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A group theoretic framework is introduced that simplifies the description of known quantum e
correcting codes and greatly facilitates the construction of new examples. Codes are given whic
3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correct
errors, and 1 to 29 qubits correcting 5 errors. [S0031-9007(96)02177-1]
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A quantum error-correcting code is a way of encodi
quantum states into qubits (two-state quantum systems
that error or decoherence in a small number of indiv
ual qubits has little or no effect on the encoded data. T
existence of quantum error-correcting codes was disc
ered only recently [1]. Although the subject is relative
new, a large number of papers on quantum error cor
tion have already appeared. Many of these describe
cific examples of codes [1–9]. However, the theoreti
aspects of these papers have been concentrated on pr
ties and rates of the codes [7,10–12], rather than on rec
for constructing them. This Letter introduces a unifyin
framework which explains all the codes discovered to d
and greatly facilitates the construction of new example

The basis for this unifying framework is group theoret
It rests on the structure of certain finite subgroupsE , L
in Os2nd and E0 , L0 in Us2nd [13]. Since the natura
setting for quantum mechanics is complex space, it mi
appear more appropriate to focus on the complex gro
E0 andL0. However, we shall begin by discussing the re
groupsE andL, since their structure is easier to understa
and they are sufficient for the construction of the kno
quantum error-correcting codes. We will first constru
the subgroupE of Os2nd. This groupE provides a bridge
between quantum error-correcting codes in Hilbert sp
and binary orthogonal geometry. We then construct
larger subgroupL , Os2nd as the normalizer ofE.

The groupE is the group of tensor products6w1 ≠

. . . ≠ wn where eachwj is either the identity or one o
the Pauli matricessx, sy or sz applied to thejth qubit.
Mathematically, the groupE is realized as an irreducibl
group of2112n orthogonal2n 3 2n matrices. The cente
of E, JsEd, is h6Ij and the groupE has theextraspecial
property that Ē ­ EyJsEd is elementary Abelian (henc
a binary vector space). LetV denote the vector spaceZ

n
2

(where Z2 ­ h0, 1j) and label the standard basis ofR2n

by jyl, y [ V . Every elemente of E can be written
uniquely in the form

e ­ XsadZsbd s2Idl, (1)

where l [ Z2, Xsad : jyl ! jy 1 al, Zsbd : jyj !
s21db?y jyl, for a, b [ V .
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Consider thejth qubit in a quantum channel which is
transmittingn qubits. Letyj be the vector with a 1 in
the jth bit and 0’s in the remaining bits. ThenXsyjd is
the transformation which applies the Pauli matrixsx ­

s 0 1
1 0 d to thejth qubit and does nothing to the remainin

n 2 1 qubits. The transformationZsyjd applies the Pauli

matrix sz ­ s 1 0
0 21 d to the jth bit and does nothing

to the othern 2 1 qubits. In the language of quantum
error correction,Xsyjd is a bit error andZsyjd is a phase
error in thejth qubit. The elementXsadZsbd corresponds
to bit errors in the qubits for whichaj ­ 1 and phase
errors in the qubits for whichbj ­ 1. It has been shown
that for the purposes of quantum error correction, w
need consider only errors of the typessx ­ Xsyjd, sz ­
Zsyjd, and sy ­ XsyjdZsyjd, since if we can correct
errors of these types int qubits, we can correct arbitrary
errors int qubits [4,7,10].

Our construction yields quantum codes as simultaneo
eigenspaces of the matrices in an Abelian subgroup ofE.
For this construction, we need a criterion for whether tw
elements ofE commute. Define a quadratic formQ on
Ē ­ EyJsEd by

Qsēd ­
nX

j­0

ajbjsmod2d , (2)

wheree ­ 6XsadZsbd is any element ofE whose image
in Ē is ē. Then e2 ­ s2IdQsēd and Qsēd ­ 0 or 1
accordingly asXsad and Zsbd commute or anticommute.
If e ­ w1 ≠ . . . ≠ wn, then Qsēd is the parity of the
number of componentswj that are equal tosxsz. Define
a binary inner product on̄E by sē, ē0d ­ Qsē 1 ē0d 1

Qsēd 1 Qsē0d. For ē ­ sajbd, ē0 ­ sa0jb0d,

sē, ē0d ­ a ? b0 1 a0 ? b smod2d. (3)

Now consider two elements ofE: e ­ 6XsadZsbd and
e0 ­ 6Xsa0dZsb0d. Thene ande0 commute or anticom-
mute accordingly assē, ē0d ­ 0 or 1.

