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We numerically simulate the evolution of an ion trap quantum computer made out of 18 ions subject
to a sequence of nearly 15000 laser pulses in order to find the prime factdrs=oi5. We analyze
the effect of random and systematic phase drift errors arising from inaccuracies in the laser pulses
which induce over (under) rotation of the quantum state. Simple analytic estimates of the tolerance
for the quality of driving pulses are presented. We examine the use of watchdog stabilization to
partially correct phase drift errors concluding that, in the regime investigated, it is rather inefficient.
[S0031-9007(97)03182-7]

PACS numbers: 89.80.+h, 02.70.Rw, 03.65.Bz

The key ingredient for guantum computation is the uselriven quantum processor. In fact, for quantum gates to
of quantum parallelism which takes advantage of the facproperly operate, most laser pulses are designed to invert
that the dimensionality of the Hilbert space of the computepopulation between internal levels (pulses). However,
is exponentially dependent on its physical size. Shor'she Rabi flopping frequency depends on a variety of physi-
discovery [2] of a quantum algorithm for efficient factoring cal effects which cause imperfections: Realistipulses
of integers is solid evidence that quantum computers coulfbr any other type of pulse) will always be + € pulses,
exponentially outperform their classical counterparts. The being a random variable whose expectation valsnd
last two years have witnessed an intense research effadtspersiono characterize the quality of the experimental
aimed at examining the possibilities for taking quantumsetup. In our study we analyzed the impact of these
computation from the realm of ideas to the real world of thetiming errors studying to what extent the performance of
laboratory. However, practical implications of a “quantuma quantum circuit is limited by the quality of laser pulses.
revolution” for computation are still not clear. Inthis work Perhaps most importantly, we obtained and verified
we will analyze the performance of the ion-trap quantumsimple analytic expressions that could be used for es-
information processor [3], which is currently under studytimating the fidelity of the circuit. Our results make
by various experimental groups around the world (see [4gvident that fault tolerant quantum circuits [7], which
for a review). For concreteness we analyze the evolutiomould allow arbitrarily large computations if the precision
of a quantum computer which runs a program to findof the driving laser pulses is above a certain threshold,
the prime factors of a small numbeN (= 15). Such are required to successfully run even small quantum
a program can best be represented by a quantum circuibmputations. Unfortunately, simulating circuits which
decomposing into a complex sequence of elementary gat@scorporate quantum error correcting codes is still beyond
[5]. In our simulations, which tested several factoringour capabilities: encoding a single qubit inko (which
circuits [6], we followed the quantum state of = 18  should be at least 3) makes the time and memory require-
cold trapped ions subject to a predetermined sequence afents grow by a factaz*.

n, = 15000 (resonant and off-resonant) laser pulses. We have also set out to test the effectiveness of the

These simulations face the same problem whiclwatchdog (or quantum Zeno) [9] effect for error correction.
prompted Feynman [1] to propose the use of quantunThe basic physics of this effect is rather well known:
computers in the first place: As their Hilbert space in-Consider a two level system which is initially in state
creases exponentially with their size, any dynamical study0) and is subject to a sequence of rotations by an angle
rapidly becomes a very hard computational task. Thus§. After k such rotations the probability of measuring
to our knowledge, evolution corresponding to factoring inthe initial state isP(0) = cos(k6), which vanishes when
the proposed implementations of quantum computers has) = /2. However, measuring the state after each
never been simulated beyond the level of a few qubitsotation tends to slow down evolution: the probability for
or small fragments of the complete algorithm [3]. Here,finding the qubit always in stat®) is P,,(0) = cos*(9),
we present the first results of large numerical simulatiorwhich is close to one ifg is sufficiently small. At
of an ion trap quantum computer evolving under realistidirst sight, using this quantum Zeno effect to stabilize
(but still rather oversimplified) conditions. a quantum computation may seem implausible since to

We aim at examining the tolerance of quantum compuimplement it one would have to know the ideal state of the
tation to errors which are likely to occur in any optically computer at some times. However, in an ideal factoring
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circuit, some of the qubits disentangle from the rest of thénto |¥,) = Lq qu.;é | )11y’ modN),. Finally, one

