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Mean Field Theory of the Mott-Anderson Transition
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We present a theory for disordered interacting electrons that can describe both the Mott and
Anderson transitions in the respective limits of zero disorder and zero interaction. We use it to
investigate thel = 0 Mott-Anderson transition at a fixed electron density, as the disorder strength is
increased. Surprisingly, we firtdvo critical values of disordeW,;; andW.. ForW > Wy, the system
enters a “Griffiths” phase, displaying metallic non-Fermi liquid behavior. At even stronger disorder,
W = W, > W,y the system undergoes a metal-insulator transition, characterized by the linear vanishing
of both thetypical density of states and thgpical quasiparticle weight. [S0031-9007(97)03117-7]

PACS numbers: 75.20.Hr, 71.55.Jv

The nature of the metal-insulator transition is a fun-ization, and therefore address the interplay of these effects.
damental problem in condensed matter science. TheM/e follow an approach very similar to the well known
are two basic mechanisms that cause electron localizatiohouless-Anderson-Palmer formulation of the mean field
Mott demonstrated that electron-electron interactions catheory of spin glasses [15]. Specifically, we treat the cor-
produce a metal-insulator transition (MIT) even in a cleanrelation aspects of the problem in a dynamical mean field
system [1]. Anderson discovered that disorder, i.e., strontheory fashion, but allovepatial variationsof the order
spatial fluctuations in the potential due to impurities [2], parameter in order to allow for Anderson localization ef-
can drive a metal-insulator transition in a system of noninfects. The theory is then exact in the noninteracting limit,
teracting electrons. and reduces to the standard dynamical mean field theory

Following these early ideas, important advances weré absence of disorder.
made following the application of scaling approaches [3— For simplicity, we consider a simple single-band Hub-
10] to the problem. In the interacting case, these formubard model with random site energies, as given by the
lations turned out to be closely connected to Fermi liquidHamiltonian
ideas [7]. + T "

These efforts notwithstanding, many basic questions red = Z Z(_tij + £0ij)CioCio T U Z Ci1CifCi|Cil -
main. In particular, it proved very difficult to incorporate i e i
the effects of strong electronic correlations, such as the Within the dynamical mean field theory, all local corre-
formation of local magnetic moments, in a comprehendation functions can be evaluated using a single-site effec-
sive theory of the MIT. This is a serious shortcoming,tive action of the form
since it is well established experimentally that the metal- B B
lic state close to the MIT is characterized by a divergent Ses(i) = Zf d‘rf dr' ¢l (7)
magnetic susceptibility and linear specific heat coeffi- oo °

cient. These observations form the basis of the two fluid X[6(r =70, + & — p) + Ajo(r,7)]
phenomenology [11]. . B
Very recently, a new approach [12] to the strong correla- X cio(r) + Ufa dr nig(7)ni)(7). ()

tion problem has been developed and successfully appli | . .
to systems in the vicinity of the Mott transition. This dy_%iere, we have used functional integration over Grassmann

namical mean field theory is in its spirit quite similar to fields c; o (7) thatfrepresent electrons OT spm on site

the well known Bragg-Williams theory of magnetism, and ¢ @dn;q(7) = ¢;s(7)ci (7). The “hybridization func-

as such becomes exact in the limit of large coordinationtion” A;(7,7’) is obtained by formally integrating out all
The approach has furthermore been extended to disorder&f degrees of freedom on other sites in the lattice, and is
systems [13], and used to investigate phenomena such g&en by

disorder-induced local moment formation [14]. However, < (i)

. e : o L A<(w)=Zt2G-l(a)) 2)
if formulated in its strict large-coordination limit, the the- i\%n £ Vij T O

ory misses strong spatial fluctuations, and thus cannot in- =l _ _
corporate Anderson localization effects. The sum overj runs over thez neighbors of sitei,

