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Threshold Law For Positron Impact Ionization of Atoms

W. Ihra,1 J. H. Macek,2 F. Mota-Furtado,1 and P. F. O’Mahony1
1Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1501
and Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831

(Received 21 January 1997)

We demonstrate that recent experiments for positron impact ionization of He and H2 can be
interpreted by extending Wannier theory to higher energies. Anharmonicities in the expansion of
the three-particle potential around the Wannier configuration give rise to corrections in the threshold
behavior of the breakup cross section. These corrections are taken into account perturbatively by
employing the hidden crossing theory. The resulting threshold law isssEd ~ E2.640 expf20.73

p
E g.

The actual energy range for which the Wannier law is valid is found to be smaller for positron impact
ionization than for electron impact ionization. [S0031-9007(97)03161-X]

PACS numbers: 34.80.Dp, 34.20.Mq
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The three-body breakup of Coulomb systems ne
threshold is of fundamental importance in atomic physic
The dependence of the threshold cross section on the
cess energy probes the highly correlated dynamics of
three-body Coulomb system [1]. Recently new detail
measurements of the cross section for ionization of ne
tral atoms and molecules by positron impact in the ne
threshold region have been reported [2]. These expe
ments offer an exciting new opportunity to enlarge o
understanding of the dynamics of three-body Coulom
systems immediately above the breakup threshold.

Wannier’s theory [3] of breakup has been used to e
plain the threshold behavior for electron impact ionizatio
of atoms. He predicted a threshold law as a function
the excess energyE of the form

ssEd ~ Ez . (1)

The Wannier exponent has the valuez ­ 1.127 for
electron impact ionization. Klar [4] subsequently showe
that Wannier’s theory for positron impact ionization lead
to a power law with an exponentz ­ 2.651. The recent
experimental data [2], however, were best fitted to
power law with an exponent which ranges fromz ­ 1.71
for a H2 target to z ­ 2.27 for a He target. In any
case the power law exponent is significantly smaller th
predicted by Wannier theory. We demonstrate in th
Letter how these results can be reconciled by showing t
it is essential to incorporate fully the coupling betwee
different modes of the three-body motion to account f
the effects manifest in the experimental data. The res
will be a modified threshold law giving the usual Wannie
law in the zero energy limit. We also find the energ
range over which the Wannier power law is valid. (Se
also [5].)

The threshold behavior of the cross section for positr
impact ionization is a much more sensitive test for thre
particle correlations than electron impact ionization. F
electron impact ionization, were the interaction betwe
the electrons in the final channel “turned off,” the thres
0031-9007y97y78(21)y4027(4)$10.00
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old law would be a linear function of the energy as op
posed to having the exponentz ­ 1.127. The Wannier
configuration for positron impact ionization is a three-
particle arrangement where the electron is situated on
line between the two positive charges, but not at equ
distances from them [4]. The turning off of the final
state interaction between the electron and the positro
results in a much more dramatic change of the form
of the threshold law. It would have the formssEd ~RE

0 expf2ps2yxd1y2g dx [6]. This form can be understood
as the positron tunneling in the repulsive Coulomb poten
tial of the final channel from near the nucleus to large
distances. Because of the dynamical screening for m
tion around the Wannier configuration such a tunnelin
effect is missing in Wannier theory. An alternative pic-
ture was given by Temkin’s dipole theory [7], which is,
however, only valid in a very limited energy region above
threshold and is not yet experimentally accessible. Rece
calculations of time-dependent wave functions support th
original Wannier picture [8–10] of a double escape wav
function confined to the vicinity of the classical Wannier
configuration on the ridge of the three-particle potential.

Our approach is based on an analysis of the motio
around the Wannier ridge. We confine our analysis t
total angular momentumL ­ 0 because thefunctional
behavior of the double ionization cross section as
function of the energy is the same for all partial waves in
the zero energy limit [11]. In the body-fixed plane defined
by the nucleus, the positron, and the electron the fu
three-dimensional Hamiltonian can be written in atomic
units as [4]

H ­ 2
1

2R5

≠

≠R
R5 ≠

≠R
1

1
R2

hsR, b, gd , (2)

h ­
1
2

L2sb, gd 1 RCsb, gd . (3)

R is the usual hyperradius and the mock angles0 # b #

py4 and 0 # g # 2p are related to the moments of
© 1997 The American Physical Society 4027
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inertia of the system. Expressions for the grand angul
momentumL2sb, gd and the effective chargeCsb, gd as
a function of the angles are given in [4]. We will refer to
hsR, b, gd as the adiabatic Hamiltonian for reasons whic
will become clear later on.