A subspaceS̄ of Ē is said to be totally singular if
Qss̄d ­ 0 for all s̄ [ S̄. It follows that for s̄, s̄0 in S̄
the inner productss̄, s̄0d ­ 0. If M̄ is a maximal totally
singular subspace, then the groupM̄ has2n distinct linear
© 1997 The American Physical Society 405
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characters, and the corresponding eigenvectors deter
a coordinate frameF sM̄d (an orthonormal basis ofR2n

).
For example, the image ofZsV d in Ē determines the co
ordinate framejyl, y [ V , and the image ofXsV d deter-
mines the coordinate frame22ny2

P
ys21du?y jyl, u [ V .

If S̄ # M̄ is a k-dimensional totally singular subspac
then the group̄S has2k distinct linear characters. The2n

vectors inF sM̄d are partitioned into2k sets of size2n2k

with each set corresponding to a different eigenspace.
view each eigenspace as a quantum error-correcting c
which mapsn 2 k qubits inton qubits. The2n2k vectors
from F sM̄d in that eigenspace constitute the code word

More generally, we may use complex space, and so
define a quantum error-correcting code encodingk qubits
into n qubits to be any2k-dimensional subspaceC of C2n

.
This code will protect against errors in a certain error
E , which we take to be a subset of the extraspecial gr
E. As remarked earlier, there is no loss of generality
restricting to error sets inE.

For such a codeC to protect against all errors in an erro
setE , it is necessary and sufficient [7,12] that for any tw
vectorsjc1l and jc2l in C with kc1jc2l ­ 0, and any two
transformationse1 ande2 from E , we have

kc1je
21
1 e2jc2l ­ 0 , (4)

kc1je
21
1 e2jc1l ­ kc2je

21
1 e2jc2l. (5)

Note that since we are assuming thatE is contained in
E, we can replacee21

1 e2 by e1e2 in the above equations
since e1 ­ 6e21

1 . An interesting special case occu
when both sides of Eq. (5) are always equal to 0
e1 fi e2 [ E . This implies that there is a measureme
which will uniquely determine the error without affectin
the encoded subspace. After this measurement, the
can subsequently be corrected by a unitary operation
both sides of Eq. (5) are not always 0, then there can
two errorse1 and e2 between which it is impossible to
distinguish. However, these two errors are guarantee
have identical effects on vectors within the subspaceC, and
so need not be distinguishable in order to be correctab

We now can show the connection between orthogo
geometry and quantum error-correcting codes.

Theorem 1:Suppose thatS̄ is a k-dimensional to-
tally singular subspace of̄E. Let S̄' be thes2n 2 kd-
dimensional subspace orthogonal toS̄ with respect to the
inner product (3). Further suppose that for any two v
tors e1 ande2 in an error setE # E, either ē1ē2 [ S̄ or
ē1ē2 ” S̄'. Then the eigenspaceC corresponding to any
character of the group̄S is an error-correcting code whic
will correct any errore [ E .

Proof. We first show that ife [ E, then e permutes
the 2k spacesCi which are generated by the2k different
linear characters of̄S. Consider an element̄s [ S̄ with
eigenvaluels. We writes for the associated represent
tion. Then for anyjcl [ C we havesjcl ­ lsjcl, and
sejcl ­ s21dss̄,ēdesjcl ­ s21dss̄,ēdlsejcl, where ss̄, ēd is
the inner product (3). Sinces21dss̄,ēdls is independent of
406
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jcl, this shows that the action ofe permutes the eigenspace
generated by the characters ofS.

We next divide the proof into two cases, accordingly
ē1ē2 [ S̄ or ē1ē2 ” S̄'.

Case 1:Supposēe1ē2 [ S̄. It follows that forjc1l and
jc2l [ C with kc1jc2l ­ 0,

kc1je1e2jc2l ­ le1e2kc1jc2l ­ 0 , (6)

and for alljcl [ C,

kcje1e2jcl ­ le1e2 kcjcl ­ le1e2 , (7)

establishing Eqs. (4) and (5).
Case 2:Supposēe1ē2 ” S̄'. It follows that for some

s̄ [ S̄, se1e2 ­ 2e1e2s. Thus, forjcl [ C,

se1e2jcl ­ 2e1e2sjcl ­ 2lse1e2jcl, (8)

soe1e2jcl ” C. Thuse1e2jcl is in a different eigenspace
so

kc1je1e2jc2l ­ 0 (9)

for all c1, c2 [ C (including c1 ­ c2). Again Eqs. (4)
and (5) hold. QED

Example 1:We first describe the code mapping 1 qub
into 5 qubits presented in Ref. [7], which contains tw
code words,

jc0l ­ j00000l

1j11000l 1 j01100l 1 j00110l 1 j00011l 1 j10001l

2j10100l 2 j01010l 2 j00101l 2 j10010l 2 j01001l

2j11110l 2 j01111l 2 j10111l 2 j11011l 2 j11101l,

jc1l ­ j11111l

1j00111l 1 j10011l 1 j11001l 1 j11100l 1 j01110l

2j01011l 2 j10101l 2 j11010l 2 j01101l 2 j10110l

2j00001l 2 j10000l 2 j01000l 2 j00100l 2 j00010l.