The goal of the present study is to present a theory thaindGJ(»i)(wn) = (c;(a)n)cj(wn» are the local Green func-
can describe both the Mott and Anderson routes to localtions evaluated on sitg but with sitei removed. For
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finite, and arbitrary IatticesG;i)(wn) cannot be expressed display an Anderson _transition. In the Anderson.insulator
throughlocal Green’s functions only, but the situation is phase the local density of states has strong spatial fluctua-
simpler on a Bethe lattice [16], where a simple recur-tions; few sites with discrete bound states near the Fermi
sion relation can be written for this object, expressing itlevel have large density of states while the density of states
through similar objects on neighboring sites. In particu-In most O_f the sites Is zero. T_he average DO_SnBe in
lar, G}’)(wn) can be computed from a local action of the both the insulating and metallic phases, and is noncritical
form identical as in Eqg. (2), except that in the expressiordt the transition. Similarly, by definitiog,,, = 1 in this
for A;(r, 7’), the sum now runs over — 1 neighbors, ex- noninteracting limit, so it also remains noncritical. On the
cluding sitei. other hand, the typical density of stajes, is finite in the

We note that this local action is identical as the actionMetal and zero in the Anderson insulator. This quantity is
of an Anderson impurity model embedded in a sea ofritical, and is found to vanish exponentially [19] with the
conduction electrons described by a hybridization functiorflistance to the transition. . S
Aj(r.7'). We conclude that the objeci@ﬁi)(wn) are Equation (2) is a system stochastic equation, i.e., it
related by a stochastic recursion relation, which involvegl€PeNds on the realization of the random variables de-

solving Anderson impurity models with random on-site s<_:ribi.ng the disorder. To calculatg the probability dis-
energies:;. tributions of p; and ¢; we use a simulation approach,

To make further progress, it is crucial to identify ap- where the probability distribution for the stochastic quan-
propriate order parameters that can characterize differefity G;’)(wn) is sampled from an ensemble of N sites,
phases of the system and describe quantitatively the ags originally suggested by Abou-Chactal. [16]. To
proach to the transition. In early work, it has already beersolve Anderson impurity models for given bath functions
stressed by Anderson [2] that a proper description of disd (7, 7’) we use the slave boson mean field theory [20,21],
ordered systems should focus on distribution functionswhich is known to be qualitatively and even quantitatively
and thattypical rather than the average values shouldcorrect at low temperature and low energies.
be associated with physical observables. Our formalism We now discuss our results for the nontrivial situation
maps the original model onto an ensemble of Andersofvhere both the disorder and interactions are present. We
impurity models, and its low energy behavior is natu-consider & = 3 Bethe lattice, in the limit of infinite on-
rally described in terms of the distribution function of the site repulsion at7 = 0 and fixed fillingn = 0.3, in the
corresponding local density of states (DOS), defined agresence of a uniform distribution of random site ener-

p; = —ImG;(0) [17]. From this distribution we can ex- giese; of width W (following the notation of Ref. [16],
tract the typical DOSy, = exp{(In p)}, which is a natu- W is measured units of the hopping elemgint We begin
ral order for the metal-insulator transition. by concentrating on the evolution of the probability distri-

On the metallic side of the transition, the distribution bution of the local quasiparticle weighis, as the disor-
function of a second quantity, the loagiasiparticle(QP)  der is increased. The sites wigh < 1 represent [13,14]
weight, which is obtained from the Green functions asdisorder-induced local magnetic moments, and as such will
qj = % Re[Gj’l — A;]lu—o, is necessary to characterize dominate the thermodynamlc response (se@T the definition
the low energy behavior near the transition. Importanff por). For weak disorder we expect relatively few lo-
information is obtained from the typical value of the cal moments and the quasiparticle weight distribution is
random variabley;, defined as;,, = expi(In¢,)}, which pgaked ata finite value. As the dls_(_)rder is mcreaseq, the
emerges as a natural order parameter from previoﬁlstrlbutlon ofg;’s broadens. At a critical value of the dis-
studies of the Mott transition. orderWyg, a transition to aon-Fermi liquid(NFL) metal-

It is also useful to consider the average QP density ofic state takes place. To illustrate this behavior we display
statespop = {p,/q;). This object is very important for the integrated distribution of the variabje n(q) for dif-
thermodynamics, since it is directly related to quantitieSerent values of disorder in Fig. 1(a). #(q) ~ ¢, as
such as the specific heat coefficient= C/T, or the local ¢ — 0, ande = 1, thenP(g) — + in this limit. Since
spin susceptibilityyoc . the local Kondo temperaturds(é) ~ g; [13], this behav-

