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Nonlinear Pattern Formation of Faraday Waves
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A cascade of surface wave patterns with increasing rotational symmetry ranging from simple square
to tenfold quasiperiodic is observed for Faraday waves. The experiment concerns the excitation of
subharmonic standing surface waves by oscillating vertical acceleration. Our observation agrees with
the prediction of a recent theory. By presenting these predictions in a dimensionless form, we illustrate
the genericity of this phenomenon and emphasize the very favorable agreement with experiment
[S0031-9007(97)03210-9]

PACS numbers: 47.35+i, 47.54.+r
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The Faraday-wave experiment concerns a free flu
surface undergoing oscillatory vertical acceleration [1,2
When the amplitude of the excitation exceeds a critic
value, standing wave patterns are formed on the surfa
which oscillate at half the frequency of the drive [3]
For large enough containers, the surface pattern becom
approximately independent of the boundaries, and lin
square, hexagonal, triangular, and 8-fold quasiperiod
patterns have been observed [4–6]. However, despite t
profusion of observed patterns a cohesive picture has
emerged.

In a recent paper Zhang and Viñals [7] derived an equ
tion describing the slow evolution in space and time o
standing Faraday-wave amplitudes in the weakly damp
and infinite depth limit. This theory predicts the preferre
pattern at onset as the one that minimizes a Lyapun
functional. For most excitation frequencies a square p
tern is predicted, in agreement with previous experimen
in low viscosity fluids. In a narrow frequency interval
however, the emergence ofn-fold rotationally symmetric
patterns was predicted, such as hexagons (n  3), 8-fold
quasiperiodic patterns (n  4), and so forth. All patterns
with n . 2 are predicted to occur for long wavelengths
and for low dissipation, requiring verification in a large
experiment. Below, we will precisely quantify the “size”
of the experiment. In this Letter we present for the firs
time quantitative experimental evidence which suppor
this theory. Using slow automated scans of the param
ters in a large experiment, we have observed a cascad
patterns with symmetries that range fromn  2 (squares),
n  3 (triangles), ton  4 and 5 (8- and 10-fold quasi-
patterns). By presenting the predictions of this theory
dimensionless form, we illustrate the genericity of the ob
served cascade of rotational symmetries and the very
vorable agreement between theory and experiment.

Our experiment consists of a 440 mm diameter seal
circular container with a vertical wall boundary filled
to a height of 20 mm with the working fluid [8]. The
bottom of the container is a 2 cm thick glass plate; it
attached to a hollow conical structure at approximate
2y3 of its radius to suppress the lowest vibration mod
of the plate. The entire structure is mounted on top
0031-9007y97y78(21)y4043(4)$10.00
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an electromagnetic exciter that can deliver a maximu
force of 2900 N. The acceleration amplitude is measu
by means of piezoelectric accelerometers with one h
resolution sensor mounted to the bottom center of
cone, and two lightweight sensors which may be moun
at various positions on the container. Using phas
sensitive averaging of the sensors’ output, a prec
measure of the acceleration and its inhomogeneity co
be obtained. By carefully designing the construction, w
have moved the lowest resonant mode of joint vibration
cone and container toø700 Hz. In the frequency range o
interest (25–45 Hz) the major contribution to accelerati
inhomogeneity is side-to-side motion of the exciter as
whole. The measured acceleration inhomogeneity o
the plate is less than 2%. The amplitude of the exci
is controlled to better than 0.2%, and the frequency
constant to 1 part in106.

The waves are visualized using the refraction at t
surface of the fluid of parallel light incident from below
Unlike other visualization techniques [4,5], this metho
allows discrimination between wave minima and wa
maxima. Images of the surface are made using a h
resolution CCD camera with a liquid crystal shutter.
programmable hardware system allows us to control
phase of the excitation at which the image is take
The integration time of the image is kept well below ha
the oscillation period of the wave, so that the image can
considered as an instantaneous snapshot of the surfac

