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Quantum Error Correction and Orthogonal Geometry
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A group theoretic framework is introduced that simplifies the description of known quantum error-
correcting codes and greatly facilitates the construction of new examples. Codes are given which map
3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2
errors, and 1 to 29 qubits correcting 5 errors. [S0031-9007(96)02177-1]
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A guantum error-correcting code is a way of encoding Consider thejth qubit in a quantum channel which is
quantum states into qubits (two-state quantum systems) scansmittingn qubits. Letv; be the vector with a 1 in
that error or decoherence in a small number of individ-the jth bit and O’s in the remaining bits. Thex(v;) is
ual qubits has little or no effect on the encoded data. Thé¢he transformation which applies the Pauli matoix =
existence of quantum error-correcting codes was discov(O
ered only recently [1]. Although the subject is relatively "1 ) ) ) )
new, a large number of papers on quantum error correc: — 1 qubits. The transformatiod(v;) applies the Pauli

tion have already appeared. Many of these describe Spg;airix o, = ((1) _01) to the jth bit and does nothing

cific examples of codes [1-9]. However, the theoretical

aspects of these papers have been concentrated on propt(?r—the othern — 1 qubits. In the language of quantum

: . tionX(v;) is a bit error andZ(v;) is a phase
ties and rates of the codes [7,10—12], rather than on remp:gror correc . J

for constructing them. This Letter introduces a unifyingerr(t))rtIn the]th_ qL:E't' T?Ft elfmerlﬁi(?a)lz(_b)lcorrzspﬁnds
framework which explains all the codes discovered to datdC DIt errors in the qubits for whicle; = 1 and phase

and greatly facilitates the construction of new examples. errors in the qubits for which; = 1. It has been shown

(1)) to the jth qubit and does nothing to the remaining

The basis for this unifying framework is group theoretic.

It rests on the structure of certain finite subgroéps. L
in O(2") andE' C L' in U(2") [13]. Since the natural

setting for quantum mechanics is complex space, it migh?
appear more appropriate to focus on the complex group%
E’"andL’. However, we shall begin by discussing the real
groupsE andL, since their structure is easier to understan
and they are sufficient for the construction of the known
quantum error-correcting codes. We will first construct:

the subgroupE of O(2"). This groupE provides a bridge

between quantum error-correcting codes in Hilbert space
and binary orthogonal geometry. We then construct the

larger subgroud. C O(2") as the normalizer of.

The groupkE is the group of tensor productsw; ®
... ® w, where eachw; is either the identity or one of
the Pauli matricesr,, o, or o, applied to thejth qubit.
Mathematically, the groug is realized as an irreducible
group of2!*2" orthogonal2” X 2" matrices. The center
of E, E(E), is{*I} and the grougE has theextraspecial
propertythat E = E/Z(E) is elementary Abelian (hence
a binary vector space). Lét denote the vector spa@
(whereZ, = {0, 1}) and label the standard basis Bf’
by |v), v € V. Every elemente of E can be written
uniquely in the form

e = X(a)Z(b) (=", (1)
where A € 7Z,, X(a):|v)— v+ a), Z(b):|v|—
(=P v|v), fora, b € V.
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that for the purposes of quantum error correction, we

need consider only errors of the types = X(v;), o, =
Z(v;), and oy = X(v;)Z(v;), since if we can correct
rrors of these types inqubits, we can correct arbitrary
rrors int qubits [4,7,10].

igenspaces of the matrices in an Abelian subgroup.of

elements off commute. Define a quadratic for@ on
E = E/E(E) by
0(@) = Y ajb;j(mod2),

Jj=0

()

wheree = *X(a)Z(b) is any element oE whose image
in E is e. Then e = (-1)2® and Q) =0 or 1
accordingly asX(a) andZ(b) commute or anticommute.
If e=w; ®...®w,, then Q(e) is the parity of the
number of components; that are equal ter,o.. Define
a binary inner product o by (e,&') = Q(z + &') +
Q(e) + Q(&'). Fore = (alb), e’ = (a'lb’),

(e,e¢'y=a-b + a - b (mod2). (3)

Now consider two elements d: ¢ = +X(a)Z(b) and
e/ = X (a)Z(b'). Thene ande’ commute or anticom-
mute accordingly aéz,e’) = 0 or 1.