For the moment it is important to notice that the
effective charge has a saddle point at [4]

b ­ 0, g ­ arccos
3Z 2

p
ZsZ 1 4d

2Z 2 1
. (4)

b ­ 0 corresponds to a collinear configuration of the
three particles while the value ofg selects a configura-
tion where the electron is situated between the positiv
particles. The equilibrium position is stable with respec
to b but it is unstable with respect tog. It defines the
Wannier ridge.

Our strategy is to construct a local solution of the
Schrödinger equation around the Wannier saddle whic
takes the anharmonicities of the effective charge int
account. We introduce the new coordinatesx ­ sg 2

g0dy2 and y ­ b and expand the adiabatic Hamiltonian
in these coordinates which gives the four termsh ­ h0 1

h1 1 h2 2 RC0 with

h0 ­ 2
1
2

∑
≠2

≠x2
1

≠2

≠y2
1

1
y

≠

≠y

∏
2 RCx2x2 1 RCy2y2, (5)

h1 ­ RCx3x3 2 RCxy2xy2, (6)

h2 ­
8y
3

≠

≠y
2 2y2 ≠2

≠x2

2 RCx4x4 1 RCx2y2x2y2 2 RCy4y4. (7)

Numerical values of the expansion coefficients are re
corded in Table I for the chargeZ ­ 1 of the residual ion.

We now expand the three-particle wave function aroun
the saddle into adiabatic channels:

CsR; x, yd ­
1

R5y2

X
m

FmsRdwmsR; x, yd . (8)

Neglecting the nonadiabatic couplings results in th
Schrödinger equation

fh0 1 h1 1 h2gwmsR; x, yd ­ R2´msRdwmsR; x, yd (9)

for the adiabatic channel functions. Had we taken on
the first termh0 into account we would have ended up
with second order Wannier theory and a power law fo
the cross section: The motion inx and y decouples and
the adiabatic channels are products of a quasidiscretiz

TABLE I. Expansion parameters of the adiabatic Hamiltonia
hsR, b, gd in Eqs. (3) and (5)–(7) around the Wannier saddle.

C0 3.3302 Cx3 18.206 Cx4 197.16
Cx2 27.821 Cxy2 27.309 Cx2y2 570.62
Cy2 11.413 Cy4 47.669
4028
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one-dimensional antiharmonic oscillator inx and a two-
dimensional harmonic oscillator iny. The adiabatic ener-
gies associated with these wave functions are

Enm ­ R2´s0d
nmsRd ­ 2 isn 1 1y2d

p
2RCx2

1 s2m 1 1d
p

2RCy2 . (10)

The wave functions for the antiharmonic oscillator wer
chosen with outgoing wave boundary conditions whic
correspond to the picture of particles falling off the saddle
The minus sign in front of the imaginary part of the
adiabatic energy reflects this fact. The transformation fro
adiabatic to diabatic channels was performed explicitly i
second order Wannier theory in an elegant way [12]. Th
diabatic theory leads to the correct value of the Wanni
exponentz in Eq. (1).

At higher energies it is important to include anharmoni
corrections inx and y in the adiabatic Hamiltonian as
has been demonstrated for electron impact ionization [13
In this case the construction of diabatic channel wav
functions, which takes the coupling between the angul
motion and the motion in the hyperradius into accoun
is possible although rather tedious. This direct way
however, is not practicable for positron impact ionizatio
because of the occurrence of the cubic terms in th
adiabatic Hamiltonian. A central task of this Letter is to
demonstrate that the higher order corrections to the simp
Wannier law (1) can be calculated also for positron impa
ionization, but a different approach is needed.