At onset, the wavelength is to a good approximati
given by the inviscid deep fluid dispersion relation

gps1 1 k2
pd  1 , (1)

wheregp  gkyv2 with g the acceleration due to gravity
k the wave number, and2v the excitation frequency.
The wave numberkp is nondimensionalized askp 
k
p

ayrg, with a the surface tension andr the density
of the fluid. The measured wavelength agrees with
dispersion relation from 25–100 Hz to better than 1
(lower and higher frequencies could not be measured
to experimental difficulties). As will be explained late
this agreement is crucial for comparison with theory. T
onset amplitude can be computed numerically using
© 1997 The American Physical Society 4043
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method of Kumar and Tuckerman [9]. At the frequencie
of interest, measured onset accelerations are 10% hig
than predicted. As a 1% agreement is reached at hig
frequencies, we ascribe the discrepancy to the neg
of sidewall damping [10]. An important parameter i
the dimensionless dissipationg  2nk2yv (an inverse
Reynolds number). The theory is derived forg ø 1; for
the experimental results discussed hereg , 0.03.

Figure 1 shows the surface of the fluid layer
frequencies where square (n  2), hexagonal (n  3),
8-fold quasiperiodic (n  4), and 10-fold quasiperiodic
(n  5) emerge close to onset. Only part of the surfa
is imaged; the actual surface diameter is approximat
twice that of the image’s. These patterns are found
frequency ranges which agree with those theoretica
predicted to within 10%. The images of then  2, 3, 4
patterns show a clear long-range orientational order, w
minor defects which manifest as a slow bend in the ca
of the square pattern, and the appearance of triangular
structures in the case ofn  3. These apparent triangles
are the result of ap phase defect, as the alteration o
hexagons and triangles can be reversed by shifting
phase at which the image is taken byp. For the 8-fold
quasiperiodic pattern, there appears to be a point de
in the top central portion of the image. The ordering
the 10-fold pattern is only strong in the central regio
although some 10-fold orientational order can be observ
throughout the image.

Pattern formation at a reduced amplitudee above onset
is described by a nonlinear equation for the slow tempo

FIG. 1. Images of the fluid surface at frequenciesf where
patterns of square symmetry are observed: (a)f  45.0 Hz,
hexagonal symmetry; (b)f  30.0 Hz, 8-fold quasiperiodic;
(c) f  29.0 Hz, and 10-fold quasiperiodic; (d)f  27.0 Hz.
The visualized region is of diameter 26 cm, approximately 1y2
the diameter of the container.
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variation of waves with amplitudeAj and wave vectorkj

that interact withn other waves:

dAj

dt
 eAj 2

nX
l1

gsujldjAlj
2Aj , (2)

where ujl is the angle between wave vectorskl and
kj , which for neighboring wave vectors ispyn. While
the form of the equation is generic for systems of the
same symmetry, deriving the functiongsujld is highly
nontrivial. It is precisely this which Zhang and Viñals
[7] have achieved in the small dissipation limitg ø 1.
Equation (2) is of gradient form≠tAj  2≠Fny≠Ap

j , and
the symmetry of the preferred pattern is that for which the
Lyapunov functionalFn is lowest. As system parameters
(for example, the frequency) are varied, curvesFn0 at a
different n0 fi n may crossFn and the pattern withn0

becomes prefered instead. Thus, the regions in frequenc
space can be found where a given symmetry emerge
at onset.

In order to find the regions of stability of patterns with
a given symmetry in the experiment, we have performed
a set of quasistatic amplitude scans from just below the
critical amplitude ac to ´  ayac 2 1  0.2 above
(whereac is the experimental amplitude at which waves
first appear), over a range of frequencies. The amplitude
is increased in steps ofø1%, then held for 2000 s after
which images are taken for the next 1000 s to observe
any temporal dependence. The images were analyzed i
an automatic fashion using a correlation technique that
is described below. The experimental phase diagram is
shown in Fig. 2. The measured points are on the stability
boundary of a given pattern when the excitation amplitude