It is instructive to discuss the behavior of these ordeiior reflects a singular distribution of Kondo temperatures.
parameters in the previously studied limiting cases. ImMAs a result, we immediately obtain NFL behavior [22—-25]
the limit of large lattice coordination spatial fluctuations with divergingy and y,. atT = 0. As we can see, there
of the bath functionA;(w,) are unimportant, and there is a well defined value of disord&,;; ~ 7, beyond which
is no qualitative difference between typical and averagehe slope ofi(g) atg = 0 diverges, and we enter the NFL
quantities. In the Mott insulating phase there is a gagphase. It is worth mentioning that a similar transition to
in the density of states, while there is a finite density ofa NFL metal, well before the MIT, has been found from
states on the metallic side of the transition. As the MITthe field-theoretical approachesan+ & dimensions [6—
is approached from the metallic side,, remains finite, 8,10]. Inthe NFL phase the thermodynamics is dominated
but gy, is found [13] to linearly go to zero. by disorder-induced local moments.

Another well studied limit is that of noninteracting elec- The probability distribution of the second order pa-
trons on the Bethe lattice, which is known [2,5,16,18] torameterp, P(Inp), for different values of the disorder
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FIG. 1. Evolution of probability distributions fointeracting 0000 20 20 o0 " o o
electrons as a function of disorder &t= 0. (a) integrated Disorder W

distribution for local quasiparticle weights (local Kondo tem- ) .
peratures). Results are presentedifor= 1,3,5 (dotted lines), FIG. 2. Order parameters as functions of the disorder strength

W =7 (dashed line), andw = 9,10,11 (full lines). The W. In the noninteracting limit (a), the typical DOS vanishes

transition to the NFL regime is signaled by the divergenceeXponentially with disorder, while the average DOS is non-
of the slope of n(g) at ¢ = 0. (b) The evolution of the Ccritical. When interactions are present (b), the typical DOS
local DOS distribution is presented by plotting(In p) for ~ decreasesnearly with disorder, while at the same time the av-

W = 3,5,7,9,10. We find that thenaximumij.e., {In p) shifts, erage ondaliverges The divergence is clearly seen by plotting

as the transition is approached. Note also the extremely largh/(p)ap (dotted line), which vanishdmearly as the critical dis-

width of the distribution, so thap now spans many orders of order is approached. Both quantities are found to be critical at

magnitude. W = W, = 11. Also shown isl/{p)qp (thin full line), which
vanishes atv = W, = 7. Finally, we show in (c) the critical

behavior of the typical QP weight, which also vanishes linearly

atWw = W,., similarly as in a Mott transition.

strength is shown in Fig. 1(b). Notice that not only the

width, but also the maximum of the distribution shifts

with disorder, a behavior reminiscent of an ordinary An-disorder where the typical DOS vanishes. The fact that
derson transition. The typical DOS is strongly depresseeve indeed have the divergence is further confirmed by
at strong disorder. This behavior is even more clearlyplotting 1/{p).y as a function of disorder, as shown by a
seen if we plot the DOS averages at the Fermi energy asdotted line in Fig. 2(b). This quantity vanishes linearly
function of disorder, as presented in Fig. 2(b). The typi-at the same critical disordeW = W, = 11. Also in

cal DOS decreases in a clealigear fashion,as the tran- Fig. 2(b) we exhibit the divergence of the QP DOS, at
sition at W = W, = 11 is approached. This should be the transition to the NFL phase. Finally, we consider the
contrasted [26] to thé&/ = 0 Anderson transition, where behavior ofgy,, which is also found to vanish linearly at
we find [see Fig. 2(a)] the decrease to be exponential iV = W,, similarly as in the case of the Mott transition,
agreement with analytical results [18]. We mention thatbut in contrast to the noninteracting scenario. Physically,
at least in the noninteracting limit [18], the typical DOS this indicates that dinite fraction of electrons turn into
behaves in a fashion which is qualitatively identical tostrictly localized magnetic moments at the metal-insulator
that of the diffusion coefficient. Having this in mind, one transition.