The general framework involves the hidden crossin
theory applied to ionization processes [14–18]. Highe
order corrections to the Wannier law are then calculate
within a perturbative approach. The central idea of th
hidden crossing theory stems from the observation that t
adiabatic energieśmsRd typically show avoided crossings
at real positive values of the hyperradius. Asymptoticall
they correspond to the excitation channels. Double io
ization can be achieved via a path in thecomplexR plane
where promotion into the double continuum on the sing
valued sheet of́ sRd is possible. The transition probabil-
ity for a path which starts at a positive real valueR0 on
the potential curve of the initial state into the double con
tinuum is given by

PasysEd ­ exp

(
22 Im

Z `

R0

q
2fE 1 C0yR 2 ´sRdg dR

)
.

(11)

An analogous expression occurs in the diabatic theo
where it is interpreted as the survival probability on th
saddle as the two escaping particles travel fromR0 to
infinite hyperradius [12].

The absolute value of the double escape cross sect
for total angular momentum zero is given by

ssEd ­
p

k2
i

Pinner sEdPasysEd

3
Z

dx
Z

y dyjwasysRW ; x, ydj2, (12)
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whereki is the asymptotic momentum of the particle i
the incoming channel. The factorPinner sEd contributes
to transitions taking place within the reaction zone
R , R0. Since at small interparticle separations th
Coulomb potential dominates, this factor is only weak
dependent on the energyE and is not needed to determine
the functional dependence of the threshold law as
function of the energy. The third factor stems from
the integration of the asymptotic wave function in th
angular coordinatesx and y at the Wannier radiusRW .
This radius characterizes the transition from the Coulom
zone to the asymptotic free zone and therefore scales
RW , 1yE.

The analytic continuation of the solutions of the adia
batic Schrödinger equation to complex values ofR in the
hidden crossing theory requires that the dual of the wa
function is defined as the wave function itselfkwjb, gl ­
kb, gjwl instead of taking its complex conjugate [17]
Expectation values of operators are understood to be ta
with the modified scalar product. With this prescription a
hand, corrections to the adiabatic energy (10) are read
calculated perturbatively. We first expand the transitio
probability (11) as

PasysEd ø exp

(
2 Im

Z `

R0

"
´sRd

K0sRd
1

´2sRd
2K3

0 sRd

#
dR

)
,

(13)

where the zero order momentumK0sRd ­
p

2sE 1 C0yRd
has been introduced. The only imaginary contributio
from first order perturbation theory arise from the cros
terms involving both coordinatesx andy in h2 and give

Im D´s1d ­ Im k00jh2j00lyR2

­
1

R2
p

Cy2

∑
Cx2y2

4
p

Cx2
2

p
Cx2

∏
. (14)

The product states of the one-dimensional antiharmo
oscillator and the two-dimensional harmonic oscillator a
denotedjnml. Contibutions fromh1 arise in second order
perturbation theory, namely,

Im D´s2d ­
1

R2
Im

X
n,m

jk00jh1jnmlj2

E00 2 Enm
. (15)

There are two contributions to the imaginary part. Th
first one comes from terms involving products of matri
elements ofx3 andxy2. It gives

Im D´s2d
a ­ 2

3Cx3Cxy2

8R2Cx2
p

Cx2Cy2
. (16)

The second one involves the square of the matrix eleme
of xy2. It gives

Im D´
s2d
b ­

C2
xy2

4R2Cx2
p

Cx2Cy2

∑
1 1

4Cy2

Cx2

∏21

. (17)

The adiabatic energy up to terms of order1yR2 is then
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´sRd ­ ´
s0d
0,0 1 DyR2, D ­ 6.2107 . (18)

We are now able to determine the higher order correctio
to theWannier law (1) by inserting (18) into the expressio
(13) for the transition probability. The integrations can
be performed analytically; the full result will be given
elsewhere. If only the lowest order terms inE are retained
the threshold behavior of the ionization cross section (1
is

ssEd ­
const

E 1 I
Ezad exp

∑
2

2D0

C0

p
2E

∏
, (19)

with D0 ­ D 2
p

Cx2Cy2 yC0 and zad ­
p

Cx2yC0 2

1y4. I is the ionization energy of the target. The
numerical values areD0 ­ 0.86, 2

p
2 D0yC0 ­ 0.730,

and zad ­ 2.640. The adiabatic threshold exponentzad
departs from the exact Wannier value by a relative err
of only 0.4%. This is remarkable compared to the cas
of electron impact ionization where the relative error i
2%. The small difference between the adiabatic expone
and the Wannier exponent gives us confidence that t
errors introduced by the adiabatic approximation are al
small for the perturbative calculation of the exponentia
correction term. The threshold law can thus be written a

ssEd ~ E2.640 expf20.73
p

E g . (20)

