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Nonlinear Pattern Formation of Faraday Waves
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A cascade of surface wave patterns with increasing rotational symmetry ranging from simple square
to tenfold quasiperiodic is observed for Faraday waves. The experiment concerns the excitation of
subharmonic standing surface waves by oscillating vertical acceleration. Our observation agrees with
the prediction of a recent theory. By presenting these predictions in a dimensionless form, we illustrate
the genericity of this phenomenon and emphasize the very favorable agreement with experiment.
[S0031-9007(97)03210-9]

PACS numbers: 47.35+i, 47.54.+r

The Faraday-wave experiment concerns a free fluiin electromagnetic exciter that can deliver a maximum
surface undergoing oscillatory vertical acceleration [1,2]force of 2900 N. The acceleration amplitude is measured
When the amplitude of the excitation exceeds a criticaby means of piezoelectric accelerometers with one high
value, standing wave patterns are formed on the surfagesolution sensor mounted to the bottom center of the
which oscillate at half the frequency of the drive [3]. cone, and two lightweight sensors which may be mounted
For large enough containers, the surface pattern becomes various positions on the container. Using phase-
approximately independent of the boundaries, and linesensitive averaging of the sensors’ output, a precise
square, hexagonal, triangular, and 8-fold quasiperiodieneasure of the acceleration and its inhomogeneity could
patterns have been observed [4—6]. However, despite thize obtained. By carefully designing the construction, we
profusion of observed patterns a cohesive picture has nttave moved the lowest resonant mode of joint vibration of
emerged. cone and container t&700 Hz. In the frequency range of

In a recent paper Zhang and Vifials [7] derived an equainterest (25—45 Hz) the major contribution to acceleration
tion describing the slow evolution in space and time ofinhomogeneity is side-to-side motion of the exciter as a
standing Faraday-wave amplitudes in the weakly dampedhole. The measured acceleration inhomogeneity over
and infinite depth limit. This theory predicts the preferredthe plate is less than 2%. The amplitude of the exciter
pattern at onset as the one that minimizes a Lyapunois controlled to better than 0.2%, and the frequency is
functional. For most excitation frequencies a square pateonstant to 1 part in0°.
tern is predicted, in agreement with previous experiments The waves are visualized using the refraction at the
in low viscosity fluids. In a narrow frequency interval, surface of the fluid of parallel light incident from below.
however, the emergence nffold rotationally symmetric  Unlike other visualization techniques [4,5], this method
patterns was predicted, such as hexagans-(3), 8-fold  allows discrimination between wave minima and wave
guasiperiodic patterns: (= 4), and so forth. All patterns maxima. Images of the surface are made using a high
with n > 2 are predicted to occur for long wavelengths, resolution CCD camera with a liquid crystal shutter. A
and for low dissipation, requiring verification in a large programmable hardware system allows us to control the
experiment. Below, we will precisely quantify the “size” phase of the excitation at which the image is taken.
of the experiment. In this Letter we present for the firstThe integration time of the image is kept well below half
time quantitative experimental evidence which supportshe oscillation period of the wave, so that the image can be
this theory. Using slow automated scans of the paramezonsidered as an instantaneous snapshot of the surface.
ters in a large experiment, we have observed a cascade ofAt onset, the wavelength is to a good approximation
patterns with symmetries that range fran+= 2 (squares), given by the inviscid deep fluid dispersion relation
n = 3 (triangles), ton = 4 and5 (8- and 10-fold quasi- 1+ ) =1 (1)
patterns). By presenting the predictions of this theory in & * ’
dimensionless form, we illustrate the genericity of the ob-whereg. = gk/w? with g the acceleration due to gravity,
served cascade of rotational symmetries and the very fa& the wave number, andw the excitation frequency.
vorable agreement between theory and experiment. The wave numberk, is nondimensionalized a&. =

