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It is shown that a sufficiently strong four-spin interaction in the spin-1y2 spin ladder can cause
dimerization. Such interaction can be generated either by phonons or (in the doped state) b
conventional Coulomb repulsion between the holes. The dimerized phases are thermodynam
undistinguishable from the Haldane phase, but have dramatically different correlation functions
dynamical magnetic susceptibility, instead of displaying a sharp single magnon peak nearq ­ p, shows
only a two-particle threshold separated from the ground state by a gap. [S0031-9007(97)03059
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The qualitative difference between the universal prop
ties of one-dimensional Heisenberg antiferromagnets w
half-integer and integer spin, originally predicted by H
dane [1], is now well understood. Typical examples a
the S ­ 1y2 andS ­ 1 chains. The spinS ­ 1y2 chain
has a quasiordered singlet ground state with algebraic
decaying spin correlations. Its spectrum is gapless,
the elementary excitations (spinons), carrying spin 1y2,
in all physical states with integer total spin appear o
in pairs [2]. Deconfinement of the spinons implies th
conventionalS ­ 1 magnons fail to be stable quasipar
cles: the spectral density of the staggered magnetiza
nsxd , s21dnSn shows a purely incoherent background

An alternative picture of a disordered spin liquid wi
a Haldane gap is effectively realized when twoS ­ 1y2
Heisenberg chains are put together to form a spin lad
[3]. In the standard model of spin ladders the interch
interaction is the Heisenberg exchangeJ'; at J' fi 0
the spinons confine to form triplet (magnon) and sing
excitations with gapsmt and ms (mt , ms , J'). The
triplet excitations contribute a coherentd peak to the
dynamical spin susceptibilityx 00sq, vd near q ­ p and
v ­ mt [4]. In this respect the spin liquid behaves like
conventional magnet with the only difference that here
magnons are “optical”; that is, they have a spectral gap

In this Letter we discuss an example of a disordered s
liquid with a gapful spectrum butwithoutcoherent magnon
excitations. Such a state can be realized in an exten
model of the spinS ­ 1y2 Heisenberg ladder which, apa
from the direct transverse exchangeJ', also includes a
four-spin interaction

H ­ Jk

X
j­1,2

X
n

Sjsnd ? Sjsn 1 1d

1
X
n

hJ'S1snd ? S2snd 1 V fS1snd ? S1sn 1 1dg

3 fS2snd ? S2sn 1 1dgj . (1)
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It will be assumed thatjJ'j, jV j ø Jk. The new term
in (1) represents an interchain coupling of the spi
dimerization fieldsejsnd ­ s21dnSjsnd ? Sjsn 1 1d s j ­
1, 2d which can be either (i) effectively mediated by
spin-phonon interaction (see below) or (ii) in the dope
phase generated by the conventional Coulomb rep
sion between the holes moving in the spin correlat
background [5].

In a singleS ­ 1y2 Heisenberg chain described in th
continuum limit in terms of a massless scalar fieldFssxd
[6], the dimerization operatoresxd , cos

p
2p Fssxd is

a strongly fluctuating field with the same scaling dimen
sion 1y2 as that of the three components of the sta
gered magnetizations21dnSn , nsxd , sss cos

p
2p Qssxd,

sin
p

2p Qssxd, 2 sin
p

2p Fssxdddd, whereQs is the field
dual toFs. Therefore the interchain coupling termVe1e2,
being as relevant as the transverse exchangeJ'n1 ? n2,
may significantly affect the low-energy properties of sp
ladders. Indeed, while for smalljV j the generalized model
(1) occurs in the same Haldane spin liquid phase as t
of the conventional spin ladder (V ­ 0), at large enough
jV j the model (1) displaysnon-Haldanespin liquid phases
characterized by aspontaneousdimerization. The ther-
modynamic properties of these phases, determined by
absolute values of the gaps, are indistiguishable from tho
for the Haldane phase. However, the correlation functio
of the two systems differ drastically: in a non-Haldan
spin liquid we are going to discuss the spectral fun
tion of n is entirely exhausted by an incoherent bac
ground. This picture should be opposed to the dimeriz
(spin-Peierls)S ­ 1y2 Heisenberg chain with alternating
exchangeJn,n11 ­ Jf1 1 ds21dng where, due to the pres-
ence of the kink-antikink bound states in the spin excitatio
spectrum, triplet magnons constitute well defined, cohere
quasiparticles.