is tempted to interpret our results as indicating linear be- To summarize, in this Letter we have presented a new
havior of the conductivity near the transition, as foundself-consistent theory of disordered interacting electrons

experimentally in many “compensated” systems. that can describe both the Anderson and Mott routes to
Even more dramatic is the behavior of the averagdocalization. In this approach, the typical local DOS and
DOS which is noncritical both near a conventioial=  the typical local resonance width play the role of or-

0 Anderson transition, and near a clean Mott transitionder parameters, but the entpeobability distributionsare
This quantity is found tadiverge at the same value of needed to fully characterize the behavior of the system.
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Our equations take a form of stochastic recursion relationg2] For a review, see A. Georges, G. Kotliar, W.
for these quantities that involves solving an ensemble of  Krauth, and M.J. Rozenberg, Rev. Mod. Ph8, 13
Anderson impurity models. As a specific application of (1996).
this approach, we have considered a latgéimit of the ~ [13] V. Janis and D. Vollhardt, Phys. Rev.45, 15712 (1992);
Hubbard model at a fixed electron density, and investigated gélgo(tirggguswsage\?'Bgoigé (i?&) Rev. Lett7l,
eﬁects induced by g_radually turning on the dlsorder. W?[14] M. Milovanovic, S. Sachdev, and R. N. Bhatt, Phys. Rev.
find that the correlations effects produce dramatic modifi-

: . . . Lett. 63, 82 (1989).
cations of the conventional Anderson scenario. At inter

. . . - "7 T15] D.J. Thouless, P.W. Anderson, and R. G. Palmer, Philos.
mediate disorder, there is a transition to a non-Fermi liqui Mayg. 35, 593 (1977).

phase, characterized by singular thermodynamics, but cote] R. Abou-Chacra, P.W. Anderson, and D.J. Thouless,
ventional transport. At larger disorder a metal-insulator  J. Phys. 05, 1734 (1973).
transition takes place. This i;m&w typeof transition, hav- [17] The definition of the local order parameteps and g;
ing some of the features of both the Anderson and Mott  represent in essence a parametrization of the objects
scenarios. Remarkably, the main features our treatment, G,(»’)(w,,) that are obtained from our stochastic recursion
a non-Fermi liquid phase before the metal insulator tran-  relations. However, following Ref. [16], we stress that
sition and a linearly vanishing conductivity are found in the qualitative behavior of these “cavity functions” is in
compensated doped semiconductors. fact i(_jentical to th_e one de_s_cri_bing the original Ipcal Green
Our framework suggests several research directions, ~functions G;(w), in the vicinity of the metal-insulator
One would like to relate response functions that determine tbrans't'on' As in Ref. [16], we thus ignore the distinction
i etween the two objects, and drop the supersatifpt
the transport qoeffluents_to the_local order parameters, which is implied in the definition of our local order
as was done in the noninteracting case by Efetov and 5 ameters); andg;.
Viehweger [18]. Our calculations should be extended tq1g] A D. Mirlin and Y. N. Fyodorov, Nucl. PhysB366, 507
the vicinity of half filling where correlation effects should (1991); K. B. Efetov and O. Viehweger, Phys. Rev4B
be even more pronounced. This study could cast some 11546 (1992).
light on the different types of metal-insulator transitions[19] This unusual exponential critical behavior is specific
that occur in compensated and uncompensated doped to the Bethe lattice, in contrast to the usual power
semiconductors. law dependence expected to hold in finite dimensions.
One of us (V.D.) acknowledges useful discussions However, detailed studies [18] have shown that all the
with Sasha Finkelshtein, Lev Gorkov, E. Miranda, J.R. ~ Other qualitative features of an Anderson transition are
Schrieffer, and G. Thomas. V.D. was supported by the  PréSent even for the Bethe lattice, so we believe that this
National High Magnetic Field Laboratory at Florida State model does contain all the crucial ingredients required

. . to investigate the interplay of localization and correlation
University. G.K.was supported by NSF DMR 95-29138. effects. Interestingly, we find that interactions eliminate

the exponential behavior, so we expect our conclusions to
be valid for general lattices.
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