A subspaceS of E is said to be totally singular if
Q(5) =0 for all 5 € S. It follows that fors, 5 in S
the inner products,s’) = 0. If M is a maximal totally
singular subspace, then the grauphas2” distinct linear
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Our construction yields quantum codes as simultaneous

or this construction, we need a criterion for whether two

405



VOLUME 78, NUMBER 3 PHYSICAL REVIEW LETTERS 20 ANUARY 1997

characters, and the corresponding eigenvectors determihe), this shows that the action efpermutes the eigenspaces
a coordinate framef (M) (an orthonormal basis d®*").  generated by the charactersSf
For example, the image &f(V) in E determines the co- We next divide the proof into two cases, accordingly as
ordinate framdv), v € V, and the image ok (V) deter- &,&, € Soré;e, & S+.
mines the coordinate fran& /2y (—1)*"|v), u € V. Case 1:Supposes 2, € S. It follows that for|c;) and
If S C M is ak-dimensional totally singular subspace, |c,) € C with {ci|c;) = 0,
then the groug has2* distinct linear characters. T
vectors inF (M) are partitioned int@* sets of size2” * (cilereslea) = Ae,ereile) = 0, (6)
with each set corresponding to a different eigenspace. Wgng for all|c) € ¢,
view each eigenspace as a quantum error-correcting code
which maps: — k qubits inton qubits. The2” * vectors (clerealc) = A eyicle) = Aepe, (7
froI(/ln JF (M) in that eigenspace constitute the code Words'establishing Egs. (4) and (5).
ore generally, we may use complex space, and so we . 7 1
define a quantum error-correcting code encodirgubits Case 2:Supposerie; & §- . It follows that for some
; a ; ng b 5§ E S, seje; = —ejers. Thus, for|c) € C
into n qubits to be ang*-dimensional subspaecg of C2'.  * P e1e2 1e2 ’ ;
This code will protect against errors in a certain error set serealc) = —ejeas|c) = —Aserenlc), (8)
E, which we take to be a subset of the extraspecial group o ] ]
E. As remarked earlier, there is no loss of generality inSOe1e2lc) & C. Thusejes|c) is in a different eigenspace,
restricting to error sets if. SO
For such a cod€ to protect against all errors in an error -
setZ, it is necessary gnd sufficgent [7,12] that for any two (cilerealez) =0 ©
vectors|c;) and|cy) in C with {c|c;) = 0, and any two for all ¢1, ¢; € C (including ¢; = ¢;). Again Egs. (4)
transformationg, ande, from E, we have and (5) hold. QED
1 Example 1:We first describe the code mapping 1 qubit
{ciler exle2) = 0, @ into 5 qubits presented in Ref. [7], which contains two
(eiler ealer) = (ealer ealea). (5) ~codewords,
Note that since we 1are assuming thats contained in |co) = 100000)
E, we can replace, e by eje; in the above equations, 11090 + |01100) + [00110) + [00011) + [10001)
since e; = *e; . An interesting special case occurs
when both sides of Eq. (5) are always equal to 0 for —|10100) — [01010) — |00101) — [10010) — |01001)
e1 # e € E. This implies that there is a measurement
which will uniquely determine the error without affecting —[11110) — [01111) — [10111) — [11011) — |11101),
the encoded subspace. After this measurement, the error
can subsequently be corrected by a unitary operation. |If ley) = 1111
both sides of Eqg. (5) are not alwgys _0,_ th_en ther_e can be+|00111> + 110011) + [11001) + [11100) + |01110)
two errorse; and e, between which it is impossible to
distinguish. However, these two errors are guaranteed to-|01011) — |10101) — [11010) — |01101) — [10110)
have identical effects on vectors within the subspagcand
so need not be distinguishable in order to be correctable. —100001) — |10000) — [01000) — [00100) — |00010).
We now can show the connection between orthogon
geometry and quantum error-correcting codes.
Theorem 1:Suppose thatS is a k-dimensional to-