Essentially the same code is given in Ref. [5], but w
use the above presentation since it is fixed under cy
permutations. It is easily verified thatXs11000dZs00101d
fixes jc0l and jc1l. Thus we may take the vecto
s11000j00101d [ Ē to be in the subspacēS. Using the
fact that the code is closed under cyclic permutatio
we find that S̄ is the four-dimensional totally singula
subspace generated by the vectors

11000j00101

01100j10010

00110j01001

00011j10100

[The fifth cyclic shift, s10001j01010d, is also in this
subspace.] The dual̄S' is generated byS̄ and the
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two additional vectorss11111j00000d ands00000j11111d.
It is straightforward to verify that the minimal weigh
vectors in S̄' have weight three [one such vector
s00111j00101d] and thus the code can correct one error

Example 2:Suppose we have a classical linearfn, k, dg
binary error-correcting codeC [i.e., it is over Z

n
2 , it is

k dimensional, and it has minimal distanced, so that
it correctst ­ bsd 2 1dy2c errors]. Suppose furthermor
that C' , C. We can define a subspaceS̄ to consist
of all vectors sy1jy2d [ Ē, where y1, y2 [ C'. The
dual S̄' consists of all vectorssy1jy2d with y1, y2 [ C,
showing that the corresponding quantum error-correct
code correctst errors. The subspacēS is 2sn 2 kd
dimensional, so the quantum code mapsn 2 2k qubits
into n qubits. This is the method described in Refs. [3,

Example 3: Consider the subspacēS obtained by
modifying the classical [8,4,4] Hamming code as follow

01110100j00111010

00111010j00011101

00011101j01001110

11111111j00000000

00000000j11111111. (11)

It is straightforward to verify that these vectors genera
a five-dimensional totally singular subspaceS̄ which is
invariant under cyclic permutations of the last 7 bits, a
that S̄' has minimal weight 3. This gives a quantu
code mapping 3 qubits into 8 qubits which can corre
one error. The same code was discovered by Gottes
[8], who used similar group-theoretic techniques, and
Steane [9].

Example 4:By duplicating the 5-qubit code (10) an
adding two vectors, we can obtain a code which map
qubits into 10 qubits and corrects one error:

01100 11110j10010 01100

00110 01111j01001 00110

00011 10111j10100 00011

10001 11011j01010 10001

11111 11111j00000 00000

00000 00000j11111 11111 . (12)
Example 5:The following construction is a genera

ization of the 5-qubit code (10) inspired by classic
quadratic residue codes. It works for any primep of the
form 8j 1 5. We have not found good theoretical boun
on the minimal distance, but for small primes these co
are excellent. To construct the first vectorsajbd, put
aj ­ 1 whenj is a nonzero quadratic residue modp (that
is, j ­ k2 mod p for somek) and putbj ­ 1 whenj is a
quadratic nonresidue. To obtainp 2 1 vectors that gen-
erate the subspacēS, takep 2 2 cyclic shifts of the first
vector. Forp ­ 13, the first basis vector is

0101100001101j0010011110010
g

.
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l

s

and the remaining vectors are obtained by cyclic shi
The minimal weight ofS̄' was calculated by computer t
be 5. This gives a code mapping one qubit into 13 qub
which corrects 2 errors. Forp ­ 29, this subspacēS'

has minimal distance 11, so this construction gives a c
mapping 1 qubit to 29 which corrects 5 errors.

We now give the construction of the groupL , OsR2n d
from its subgroupE. The groupL is the normalizer of
E in the real orthogonal groupOsR2n d; that is, it is the
subgroup of elementsg [ OsR2n d such thatg21Eg ­ E.
This normalizer acts onE by conjugation, fixing the
centerJsEd (g [ L acts onE as the permutatione !
g21eg). Hence there is a well-defined action ofL on the
binary vector spacēE that preserves the quadratic formQ.
The quotientLyE is the orthogonal groupO1s2n, 2d, a
finite classical group [14]. The groupL appears in recen
connections between classical Kerdock error-correct
codes, orthogonal geometry, and extremal Euclidean
sets [13]. This group also appears [7] as the group
Bell-state-preserving bilateral local transformations th
two experimenters (A and B) can jointly perform onn
pairs of particles (each pair being in a Bell state). Hen
there is a one-to-one correspondence between Bell st
and elements of̄E [cf. Eqs. (39) and (67) of Ref. [7] ].
The quadratic formQsēd is 0 or 1 accordingly as the
Bell states are symmetric or antisymmetric under t
interchange ofA andB.