computer at predetermined steps of the algorithm allowing-ourier transforms the first register and measures it. The
for watchdog stabilization. With our simulations we testedprobability P(c) for the outcome of such measurement is
this simple idea confirming the existence of watchdoda strongly peaked distribution with the peaks separated
stabilization but concluding that the technique is rathehy a multiple of 1/r. Thus, measuring the distance
inefficient in the ion trap quantum computer. between peaks one efficiently gets information abeut
In this implementation each qubit is stored in the[see Fig. 1(b)].
internal levels of a single ion. lons are linearly trapped The most complicated part of the various factoring cir-
and laser cooled to their translational ground state. Twe@uits [6] is the modular exponentiation section (Fourier
long-lived atomic ground statelg) and |e) of each ion  transform can be efficiently implemented [8]). The com-
play the role of the computational states (an additionaplexity of the modular exponentiation network is such that
auxiliary level|e’) is needed for implementing quantum the circuit involvesO(100)L3 elementary two bit gates
gates). Each ion can be addressed by a laser and R3j (the two registers of the computer requité and L
oscillations between the two computational states cagubits, respectively). As unitary operators are invertible,
be induced by tuning the laser frequency to the energyhe circuit must use reversible logic for which one needs
differencefio between ground and excited states. In thisa number of extra “work qubits” in intermediate steps of

case, the quantum state of the qubit evolve$¥s8)) = the calculation. For the simplest circuits, such a number
U(1) [¥(0)), where the matrix ofU(z) in the (|g).le))  is 2L + 1. However, other networks reduce the size of
basis is the workspace enlarging the number of operations. For

example, another circuit we investigated las- 1 work
(1)  qubits but requireD(10)L°> elementary operations (no-
tably, for small numbers this circuit outperforms all others

. . both in space and time). We will not discuss any circuit
Thus, controlling the Rabi frequendy, the laser phase qetails here. For the purpose of analyzing the physical

@, and the pulse duration, arbitrary single qubit rota- qngiraints implied by efficient factoring on the accuracy
tions can be performed. To implement two-bit gates on&f |aser pulses it is sufficient to say that the simulations
induces interactions between qubits using the center-ofyere performed on circuits involving the following char-
mass (CM) mode as an intermediary: Applying a lasefcteristics: 18 two level ions were subjected to 15000
pulse to ionn with a frequencyw — v, where/iv is the |aser pulses-£10* off-resonant and-5 X 103 resonant).
energy of a single phonon of the CM mode, Rabi oscillajght of these ions were used in the first register, four in
tions are induced between staigs,|1)cy andle),[0)ev.  the second, and six were used as work qubits. If all de-
For these states the evolution operator is also (1l)grees of freedom are taken into account the Hilbert space
while states|g),|0)cy and |e),|I)cy remain unchanged. of the computer i x 3'8 dimensional. Unfortunately,
These off-resonance pulses allow syvapping information t¢njs is too much for a classical computer. However, if
and from the center of mass. As Cirac and Zoller showedye consider all pulses involving the auxiliary level) of

[3], by combining the two types of pulses applied on twogach jon as perfect a substantial saving is achieved. In
different ions (and using an auxiliary level as a kind Ofthjs case, the effective dimension of the Hilbert space is
“‘work space”) universal quantum gates can be imple519 which allows for numerical simulations. Taking this
mented. Errors in}s and @, such as the ones arising jntg account, the erroneous pulses amount to 75%—80%
from fluctuations in the laser intensity which produceof the total. The errors i)t and ® were taken as ran-
variations of (), will result in over (under) rotations. gom variables normally distributed with dispersionand
Such phase drift errorsare the ones of concern here. neane.

Other sources of errors, such as the decoherence of the op, illustrative example of the data we computed can be
CM mode or the spontaneous decay of the ions, will beseen in Fig. 1 where we represent the joint probability for
!gnored. In effect we assume that .the computer eVOWtheasuring the two registers of the computer in valdes)
isolated from the environment, being affected only bypefore the Fourier transform (FT) is calculated [Fig. 1(b)

unitary errors. , _ shows the distribution after Fourier transform is applied].

Prime factors ofV are found by obtaining the order  that a dispersion of 5% in the accuracy of the pulses
of a numbery. This is the smallest integer such that completely wipes out the signal one wants to observe [note
y" =1modN. To find r one first cholosey_?t random  that the signal disappears before applying the FT circuit.
and starts the computer in stati) = — 7-0 110%2.  As discussed in [3] the FT circuit is quite resistant to this
Here,| /) » represent two registers of the computer whosdevel of errors but our result shows that, unfortunately, this
states are defined by the binary representatiory ¢§ is not the case for modular exponentiation where many
must be betweenv? and 2N?). Then, by applying more operations are needed]. A reasonable parameter
a unitary transformation mapping stat¢);|0), onto  quantifying the accuracy of the quantum computer is the
[/%1] y/ mod N),, the state of the computer is transformedfidelity, which is defined as the overlap between the actual
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FIG. 1. (a) Probability for a measurement of the two registers of a factoring computer. After an error-free modular exponentiation
circuit, the computer should be in a superposition of the foiply/ mod N). Asy = 7, the only states present should 6&]1),

