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Vortex Velocities in the O(r) Symmetric Time-Dependent Ginzburg-Landau Model
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An explicit expression for the vortex velocity field as a function of the order parameter field
is derived for the case of point defects in thign) symmetric time-dependent Ginzburg-Landau
model. This expression is used to find the vortex velocity probability distribution in the Gaussian
closure approximation in the case of phase ordering kinetics for a nonconserved order parameter.
The velocity scales ag ™' in scaling regime wherd = /2 and r is the time after the quench.
[S0031-9007(96)02240-5]
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The importance of the role of defects in understanding a I k= _rof 2
variety of problems in physics is clear. In certain cosmo- ot o y -
logical [1] and phase ordering [2] problems key questions . N - . .
involve an understanding of the evolution and correlationwlfr]erter '? a kinetic coefﬁmer:jt[; 'Z a C?ltrrl]zbfurg-Landau
among defects like vortices, monopoles, disclinations, et cCUVe Irée energy assumed to be of the form

In studying such objects in field theory questions arise as _ f d [i =0 ¥ }

to how one can define quantities like the density of vor- F d'r 2 Vi)~ + VIyh | (3)

tices and an associated vortex velocity field. The purposgnere > 0 and the potential is assumed to be of the
of this Letter is to identify the appropriate vortex-velocity gegenerate double-well forms is a thermal noise which
field in the context of ar0(n) symmetric time-dependent g rgjated tol" by a fluctuation-dissipation theorem.
Ginzburg-Landau (TDGL).modeI for t_he case of.pom.t de- consider a system with = d where there are topo-
fects wheren = d and d is the spatial dimensionality. |ogically stable point defects [3] formed in a phase
Using this rather general definition for the velocity field ordering system (quenched, for example, from a high
the distribution of velocities is determined in the caseemperature disordered state to a temperature below the
of the late state phase ordering using the Gaussian clgger temperature). As pointed out by Halperin [4], and

sure approximation for a nonconserved order parameteéprited by Liu and Mazenko [5], the vortex density for

The physical results are that the velocity scales@s™',  g,ch a system can be written as
where L(r) = t'/2 is the characteristic scaling length for -
the order parameter correlation function which grows with p=258D, (4)

time 7 after the quench. The vortex velocity probability where D is the Jacobian (determinant) for the change of
distribution function is given in this approximation by variables from the set of vortex positiongt) (where
50) LG+ 1) 1 ( vanishes) to the fielg:
vO = —_— > — 9
(7Tv2)n/2 [1 + (v0)2/v2](n+2)/2 1
. . . D = _‘ GM]’MZ ~~~~~ Mn GV]’VZ ~~~~~ Vn Vlu'l ¢V1 V;U'Z ¢V2 T V,Ud/x lpyn ?
where the parameter is defined below and varies &s'! n:

for long times. (5)

P(

,,,,,

the TDGL model satisfied by a nonconservedomponent  ric tensor and summation over repeated indices here and
vector order parametef (7, ): below is implied.
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The first goal here is to derive the equation of motionthe absence of noise)

satisfied byp.. Towqrd this end one needs two @den_tities €an (Vb V2 — V0, V2ih)
whose proof is relatively straightforward. The first iden- Vo = VoV (13)
tity is given by €voVolaVolly
9D Notice that the result given by Eq. (10) does not depend
- = V.J%  Identity I, (6)  on the details of the TDGL model, only that the equation
! of motion is first order in time.
where, for a general vectot, the current/Y) is defined The expression given by Eq. (12) for the velocity is
as very useful because it avoids the problem of having

to specify the positions of the vortices explicitly. The
positions are implicitly determined by the zeros of the
order parameter field. The general expression wjffi

X VstV s, (7)  should be useful in looking at the motion of vortices in

] o ] ) the presence of external fields beyond a growth kinetics
Identity | is just a statement that the determinddtis a  gntext.