FIG. 2. Stability diagram of observed2n-fold symmetric
patterns. Open circles: excitation amplitude´ above which
a 2n-fold stationary pattern is observed in an upward scan of
´. Closed dots: excitation amplitude above which a pattern
of mixed symmetry2ny2sn 1 1d is observed. Dotted line:
predicted transitionn  3 ! 4; dash-dotted line: predicted
trasitionn  2 ! 3. Dashed line: excitation amplitude where
the computed widthDk of neutrally stable tongues equalspyL,
whereL is the diameter of the container (L  44 cm).
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is increased slowly. Apart from then  2, 3, 4, and5
stationary patterns, also patterns with mixed behavi
were found. In these patterns either oscillations from o
rotational symmetry to the other or the simultaneous o
currence of both symmetries in a single pattern was foun
The 10-fold quasiperiodic pattern was observed over
very small region of parameter space, both in frequen
and excitation amplitude. We have also plotted vertic
lines where the theoretically predicted boundaries f
n  2 to n  3, and n  3 to n  4 occur. Favorable
agreement is found at́ . 0.1, with the mixed pattern
behavior consistent with the bicritical point. Interestingly
this value of´ is where the strongest patterns, such a
those in Fig. 1, are found. The theory does not pred
the n  5 10-fold quasiperiodic pattern; however, the
calculatedF4 and F5 Lyapunov functionals come very
close in the region where then  5 pattern is observed.
We will argue below that this discrepancy is consiste
with the neglect of a termO sg3y2d in the theory.

The onset of the2n-fold symmetric patterns is found to
be slightly offset from thé  0 line. Below these onset
values, but abové  0, the surface deformation appear
as either a simple Bessel mode or the sum of a low nu
ber of Bessel modes. In a finite system, rigid bounda
conditions force the permissible wave vectors to be di
crete. At the theoretical onsete  0 (which is for an in-
finite system), the critical wave numberkc as given by the
dispersion relation does not in general match with one
the permissible wave vectors. However, ase is increased
a band Dk ~ e1y2 of wavenumbers becomes unstable
Onset in a one-dimensional finite system is observed wh
e is large enough thatDk becomes the mode spacingpyL;
the surface will then definitely become unstable. Takin
this argument to the two-dimensional case is complicat
by the much larger density of states in two dimension
which allows onset beforeDk ø pyL. However, when
Dk  pyL any rotational symmetry of the standing wav
pattern should become possible, irrespective of the boun
ary condition. In Fig. 2 we have plotted the lineDk 
pyL (using ´ ø e) calculated using the numerical ap
proach of Kumar and Tuckerman [9]. The onset of th
n-wave patterns lies close to this curve, although the mo
regular patterns are found at´ ø 0.1.

In order to detect the symmetry of the observed surfa
states in a semiautomatic fashion, we first comput
a 2-dimensional power spectrum of each pattern. A
n-fold symmetric pattern will have2n peaks in its power
spectrum on a circle with radiusk. In order to bring out
the regular spacing of the peaks more clearly, we ha
computed from each power spectrumpsk, ud, the angular
correlation functionC sfd averaged over a band of wave
numbers of widthøk

C sfd 

*P
ufpsk, ud 2 pg fpsk, u 1 fd 2 pgP

ufpsk, ud 2 pg2

+
. (3)

In comparison with other methods [5], the resultin
function C sfd will for an n-fold pattern have peaks at
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precisely 2pyn, independent of the orientation of the
pattern and thek range over whichC sfd is averaged.
This last point is crucial, as harmonics can lead to extra
peaks in C sfd if psk, ud is summed overk before
computing C sfd. As an example we show in Fig. 3
the function C sfd for the states that are encountered
in a slow upward scan of́ at f  35 Hz (see also
Fig. 2). For each amplitudé, C sfd was averaged over
five images that were taken 200 s apart. Figure 3 show
the transition from the flat state below onset to the
hexagonal state with peaks at60± and 120±, which in
turn gives way to the square state with a peak at90±.
It is interesting to note that the hexagonal state develop
at a value of́ whereDk  pyL. When the hexagonal
state disappears, individual snapshots of the surface sho
oscillating hexagons and squares. The square state has
sharpest peak at́ ø 0.15; above this excitation amplitude
defects appear in the surface which separate domains
different orientation.