The following are group elements that generateL from
E, shown together with their induced action on the bina
vector spacēE.

(1) H ­ 22ny2fs21du?ygu,y[V , which interchanges
Xsad and Zsbd. This applies the transformatio

R ­
1

p
2
s 1 1

1 21 d to every qubit.

(2) Ĥ2 ­
1

p
2
s 1 1

1 21 d ≠ I2n21 , which appliesR to the

first qubit and leaves the other qubits unchanged. T
acts onĒ by interchanginga1 andb1.

(3) Every matrixA in the general linear groupGLsV d
determines a permutation matrixjyl ! jyAl in OsR2n d.
The action on Ē induced by conjugation isXsad !
XsaAd, Zsbd ! ZsbA2Td. For example, the quantum
XOR taking jq1q2l ! jq1sq1 © q2dl is represented by

The back action of theXOR on the phases is evident i
its effect onb1 andb2. Any orthogonal matrix inOsR2n d
that normalizes bothXsV d and ZsV d is of this type for
someA [13], Lemma 3.14.
407
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(4) Diagonal matricesdM ­ diagfs21dQM sydg, where
QM is a binary quadratic form onV for which the
associated bilinear formQMsu 1 yd 2 QMsud 2 QM syd
is uMyT . Note thatM is symmetric with zero diagonal
The induced action on̄E is given by

These matrices are precisely the elements ofL that
induce the identity on the subgroupZsV d. In terms of
their effect on qubits, these are the transformations inL
that change the phases of the qubits while fixing th
values.

Remark: The group E0 is generated byE and iI
in the unitary groupUs2nd. Now we cannot define
Qsēd ­ e2 becausesied2 fi e2. However, we still have
the nonsingular alternating binary form

sssX̄sadZ̄sbd, X̄sa0dZ̄sb0dddd ­ a ? b0 1 a0 ? bsmod2d.

(15)

The groupL0 is the normalizer ofE0 and is generated byL
and by diagonal transformationsdP ­ diag fiTPsydg where
TP is a Z4-valued quadratic form [13], Section 4. Th
induced action on̄E0 ­ E0yJsE0d is described by

whereP is symmetric and may have a nonzero diagon
For example, applying thepy2 rotation around thez

axis s 1 0
0 i

d to each qubit corresponds toP ­ I. The

quotient L0yE0 is the symplectic groupSps2n, 2d [14].
As the quadratic formQ played no role in the proof o
Theorem 1, it is only necessary for a quantum code
S̄ satisfy sS̄, S̄d ­ 0 with respect to the alternating form
This means the complex groupsE0 andL0 can be used for
code construction.

The groupL acts transitively on the totally singula
subspaces̄S of dimensionk, so there is some elementg [
L taking any particulark-dimensional totally singular
subspace to the subspace corresponding to a qua
code generated as in Theorem 1. This implies t
someg [ L takes the canonical2n2k-dimensional Hilbert
space generated by the firstn 2 k qubits to the encoded
subspace. SinceL can be generated byNOT’s, XOR’s,
andpy2 rotations around thex axis, these three quantum
gates are therefore sufficient for encoding any of th
quantum codes.

We next give a Gilbert-Varshamov lower bound f
the asymptotic rate of this class of codes. It match
the Gilbert-Varshamov lower bounds known for gene
quantum error-correcting codes [10].
408
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Theorem 2:There exist quantum error-correcting code
with asymptotic rate

R ­ 1 2 2d log2 3 2 H2s2dd, (17)

whered is the fraction of qubits that are subject to deco
herence andH2sdd ­ 2d log2 d 2 s1 2 dd log2s1 2 dd
is the binary entropy function.

Proof: Let Nk denote the number ofk-dimensional
totally singular subspaces. We count pairsse, S̄d where
e [ E is in E 2 (i.e., e ­ e1e2 with e1, e2 in the error
setE ) andS̄ is a k-dimensional totally singular subspace
with ē [ S̄'nS̄. Transitivity of L on singular points
[ē fi 0, Qsēd ­ 0], and on nonsingular points [Qsēd fi 0]
implies that eache [ E satisfies ē [ S̄'nS̄ for mNk

subspaces̄S, where the fractionm ø 22k. If jE 2j , 2k

then there exists ak-dimensional totally singular subspace
S̄ that satisfiesē ” S̄'nS̄ for all e [ E 2. Hence the
achievable rateR satisfies

1 2 R ­ log2 jE 2jyn

­ log2f32dns n
2dn dgyn

­ 2d log2 3 1 H2s2dd. (18)

We would like to thank David DiVincenzo for discus-
sions about the groupL as presented in [7].
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