6Ij:‘ssentially the same code is given in Ref. [5], but we
use the above presentation since it is fixed under cyclic

) - ot RN permutations. It is easily verified th&t11000)Z(00101)
tally singular subspace of. Let S be the(2n — k) fixes |cg) and |c1). Thus we may take the vector

dimensional subspace orthogonalStavith respect to the (1100000101) € E to be in the subspacg. Using the

Inner product_(3). Further suppose t_hat f(_)r_any two V€Ctact that the code is closed under cyclic permutations,
torse; ande, in an error setE C E, eithere;e, € S or

2,2, & S*. Then the eigenspae@ corresponding to any we find thatS is the four-dimensional totally singular
i X .2 subspace generated by the vectors
character of the grouf is an error-correcting code which

will correct any errore € E. 11000[00101
Proof. We first show that ife € E, thene permutes 01100]10010

the 2% spacesC; which are generated by th¥ different

linear characters of. Consider an element € S with 00110[01001

eigenvaluer;. We write s for the associated representa- 00011]10100

tion. Then for anylc) € C we haves|c) = A |c), and
sele) = (=1)5es|cy = (—1)¥Aselc), where(5,2) is  [The fifth cyclic shift, (10001/01010), is also in this
the inner product (3). Sinoe-1)%%) ), is independent of subspace.] The dua§' is generated byS and the
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two additional vector$11111/00000) and(00000|11111).  and the remaining vectors are obtained by cyclic shifts.
It is straightforward to verify that the minimal weight The minimal weight ofS+ was calculated by computer to
vectors in S+ have weight three [one such vector is be 5. This gives a code mapping one qubit into 13 qubits
(00111]00101)] and thus the code can correct one error. which corrects 2 errors. Fgp = 29, this subspace*
Example 2:Suppose we have a classical lingayk,d]  has minimal distance 11, so this construction gives a code
binary error-correcting cod€ [i.e., it is overZj, it is  mapping 1 qubit to 29 which corrects 5 errors.
k dimensional, and it has minimal distandg so that We now give the construction of the grolipC O(R?")
it correctsr = |[(d — 1)/2] errors]. Suppose furthermore from its subgroupE. The groupL is the normalizer of
that C* C C. We can define a subspadeto consist E in the real orthogonal grou@(R?"); that is, it is the
of all vectors (v,|v,) € E, wherewv;, v, € C*. The subgroup of elements € O(R?") such thatg 'Eg = E.
dual S+ consists of all vector$v,|v,) with v, vo € C,  This normalizer acts orE by conjugation, fixing the
showing that the corresponding quantum error-correctingenter Z(E) (g € L acts onE as the permutatior —
code correctst errors. The subspacS is 2(n — k) g 'eg). Hence there is a well-defined action bfon the
dimensional, so the quantum code maps- 2k qubits  binary vector spacg that preserves the quadratic fon
into n qubits. This is the method described in Refs. [3,4].The quotientL/E is the orthogonal grou®*(2n,2), a
Example 3: Consider the subspacé obtained by finite classical group [14]. The groupappears in recent
modifying the classical [8,4,4] Hamming code as follows:connections between classical Kerdock error-correcting

01110100[00111010 codes, orthogonal geometry, and extremal Euclidean line
sets [13]. This group also appears [7] as the group of
00111010]00011101 Bell-state-preserving bilateral local transformations that
00011101]01001110 two experimentersA  and B) can jointly perform onn
pairs of particles (each pair being in a Bell state). Hence
11111111]00000000 there is a one-to-one correspondence between Bell states
00000000[11111111. (11) and elements of: [cf. Egs. (39) and (67) of Ref. [7]].