Our experiment consists of a 440 mm diameter sealed/«/pg, with « the surface tension and the density
circular container with a vertical wall boundary filled of the fluid. The measured wavelength agrees with the
to a height of 20 mm with the working fluid [8]. The dispersion relation from 25-100 Hz to better than 1%
bottom of the container is a 2 cm thick glass plate; it is(lower and higher frequencies could not be measured due
attached to a hollow conical structure at approximatelyto experimental difficulties). As will be explained later,
2/3 of its radius to suppress the lowest vibration modethis agreement is crucial for comparison with theory. The
of the plate. The entire structure is mounted on top obnset amplitude can be computed numerically using the
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method of Kumar and Tuckerman [9]. At the frequenciesvariation of waves with amplitudg; and wave vectok ;
of interest, measured onset accelerations are 10% high#rat interact withw other waves:
than predicted. As a 1% agreement is reached at higher dA : n
frequencies, we ascribe the discrepancy to the neglect d_] = €A; — Zg(ejl)lAllej, (2
; i : . t -
of sidewall damping [10]. An important parameter is =1
the dimensionless dissipatiop = 2vk?/w (an inverse where 0; is the angle between wave vectoks and
Reynolds number). The theory is derived for< 1; for  k;, which for neighboring wave vectors is/n. While
the experimental results discussed herel 0.03. the form of the equation is generic for systems of the
Figure 1 shows the surface of the fluid layer atsame symmetry, deriving the functiog(#;;) is highly
frequencies where square & 2), hexagonal £ = 3),  nontrivial. It is precisely this which Zhang and Vifials
8-fold quasiperiodic { = 4), and 10-fold quasiperiodic [7] have achieved in the small dissipation limit< 1.
(n = 5) emerge close to onset. Only part of the surfaceEquation (2) is of gradient form,A; = —aF,/dA;, and
is imaged; the actual surface diameter is approximatelyhe symmetry of the preferred pattern is that for which the
twice that of the image’s. These patterns are found irLyapunov functionalF, is lowest. As system parameters
frequency ranges which agree with those theoreticallyffor example, the frequency) are varied, curygs at a
predicted to within 10%. The images of the= 2,3,4  different n’ # n may crossf, and the pattern with:’
patterns show a clear long-range orientational order, witlbecomes prefered instead. Thus, the regions in frequency
minor defects which manifest as a slow bend in the casepace can be found where a given symmetry emerges
of the square pattern, and the appearance of triangularlika onset.
structures in the case af = 3. These apparent triangles  In order to find the regions of stability of patterns with
are the result of ar phase defect, as the alteration of a given symmetry in the experiment, we have performed
hexagons and triangles can be reversed by shifting tha set of quasistatic amplitude scans from just below the
phase at which the image is taken by For the 8-fold critical amplitude a. to & = a/a. — 1 = 0.2 above
quasiperiodic pattern, there appears to be a point defe@ivherea. is the experimental amplitude at which waves
in the top central portion of the image. The ordering offirst appear), over a range of frequencies. The amplitude
the 10-fold pattern is only strong in the central region,is increased in steps @f£1%, then held for 2000 s after
although some 10-fold orientational order can be observeahich images are taken for the next 1000 s to observe
throughout the image. any temporal dependence. The images were analyzed in
Pattern formation at a reduced amplitudabove onset an automatic fashion using a correlation technique that
is described by a nonlinear equation for the slow temporak described below. The experimental phase diagram is
shown in Fig. 2. The measured points are on the stability
boundary of a given pattern when the excitation amplitude
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FIG. 2. Stability diagram of observe@n-fold symmetric
patterns. Open circles: excitation amplitudeabove which

a 2n-fold stationary pattern is observed in an upward scan of
FIG. 1. Images of the fluid surface at frequenciesvhere e. Closed dots: excitation amplitude above which a pattern
patterns of square symmetry are observed: flar 45.0 Hz, of mixed symmetry2n/2(n + 1) is observed. Dotted line:
hexagonal symmetry; (bY = 30.0 Hz, 8-fold quasiperiodic; predicted transitionn = 3 — 4; dash-dotted line: predicted
(c) f = 29.0 Hz, and 10-fold quasiperiodic; (dj = 27.0 Hz. trasitionn = 2 — 3. Dashed line: excitation amplitude where
The visualized region is of diameter 26 cm, approximatelg 1 the computed widtiAk of neutrally stable tongues equaly'L,

the diameter of the container. whereL is the diameter of the containek = 44 cm).
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is increased slowly. Apart from the = 2,3,4, and5  precisely 277 /n, independent of the orientation of the
stationary patterns, also patterns with mixed behaviopattern and thet range over whichC (¢) is averaged.
were found. In these patterns either oscillations from on&his last point is crucial, as harmonics can lead to extra
rotational symmetry to the other or the simultaneous ocpeaks in C(¢) if p(k,0) is summed overk before
currence of both symmetries in a single pattern was founccomputing C (¢). As an example we show in Fig. 3
The 10-fold quasiperiodic pattern was observed over ghe function C(¢) for the states that are encountered
very small region of parameter space, both in frequencyn a slow upward scan ot at f = 35 Hz (see also
and excitation amplitude. We have also plotted verticaFig. 2). For each amplitude, C(¢) was averaged over
lines where the theoretically predicted boundaries foffive images that were taken 200 s apart. Figure 3 shows
n=2ton =3,andn = 3 ton = 4 occur. Favorable the transition from the flat state below onset to the
agreement is found at > 0.1, with the mixed pattern hexagonal state with peaks &0° and 120°, which in
behavior consistent with the bicritical point. Interestingly, turn gives way to the square state with a pealo@t