conserved invariant. Notice that the superscKpbn J The practical usefulness of the result Eq. (12) can be
in this identity is defined by the right hand side of Eq. (2).geen by asking the question: In the scaling regime of
The second identity takes the from for general ve@tor 3 phase ordering system with point defects, what is the
(A) _ ; probability of finding a vortex with a velocityy? This
o Vatp = ApD. Identity I ® probability distribution function is defined by
Identity 11, after using the chain rule for differentiation, . . .
leads Ei/irectly to the r%sult noP (Do) = (nd(@o — 0)), (14)
R where v, is a reference velocityy = 6(12) |D] is the
—6(¢) = J(K)V55(¢). (9)  unsigned defect density;o = (n), and v is given by
Eqg. (12). We determing® using the Gaussian closure
When this result is combined with Identity I, one easily method [6—9] which has been successful in determining
obtains the equation of motion for the vortex density the scaling function for the order parameter correlation
ap ®) function. The first step is to express the order parameter
Fral = Va[8(h)Jp 1. (10)  in terms of an auxiliary field7 which is assumed, to a
first approximation, to have a Gaussian distribution. In
This continuity equation reflects the fact that the vortexthe theory developed in Ref. [7], the relationship between
chargeis conserved. A key point here is thang is  the order parameter and the auxiliary field is given as a
multiplied by the vortex locating function. This means solution to the classical interface equation
that one can replacfé in J® by the part ofk which does

1
A) —
J((I) (n - 1)‘ € 2250 Mo GV] Vz,‘..V“AV

not vanish ags — 0. Thus in the case of a nonconserved Vo (m) = V(gD (15)
K) . -
order parameter one can replagg’ in the continuit
equatign by P é Y where the auxiliary field serves as the coordinate labeling
the distance to the defect nearest to space poatttime
J@ _ 1 c 6 [TV, + 1] t. The solution of this equation for a charge one vortex is
B (l’l _ 1) Botrseosbn V1L V2V, vy 4 Of the form
X V,uz ¢Vz o 'V,un ¢vn : (11)

P(m) = A(lml)m, (16)
In the case of a conserved order parameter the current for

p is more complicated because of the overall gradientsvhere A(|m|) vanishes linearly withn for small m with
acting in K. Because of the standard form of the the next term of(O(m ) It is then easy to show that
continuity equation Eg. (10), it is clear that one canone can replacea// by m in the expression fo. One

identify the vortex velocity field as can determine”(vy) by first evaluating the more general
J@ probability distribution
Vg = — =, 12) R R
D G(¢,b) = (8(m)8(£), — Vum,)8(b — VZm)), (17)

where it is assumed that the velocity field is used inside

expressions multiplied by the vortex locatidgfunction.  since

This is the primary result of this Letter. It gives one an R
explicit expression for the vortex velocity field in terms  noP(9g) = f d"b l_[dfljll)(f)lﬁ[ﬁo — (b, &)]

of the original order parameter field. In the particular Hoy

case ofn = d = 2 one has the more explicit result (in X G(&,b), (18)
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where
(19)
with
1 14} 1) 14
D(é‘:) = ; €1 sty €V, 02,00 wi S é‘:p::l (20)
and

. 1
Jg)(b, é‘:) = m ea,y,z ,,,,, Moy €viva, vy

X Ty, & - 0 (21)

In this last expression it has been assumed that the quenI:(P{

17

2

-Lp
1 e 254 1
Q2w So)/? 2mwS)"/? 2w S@)n*/2

G(&,b) =

1 )2
X ex;{— m ;j(fﬂ) i|, (22)
whereS, = ~(/n?) is proportional toL?,
1 -
s@ = ;((Vm)zh (23)
and
_ (2)72
5= Lowapy - BSTE g
n So

The quantitiesSy, S, S, are determined from the theory
the order parameter correlation function. Using this

is to zero temperature [10] so that the noise can be set {§SUlt for G(£,b) in the expression for the probability

zero. The Gaussian average [11] determirﬂ?(qf,l;) is
relatively straightforward to evaluate with the result:

>N VM —_ L V)2 1 !
mP (o) = [ ,l:!df" PR exp[ 25 ;(f”) }(4772507)”/2 Jaews

WV

wherey = §4(I'c)?, and the matrix/ is given by
1

Mo = Tyt T St €L £l
v, v,
X €8, ush), €v v, €t €l - (26)

It is straightforward to obtain the rather clean results

de(M) = (27)

(D)?
and

Mgy =Y éney (28)

so that

Sy v 1
noP(vg) = f E‘E"W
1 )2 DZ _
X GX{_ _25(2) ;(fﬂ) :| (477250,)/);1/2

1
X exp[—— D ugggggvﬁ] (29)
27 a,B,v

distribution one can use the usual integral representation
for the & function to perform the integration over tle
field to obtain

