x,},  calculations, at least qualitatively, predict a significant

one can define the Euclidean distance by decrease of the tunneling systems with increasing pressure
N in agreement with experiment [26].
[d(ki k)P = D [Fis — Firtinil™ (1) The energiesV (k,, k,) at the saddles were estimated
i1=1 as follows. In the soft potential model the reaction

The notationi2(i1) indicates that priori it is not evi- Path between adjacent energy minima s parametrized
dent which particle of configuratio, corresponds to PY quartic polynomials of the typev(x/a)* — ws(x/
which particle ofk;, so that several mappings have to bea)’ + wi(x/a)* with constantws and independently
checked. For application of Eq. (1), two further aspectglistributedw, and ws (x: Euclidean distance along the
have to be considered. First, due to the periodic bound€action path.a equilibrium nearest-neighbor distance)
ary conditions the configuratioff; } + a; with arbitrary ~ [30]. - Recent simulations have shown, ~ 10 (in LJ
vector &; also belongs to energy minimury. Hence Units) [31]. Postulating that, describes the quartic term
for an appropriate definition of(k;, k,) one additionally of the transition between all pairs of adjacent minima, the
has to determine the value éf — @, which minimizes Vvalues ofw, andwj; and thus ofV(k, k2) can be directly
d(ki,k,). Second, for a 3D cube, one minimum corre-€stimated from knowledge af(k. ;) and the energies
sponds to 48 different configurations which are relatecE(k1), E(k2). For pairs of minima withi(k;, k2) > 2 we

by symmetry operations like 90otations. This number formally setV(ki, k;) = . The subsequent results are
results from 3! permutations of axes and r2flections. insensitive to the precise value of and to the definition
Hence a comparison of two energy minima in reality cor-Of adjacent minimdd = 2). _

responds to a comparison of one configuration belongin% The information about the energy landscape is expressed
to k; with 48 symmetry related configurations belongingPy the energie€(k), the distance!(ki, k), and the saddle

to k,. For the determination of (k, k»), we calculated point energied/ (k;, k2). In the spirit of the work of Still-

the distance for all symmetry related configurations andnger [11], we also define theransfer matrix V (ki, k2)
chose the minimum value. Since the MD simulations in

[7] revealed that for ambient temperatures only configu- ~
rations WithE(k) < (5/6)E.ys are relevant, we restricted ‘\_.c; £ A
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FIG. 3. The distribution of the valugz,, for p = 1 (upper
FIG. 2. The energy distribution of minima fgr = 1 (thick  curve) andp = 1.075 (lower curve). Note the depopulation of
line) andp = 1.075 (thin line). small values oflk, for p = 1.075.
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which contains the minimum saddle point energy for allfrom the left, the sequence of energy minima increases as
(indirect and direct) paths from minimurk; to mini-  monotonically as possible; see Fig. 1(c). Note that bins
mumk,. This matrix expresses the connectivity among allwhich are adjacent in the 1D projection may have a large
minima. As discussed in [11}/ (k;, k;) contains impor-  distance in the real potential landscape like minima B and
tant information about the dynamics in glass-forming sysE in Fig. 1(c).
tems and is the basis for the definition of metabasins. For In Fig. 4 this schematic potential is shown for the en-
a 1D potential, theV (k;, k,) are easily determined be- ergy landscape of the LJ glass wjth= 1. First, one can
cause minimak; and k, are connected by only a single see the isolated crystalline minimum on the left side. A
path. Now we show that for arbitrary multidimensional very high energy has to be reached before the crystal can
potentials it is possible to construct a 1D potential with an‘melt.” A precise description of melting, however, is be-
identicaltransfer matrix. This enables visualization of im- yond the scope of this Letter. For the noncrystalline min-
portant information in 1D and, furthermore, gives a strictima, basically two regions | and Il can be distinguished,
recipe of how 1D representations of multidimensional po+egion | containing minima 3—6 (only minimum 3, having
tentials may be interpreted. an energy ofE(3)/E.ys =~ 0.895, is relevant), region Il
The algorithm can be outlined as follows. For giventhe other relevant amorphous minima. From knowledge
energyE, we form groups of minima. A group is defined of the energy landscape one may predict that the longest
such thatV (k;, k,) = E, for all members of one group time scale of relaxation at low temperatures is related to
and V (k;, k,) > E, otherwise(k, # k). For E, — o  the transition between both noncrystalline regions | and II
one has a single group which, during a decrease odnd that the time to leave minimum 3 is longer than for
Ey, continuously splits into smaller groups. F&p —  other minima. This nontrivial prediction is in agreement
—o no group is left. From checking all differerf;,,  with the MD simulations of Stillinger and Weber (see
indicated in Fig. 1 as horizontal lines, the different groupsFig. 5 of [7]) and confirmed by MD simulations in our
for the potential in Fig. 1(a) read (A,B,C,D,E), (A,B), group [28]. It has been even shown that the value of the
(C,D,E), (D,E). One can easily convince oneself thaiow-temperature activation energy of the density-density
it is possible for arbitrary multidimensional potentials to correlation function roughly agrees with the barrier height
sort all minimak,,...,ky such that all the members of between regions | and IK6 in LJ units). Closer inspec-
any group are contiguous. For the potential of Fig. 1tion shows that minimum 3 has some intrinsic symmetries
this is fulfilled for, e.g., ABCDE and ABEDC but not indicating that this minimum is not purely amorphous.
for, e.g., ABECD, since here the members of the group In the remaining part, we extract the information
(D,E) are not contiguous. Based on this sorting thecontent of the energy landscape about the low-temperature
schematic potentials, shown in Figs. 1(b) and 1(c), camnomalies. We start by identifying double well potentials
be constructed with identicaV (k, k,) as the original (DWPs). We define a DWP as adjacent pairs of minima
(possibly multidimensional) potential. In order to havek; and k, such that the energy at its saddle is smaller
a unique representation, we further require that, startinghan the energy of all other saddles which can be reached
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FIG. 4. The energy landscape fpr= 1. The double well potentials and minimum 3 are highlighted. All minima with energy
E < (5/6)Eys are included.
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