this value ofe is where the strongest patterns, such adt is interesting to note that the hexagonal state develops
those in Fig. 1, are found. The theory does not predicat a value ofe whereAk = 7 /L. When the hexagonal
the n = 5 10-fold quasiperiodic pattern; however, the state disappears, individual snapshots of the surface show
calculated F; and F5 Lyapunov functionals come very oscillating hexagons and squares. The square state has the
close in the region where the = 5 pattern is observed. sharpest peak at = 0.15; above this excitation amplitude
We will argue below that this discrepancy is consistentdefects appear in the surface which separate domains of
with the neglect of a tern® (y3/2) in the theory. different orientation.

The onset of th@n-fold symmetric patterns is found to  Surface waves are governed by four dimensionless pa-
be slightly offset from the: = 0 line. Below these onset rametersk., g«, v, ande. The first two are coupled
values, but above = 0, the surface deformation appearsthrough the dispersion relation [Eg. (1) or its viscous
as either a simple Bessel mode or the sum of a low numequivalent [11]], so that at onset & 0) pattern forma-
ber of Bessel modes. In a finite system, rigid boundantion is determined by two parameters, Sayand y. It
conditions force the permissible wave vectors to be disis very instructive to draw the stability regions »i-fold
crete. At the theoretical onset= 0 (which is for an in- symmetric patterns in the, k.. plane. The result is shown
finite system), the critical wave numbkr as given by the in Fig. 4 which was computed using the Lyapunov func-
dispersion relation does not in general match with one ofionals ‘F, that are given by Zhang and Vidals [7]. The
the permissible wave vectors. However eais increased phase diagram shows only the area of parameter space for
a band Ak « €!/2 of wavenumbers becomes unstable.which k. < 1 andy < 0.1, corresponding to low dissi-
Onset in a one-dimensional finite system is observed whepation gravity waves. Outside this region only the= 2
€ is large enough thatk becomes the mode spacingL;  square state was found, in agreement with low dissipation
the surface will then definitely become unstable. Taking
this argument to the two-dimensional case is complicated
by the much larger density of states in two dimensions ,

T
which allows onset befordk = 7 /L. However, when
Ak = 7r/L any rotational symmetry of the standing wave % %
pattern should become possible, irrespective of the bound- % J/\\
ary condition. In Fig. 2 we have plotted the lingk = \— 4\/&
/L (using e = €) calculated using the numerical ap- § //\L /
proach of Kumar and Tuckerman [9]. The onset of the E NS /

n-wave patterns lies close to this curve, although the most
regular patterns are found at= 0.1.

In order to detect the symmetry of the observed surface
states in a semiautomatic fashion, we first computed
a 2-dimensional power spectrum of each pattern. An
n-fold symmetric pattern will havén peaks in its power
spectrum on a circle with radids In order to bring out
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the regular spacing of the peaks more clearly, we have 0 30 60 9 120 150 180
computed from each power spectryrtk, 8), the angular ¢ (degrees)
correlation functionC(¢) averaged over a band of wave FiG. 3. Angular correlationC(¢) of Fourier-transformed
numbers of width=k images of the fluid surface. The images were taken at 35 Hz
- - and reduced excitation amplitudes= —0.01 (lowest curve)
C(o) = 24lp(k,0) = Plpk.0 + &) — P] . (3 We= 0.23 (highest curve). Two regions of well-defined
Solpk,0) — pP? symmetry can be observed, the first with peaks6@t and