. . ) The quadratic formQ(e) is 0 or 1 accordingly as the
It is straightforward to verify that these vectors generatezg|| states are symmetric or antisymmetric under the
a five-dimensional totally singular subspagewhich is interchange oft andB.

invariant under cyclic permutations of the last 7 bits, and 1o following are group elements that generattrom

that §* has minimal weight 3. This gives a quantum g shown together with their induced action on the binary
code mapping 3 qubits into 8 qubits which can correct,gqtor space.

one error. The same code was discovered by Gottesman (1) H =2"?[(—1)*"].oev, Which interchanges
[88], Who[;]sed similar group-theoretic techniques, and b)y(a) and Z(b). This épplies the transformation
teane [9]. D11 '
Example 4:By duplicating the 5-qubit code (10) and R = (; _) to every qubit.

adding two vectors, we can obtain a code which maps 4 N 111 ) )
qubits into 10 qubits and corrects one error: (2) Hy = 55(; ) ® Iy, which appliesr to the
01100 11110]10010 01100 first qubit and leaves the other qubits unchanged. This
acts onE by interchanging:; andb;.
00110 01111]01001 00110 (3) Every matrixA in the general linear grougL(V)
00011 10111]10100 00011 determines a permutation matrix) — [vA) in O(R*).
The action onE induced by conjugation isX(a) —
10001 11011|01010 10001 X(aA), Z(b) — Z(bA~T). For example, the quantum
11111 1111100000 00000 XOR takinglqig2) — lq1(q1 @ ¢2)) is represented by
00000 00000]11111 11111. (12) ( \
Example 5:The following construction is a general- 11|00
ization of the 5-qubit code (10) inspired by classical
guadratic residue codes. It works for any primef the 01|00
form8j + 5. We have not found good theoretical bounds(@1a2|b1b2) — (aiaz|bibs) | —1——
on the minimal distance, but for small primes these code 00|10
are excellent. To construct the first vectar|b), put
a; = 1 whenj is a nonzero quadratic residue mpdthat \0 0]1 1/ (13)

is, j = k* mod p for somek) and putb; = 1 whenj is a

quadratic nonresidue. To obtain— 1 vectors that gen-
erate the subspac® takep — 2 cyclic shifts of the first
vector. Forp = 13, the first basis vector is

The back action of th&oR on the phases is evident in
its effect onb, andb,. Any orthogonal matrix irO(R>")
that normalizes botlX (V) and Z(V) is of this type for
0101100001101]0010011110010 someA [13], Lemma 3.14.
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(4) Diagonal matricesdy = diag[(—1)2¥®)], where Theorem 2There exist quantum error-correcting codes
Quy is a binary quadratic form orV/ for which the  with asymptotic rate
associated bilinear form®,,(u + v) — O (u) — Op(v)
isuMvT. Note thatM is symmetric with zero diagonal. R =1-125log,3 — H(29), (17)
The induced action o#' is given by wheres is the fraction of qubits that are subject to deco-
herence and?,(6) = —élog, 6 — (1 — 8)log,(1 — &)
is the binary entropy function.
(a]b) — (alb) Proof: Let Ny denote the number ok-dimensional
ol 1 (14) totally singular subspaces. We count pdiesS) where
e € Eisin E? (i.e., e = eje; With ey, e, in the error
These matrices are precisely the elementsLofhat setZ) andS is ak-dimensional totally singular subspace
induce the identity on the subgrouf(V). In terms of with ¢ € S*\S. Transitivity of L on singular points
their effect on qubits, these are the transformationg in [e # 0, Q(e) = 0], and on nonsingular pointg)(e) # 0]
that change the phases of the qubits while fixing theiimplies that eache € E satisfiese € S*\S for uN,
values. subspaces, where the fractionn =~ 27%. If |E?| < 2*
Remark: The group E’ is generated byE and il  then there exists &dimensional totally singular subspace
in the unitary groupU(2"). Now we cannot define S that satisfiese ¢ S*\S for all ¢ € £2. Hence the
Q(e) = ¢% becausdie)? # ¢2. However, we still have achievable rat® satisfies
the nonsingular alternating binary form I = R = log, |E2|/n

(X(a)Z(b),X(a"Z(")) = a - b' + a' - b(mod?2).

= log,[3°°"(,3,))/n
(15)
The groupL' is the normalizer of’ and is generated hyy = 26log, 3 + Hy(29). (18)
and by diagonal transformatiods = diag[i’*(*)] where We would like to thank David DiVincenzo for discus-

Tp is a Z4-valued quadratic form [13], Section 4. The sions about the group as presented in [7].
induced action o’ = E'/E(E') is described by
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