We do not consider terms linear in the energy in the arg
ment of the exponential function because they also inclu
terms inER0yC0, which are analytic inE and would lead
us to specify the boundaryR0 of the reaction zone. More-
over such terms also occur if higher orders than1yR2 are
included into the adiabatic energy. To be consistent
is therefore appropriate to compare experimental resu
with the first order nonanalytic corrections in

p
E to the

Wannier law.
We can now determine the range of validity of the powe

law using Eq. (20). At an excess energy ofE ­ 0.57 eV
the exponential factor in (20) already has the value 0.
The ionization cross section measured in [2] was fitted
a power law in the excess energy range between 3 a
10 eV. The exponent thus obtained wasz ­ 2.27 for a
He target. However, it is seen from the above that in th
energy range the influence of the anharmonic correctio
cannot be neglected. Figure 1 shows the experimental d
together with the Wannier law, the power law fit to the
experiment, and the threshold behavior (20). The latt
was normalized to the power law fit at 4 eV. It is seen tha
for E . 3 eV the power law fit is almost indistinguishable
from the modified threshold law (20). We are thus led t
conclude that the experimental data imitate a power la
behavior in the energy range under consideration where
actual functional dependence onE is the more complicated
one given by (20).

It is interesting to compare the range of validity o
the power law behavior with the case of electron impa
ionization. An analysis analogous to the one outline
4029
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FIG. 1. Cross section for positron impact ionization of helium
as a function of excess energy. Filled circles: experimental d
Ref. [2], dashed line: Wannier power law (1) withz ­ 2.651,
solid line: Wannier theory including anharmonic correction
Eq. (20), dotted line: power law fit with exponentz ­ 2.27
of Ref. [2].

here givesC0 ­ 3y
p

2, D ­ 7ys8
p

11 d, andD0 ­ D 2p
11 y6. The resulting factor in the exponential term the

has the value2
p

2 D0yC0 ­ 20.385. Had we usedD
instead ofD0 its value would be0.352. This corresponds to
the analysis in Ref. [13], which neglects the term quadra
in the asymptotic energy in (13). The diabatic value
D ­ 0.329 which also confirms the close agreement wit
the hidden crossing theory. In any case it is seen that
departure from the power law behavior comes into play
higher energies for electron impact ionization compared
the positron case.

We have shown that it is important to incorporateboth
the bending and stretching motions around the Wann
configuration. The presence of the cross terms inx and
y proves to be essential to account for the anharmonic
fects in the behavior of the cross section at energies clo
to threshold. In this respect we differ from the result o
Ref. [11] which incorporates the full three-particle poten
tial but restricts the configuration to a collinear one, thu
fixing y ­ 0. They observed that the power law behavio
holds up to at least 3 eV. The recent experimental da
give strong support that at least above 3 eV anharmo
corrections due to the coupling of both degrees of freedo
become quite pronounced for positron impact ionization

Two further points should be noted: First, the modifie
threshold law (20) does not fit the experimental results
energies less than 3 eV. We checked that incorporat
higher order terms depending onR0 did not improve the
situation. Because of the large experimental error bars a
an energy spread of 0.5 eV of the incoming positron bea
in the experiment [2] there is however a large uncertain
in the experimental data at lower energies. Clearly mo
4030
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experimental work which is able to probe our propose
modified threshold law at energies,3 eV would be highly
desirable. Second, the fit of the experimental data to
power law is not completely independent of the target. Th
value 2.27 for helium changes to 1.71 for H2 as the target.
However for the latter it cannot be excluded that effect
of the reaction zone arising from the molecular nature o
the target play a genuine role. The general feature
an effective exponent which is less than the Wannie
value however remains unchanged in accordance with o
quantitative anharmonic theory.

In conclusion, we have shown that recent experiment
results for positron impact ionization can be explaine
if anharmonic corrections to the Wannier law are take
into account. Measurement of the ionization cross sectio
provides a very sensitive test for the Wannier theor
due to the large threshold exponent compared to th
electron impact case but—as experiment and theory bo
indicate—at the price of a less extended energy range
which the Wannier law is valid.
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