. . . 120° corresponding t: = 3 (hexagonal state) and the second
In comparison with other methods [5], the resultingwith a peak a0° corresponding ta = 2 (square state). The
function C (¢) will for an n-fold pattern have peaks at intervening region is a mixed = 2/3 phase.
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10— act to produce a third wave which satisfies the dispersion
I relation Eq. (1) aw. Standing waves with angular sepa-
ration close tdd, will not be favored as they will lose en-
ergy to the wave a2w. This resonance phenomenon is
] reflected in the coupling functiog(6) [Eq. (2)] which is
- large neard,. The cascade of patterns with increasing
] symmetry depends in a delicate way on the behavior of
g(68), which in turn is determined by the three-wave reso-
nance phenomenon. As this resonance phenomenon is
crucially dependent on the validity of the deep fluid dis-
0ol ! ] persion relation [Eq. (1)], precise satisfaction of this rela-
i 1 tion is a first experimental requirement for the observation
! ] of the predicted patterns. We expect, therefore, that ex-
Y R T T Y T periments in shallow fluid layers where the deep fluid dis-
Y persion relation is invalid will show different phenomena
FIG. 4. Stability diagram of th&n-fold symmetric patterms than those re_ported in the present Letter [5]. .
in the y, k. plane. Patterns witln-fold rotational symmetry [N conclusion, we have demonstrated the existence of
are stable inside an infinite series of nested stability regionsa cascade of periodic and quasiperiodic patterns with
they are drawn (full lines) fom up ton = 6. The stability increasing rotational symmetry near to a special resonance
regions converge to the point = 0, k. = /1/2. Dash-dotted point. This highly nontrivial course of events appears to
line: path _foIIovyed. by our experiment when the excitation be remarkably well described by a recent theory.
frequency is varied; the lowest frequency in Fig. 2 corresponds . -
to the open circle. We _thank Relnou_t Dekkgrs, Kristian Schaadt, and Ger-
ard Trines for technical assistance, and Eric Bosch, Hanns
Walter Mdiller, Laurette Tuckerman, Christian Wagner,
and Mark Westra for many useful discussions. We grate-
fully acknowledge financial support by the “Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO)”.
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capillary wave experiments (lines are found for high dis-
sipation experiments; however, this is beyond the rang
of validity of this theory). A sequence afwave regions
consecutively enclosing + 1-wave regions is observed,
with the stability boundaries rapidly asymptoting to the
point y = 0, k. = 4/1/2. In addition to the stability
boundaries, we have plotted the line through this param-[1] M. Faraday, Philos. Trans. R. Soc. Londd®21 319
eter space which our experiment follows as the excitation ~ (1831).

frequency is varied with increasing frequency correspond-[2] M. C. Cross and P. Hohenberg, Rev. Mod. Ph§5. 851

ing to increasingy andk.. The choice of fluid parameters (1993).
in our experiment causes this path to crossithe 2,3, [3] T.B. Benjamin and F. Ursell, Proc. R. Soc. London A
and 4 stability regions and to come close to the= 5 255 505 (1954).

boundary. The experimentally observed boundaries for[4l K. Kumar and K.M.S. Bajaj, Phys. Rev. B2, R4606

_ s 0 . _ (1995).
n 2,3,4,and5 are Wl.thm 10% of the predicted bounda 5] A. Kudrolli and J.P. Gollub, Physica B7, 133 (1996).
ries, though the experimental path does not actually cros

. . ; 6] B. Christiansen, P. Alstrom, and M.T. Levinson, Phys.
the predictedn = 5 boundary. We argue that this dis- ] Rev. Lett.68, 2157 (1992). 4

crepancy may be reconciled by the consideration of the[7] W. Zhang and J. Vifials, Phys. Rev.33, R4286 (1996).
next higher order terny®2 in the theory. In [7]y enters [8] The large depth is necessary to ensure agreement with

the functiong(6) through its equation to the nondimen- the theory which is derived in the infinite depth limit.
sional onset acceleratiom. = ak/4w? = y. However, The working fluid is temperature controlled 2at.00 =
Mdiller et al.[11] find that the next higher order correc- 0.05°C. The fluid is a low viscosity, low surface
tion t0 a. iS a. = y — 7,3/2/2_ Taking this correction tension silicon oil with (a21.0°C) viscosityr = 3.397 X
into account shifts the boundaries in Fig. 4 $3/2/2 to 107 m s, density p —892.4 kg m™, and surface
higher dissipation. In our case this shift 460.09, and tensiona = 18.3 X 107* Jm 2. The tendencies of the

very favorable agreement with the experiment is obtained. ~ Parameters with temperature are such that with they are
constant to within 0.1%.

By using a lower visosity silicon oil, it should be possible [9] K. Kumar and L.S. Tuckerman, J. Fluid MecB79, 49
to cross then = 6 or higher boundaries, though a larger (1'994)' T T ’

experiment W0U|d_be required. [10] J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson,
A fundamental ingredient of the theory by Zhang and J. Fluid Mech.288 325 (1995).

Vifials [7] is a three-wave resonance phenomenon whergi] H.W. Miiller, H. Wittmer, C. Wagner, J. Albers, and

two waves with angular separatien to each other inter- K. Knorr, Phys. Rev. Lett78, 2357 (1997).
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