1 S
—s- 2 v M ,Vv”]
2')/ MZJ; 1% 0

(25)

[ where

s

=2 _ @ _ 2
v v/S (Tc) ROk

(31)

SinceP(vp) is normalized to one, we find on integration
over vy the result

§@ \n/2 n!
= 7 s 32
1o <27TS()> 2”/21"(7 +1) (32)

which agrees with the result found by Liu and Mazenko
[5] using a more indirect method. After using this result
for no one finally obtains the result given by Eq. (1).
This result basically says that the probability of finding
a large velocity decreases with time. However, since

this distribution falls off only aSv()_("+2) for large vy
only the first moment beyond the normalization integral
exists. Bray [12] has a scaling argument associated with
vortex-antivortex final annihilation which leads to this
large velocity tail.

The remaining integrals can be reduced to a separable The determination ofS,, 5@, 34’_ and v requires a
product of Gaussian integrals through a linear transfortheory for the auxiliary field correlation function

mation with the result

nOP(l‘jO) _ < S(Z) >n/2< 1 >n/2

218, 272

n!
X
[T+ Gop/wr

(30)

Col12) =+ (1) - (2). 33)

There are two theories available and both are of the
Gaussian closure type assumed above. One, due to Ohta,
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Jasnow, and Kawasaki (OJK) [13], essentially postulates[4] B.I. Halperin, in Physics of Defectsedited by R. Balian
thatCy(12) is a Gaussian et al. (North-Holland, Amsterdam, 1981).
Co(12) = 5087?2/2L2’ (34) ES% F. Liu and GkF. l\/rl]azenko, Phys. Rev(.LEB, 5)963 (1992).
> _ - > . g 6] G.F. Mazenko, Phys. Rev. B2, 4487 (1990).
wherer = 7y = . In th'szgase one easily findsthat 20 £\ i "a0d G. F. Mazenko, Phys. Rev. 45, 6989 (1992).
7> = —(Tc)?, (35) [8] A.J. Bray and K. Humayun, J. Phys. 25, 2191 (1992).
L? [9] H. Toyoki, Phys. Rev. B45, 1965 (1992).
where the coefficient ofL?/r is undetermined in the [10] Because of the growing length in the problem the role
theory of OJK. Using the theory developed in Ref. [14] of temperature is typically irrelevant as long as the final

for n = 2 one finds self-consistently [15] that temperaturd is less than the critical temperatufg.
, T (rc)2 [11] In general the average is over noise and initial conditions.
= <1 + E) - > (36) When the noise is set to zero then the only disordering

_ . . . agents are the initial conditions. The random initial
where u = 0.53721... is the eigenvalue determined conditions act just like noise localized at some time.

within the theory [14]. . However, once the ordering has grown sufficiently large
One can go forward and extend these ideas to treat two- it has lost memory of the specific nature of the initial

point velocity correlation functions and stringlike defects conditions. This was investigated in detail in Ref. [6]. It

(n = d — 1) as will be discussed elsewhere. is known from the work of C. De Dominicis and L. Peliti,
I thank Professor Alan Bray for useful comments on Phys. Rev. B18, 353 (1978) that in such problems one can
this work. change from averages over the noise and initial conditions

to averages over the fields.

[12] A.J. Bray, Report No. Cond-m&2611209.

[13] T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. Lett.
mological and condensed matter context, Seemation 49, 1223 (1982). See Ref. [2] for extensions of this basic

. : Py thod.

and Interactions of Topological Defectsdited by A.-C. me .
Davis and R. Brandenberger, NATO ASI, Ser. B, Vol. 349 [14] G.F. Mazenko and RA Wickham, Report No. Cona-
(Plenum, New York, 1995). may/9607152 (to be .publlsht_ad.).

[2] A.J. Bray, Adv. Phys43, 357 (1994). This is an excellent [15] The results, = L2 is nontrivial and assumes that there
recent review of phase order kinetics from one of the is no correction to scaling terms of the for@ = S, —

[1] For a recent review of the role of defects in both a cos-

leaders in the field. %(ﬂ + byr* + ...) for small r whereb, is a constant
[3] N.D. Mermin, Rev. Mod. Phys51, 591 (1979) gives a ast — «. A detailed self-consistent analysis shows that
good review of topological defects in ordered media. by = 0if §4 is to be positive at late times.
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