Surface waves are governed by four dimensionless pa
rameters,kp, gp, g, and ´. The first two are coupled
through the dispersion relation [Eq. (1) or its viscous
equivalent [11]], so that at onset (´  0) pattern forma-
tion is determined by two parameters, saykp and g. It
is very instructive to draw the stability regions of2n-fold
symmetric patterns in theg, kp plane. The result is shown
in Fig. 4 which was computed using the Lyapunov func-
tionalsFn that are given by Zhang and Viñals [7]. The
phase diagram shows only the area of parameter space f
which kp , 1 and g , 0.1, corresponding to low dissi-
pation gravity waves. Outside this region only then  2
square state was found, in agreement with low dissipatio

FIG. 3. Angular correlationC sfd of Fourier-transformed
images of the fluid surface. The images were taken at 35 H
and reduced excitation amplitudeś 20.01 (lowest curve)
to ´  0.23 (highest curve). Two regions of well-defined
symmetry can be observed, the first with peaks at60± and
120± corresponding ton  3 (hexagonal state) and the second
with a peak at90± corresponding ton  2 (square state). The
intervening region is a mixedn  2y3 phase.
4045
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FIG. 4. Stability diagram of the2n-fold symmetric patterms
in the g, kp plane. Patterns with2n-fold rotational symmetry
are stable inside an infinite series of nested stability regio
they are drawn (full lines) forn up to n  6. The stability
regions converge to the pointg  0, kp 

p
1y2. Dash-dotted

line: path followed by our experiment when the excitatio
frequency is varied; the lowest frequency in Fig. 2 correspon
to the open circle.

capillary wave experiments (lines are found for high di
sipation experiments; however, this is beyond the ran
of validity of this theory). A sequence ofn-wave regions
consecutively enclosingn 1 1-wave regions is observed,
with the stability boundaries rapidly asymptoting to th
point g  0, kp 

p
1y2. In addition to the stability

boundaries, we have plotted the line through this para
eter space which our experiment follows as the excitati
frequency is varied with increasing frequency correspon
ing to increasingg andkp. The choice of fluid parameters
in our experiment causes this path to cross then  2, 3,
and 4 stability regions and to come close to then  5
boundary. The experimentally observed boundaries
n  2, 3, 4, and5 are within 10% of the predicted bounda
ries, though the experimental path does not actually cro
the predictedn  5 boundary. We argue that this dis
crepancy may be reconciled by the consideration of t
next higher order termg3y2 in the theory. In [7]g enters
the functiongsud through its equation to the nondimen
sional onset accelerationap  aky4v2  g. However,
Müller et al. [11] find that the next higher order correc
tion to ap is ap  g 2 g3y2y2. Taking this correction
into account shifts the boundaries in Fig. 4 byg3y2y2 to
higher dissipation. In our case this shift isø0.09, and
very favorable agreement with the experiment is obtaine
By using a lower visosity silicon oil, it should be possibl
to cross then  6 or higher boundaries, though a large
experiment would be required.

A fundamental ingredient of the theory by Zhang an
Viñals [7] is a three-wave resonance phenomenon wh
two waves with angular separationur to each other inter-
4046
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act to produce a third wave which satisfies the dispersio
relation Eq. (1) at2v. Standing waves with angular sepa
ration close tour will not be favored as they will lose en-
ergy to the wave at2v. This resonance phenomenon is
reflected in the coupling functiongsud [Eq. (2)] which is
large nearur . The cascade of patterns with increasing
symmetry depends in a delicate way on the behavior
gsud, which in turn is determined by the three-wave reso
nance phenomenon. As this resonance phenomenon
crucially dependent on the validity of the deep fluid dis
persion relation [Eq. (1)], precise satisfaction of this rela
tion is a first experimental requirement for the observatio
of the predicted patterns. We expect, therefore, that e
periments in shallow fluid layers where the deep fluid dis
persion relation is invalid will show different phenomena
than those reported in the present Letter [5].

In conclusion, we have demonstrated the existence
a cascade of periodic and quasiperiodic patterns wi
increasing rotational symmetry near to a special resonan
point. This highly nontrivial course of events appears t
be remarkably well described by a recent theory.
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