[1)|7), |2) |4), etc. (left). Timing errors distributed with dispersien= 5% produce a probability showing no resemblance to the
ideal one. (b) Probability of measuring a value in the first register after Fourier transform$00%, 1%, and5%. For the last

case all periodicity is lost and a uniform distribution arises.o It 1% the distribution shows minor changes in amplitude.

state (obtained after evolution subject to noise) andomputed a fidelity for every realization of the noise find-
the ideal oneF = (W . | Wigea)|?>. Our observations ing the average over many (i.e., a few tens) noise real-
show that a fidelity belowl/5 implies the loss of the izations. Error bars in Fig. 2 correspond to the dispersion
signal one wants to observe [in genei@lis closely around the mean of the numerically computed result. For-
related to the probability of observing the system in thetunately, fluctuations are relatively small and therefore
correct state, i.e., measuring the first register on a peak i@ach run gives a reasonable idea of the average result.
Fig. 1(b)]. In Fig. 2 we show the dependence of fidelity The reason for this is that each run corresponds to a ran-
upon the dispersion of the errors. The numerical resultsom choice of many (nearly 15000) independent random
follow remarkably well a simple formula that can be variables. Therefore, fluctuations between different runs
derived by assuming one hasindependentjubits each are effectively suppressed.
one of which is subject ta// erroneous pulses. In this It is also interesting to estimate the number of dimen-
way (treating the center-of-mass motion separately, as gions explored by the state of the computer, which while
is subject to a larger number of pulses) we conclude thanhoving on a large Hilbert space is subject to random per-
the mean fidelity (averaging over the ensemble of errors) igurbations. For this purpose we computed the entropy of
B 1 ] , the density matrixp,,, obtained by averaging the state
F = [—(1 + e 2@ /’)} [—(1 + e ”CM)}, (2)  vector over the ensemble of noise realizations. Linear
2 2 entropy S, = — 10g,(Tr p2,) (which provides a simple
where n, is the total number of pulses ang; is the lower bound to von Neumann entropy) turns out to be
number of off-resonance ones (which involve the centewell approximated by
of mass). This rough estimate was also used to estimate,  _ _ —dn,a? )1\l —dnemo?
the dependence of the fidelity on the number of opera-eSlln L1 logl(T + e J L +e )]é
tions (for fixed dispersionsr) giving also good quanti- )
tative agreement with the simulations. We numericallyThis equation was shown to agree with numerical results
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Fidelity . ; . erroneous one. To test this simple explanation we run a
numerical simulation where, after each measurement, the
state of the computer was projected onto the ideal one.

B -

08l | In this case, the agreement with the naive (independent
N qubit) estimate was good being the fidelity close to 0.99.
061 "\\ | One of the interesting results of our study is that,
\ although the factoring circuit continuously correlates the
04l \ ] qubits, the dependence of fidelity on the noise parame-
i ters can be estimated using a simple model where non-

systematic errors affect each qubit independently [with
this model, Eg. (2) can be easily obtained]. However,
for systematic errors we were not able to obtain a simple
analytic estimate for the fidelity fitting the results of
00T% 01% % 0% our simulations. For example, assuming that every qubit
° evolves independently under the influencengf pulses

FIG. 02)- tFit?]e”ty 35 éfl {lrllﬂc'fiondo;‘ the noise ?_istperSiQn(thr f which produce a rotation in an angéeone gets a formula

€ = al e end o € modaular exponenuation circuit tor 1 i i i

oy ' 13y 550 S 2 3 Tha Gaed” 11 e el uhich ifers fom a2 by e

line is the naive qualitative estimate given by Eq. (2) with . e ) .

n = 1.5 X 10* andney = 10, timate predicts a lower fidelity than the one numerically
computed (the estimated value ®ffor which fidelity de-
creases td /2 is ten times smaller than the observed one).

and predicts that for dispersions above a few percenthe reason for this seems to be the existence of cancel-

the computer explores the entire available Hilbert spacéations of errors associated, in a nontrivial way, with the

(enough statistics to numerically test the above formulaeversible nature of the circuit (for example, in a con-

was gathered only for dispersions below 2%). trolled not gate systematic errors exactly cancel when the

To analyze the effectiveness of watchdog stabilizatiorcontrol qubit is in the ground state but propagate other-
we simulated a smaller version of our factorivg= 15  wise). This suggests that pulse sequences implementing
circuit with only the first three controlled multipliers. In logic gates should be designed to properly compensate for
these simulations we assumed a systematic error usirgystematic over (under) rotations. If this is achieved, the

€ = 1.1o0. Whenever a work qubit was expected to beremaining fidelity is well approximated by Eg. (2).
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