It has been shown earlier [4,5] that, in the continuu
limit, the Hamiltonian (1) decouples into four massive re
fermionic fields, or equivalently, four noncritical 2D Ising
© 1997 The American Physical Society 3939
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models exhibiting the underlying SUs2d 3 Z2 symmetry:
H ­

P
a­1,2,3 Hmt

fjag 1 Hms
fj0g, where

Hmfjg ­ 2
iys

2
sjR≠xjR 2 jL≠xjLd 2 imjRjL . (2)

The triplet and singlet masses are given as follows:
mt ­ pa0sJ'jasj

2 2 V jacj
2d ,

ms ­ 2pa0s3J'jasj
2 1 V jacj2d ,

(3)

whereac andas are nonuniversal constants. The therm
dynamic properties are determined only byjmtj, jmsj, but
the symmetry of the ground state and the behavior of
dynamical sisceptibilityxsq, vd crucially depend on the
relative signs of the massesmt andms as well. This fol-
lows from the fact that the representation for the stagge
spin density and dimerization operators in terms of
Ising order and disorder variables [4] depends on the s
of mtms. It will be assumed below thatV , 0, while the
sign ofJ' can be arbitrary. We shall show that for diffe
ent signs ofmt andms, as long as the triplet branch of th
spectrum remains the lowest (jmtj , jmsj), the two-chain
ladder is in the Haldane-liquid phase with coherentS ­ 1
andS ­ 0 single-magnon excitations. Ifmt andms have
the same sign, the ground state represents a dimer
spin-disordered phase in which coherent magnon mo
are absent.

Transitions from the Haldane to dimerized phases t
place when either the triplet excitations become gaple
with the singlet mode still having a finite gap, or vice vers
The transition atmt ­ 0 belongs to the universality clas
of the critical, exactly integrable,S ­ 1 spin chain [7];
the corresponding non-Haldane phase withjmtj , jmsj
represents the dimerized state of theS ­ 1 chain with
spontaneously broken translational symmetry and dou
degenerate ground state [8]. The critical pointms ­ 0 is
of the Ising type; it is associated with a transition to anot
dimerized phase (jmtj . jmsj), not related to theS ­ 1
chain.

We start our discussion by considering the stand
Jk-J' two-chain ladder, with spin-phonon couplin
included via a substitution Jk ! Jk,jsn, n 1 1d ­
Jk 1 lfujsnd 2 ujsn 1 1dg. Only the staggered par
of the lattice displacement field along the chains,ujsnd,
couples to the spin-dimerization operatorejsnd. We
assume thatv0 ¿ J', wherev0 is the phonon frequency
at 2kF , as is the case for most ladder systems kno
In this limit, the 2kF phonons can be treated in terms
a quantum Gaussian random field whose main effec
mediation of an instantaneous effective coupling betw
the spin-dimerization fields of each chain. We repla
the staggered parts ofujsnd by real scalar fieldsDjsxd,
ujsnd ­ s21dnsay2ldDjsxd, and ignore the kinetic energ
of vibrations. Then integrating over the displaceme
fieldsDj we get the effective interaction

DSefffeg ­ 2
g2

0s1 1 gy4d
2 1 g

Z
dx dtse2

1 1 e2
2d

2
g2

0g

2s2 1 gd

Z
dx dt e1e2 , (4)
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where g0 ­ ly
p

Kka is the spin-phonon coupling con
stant, andg ­ K'yKk is the ratio of the longitudinal and
transverse spring constants. The interchain coupling te
,e1e2 in (4) is a relevant perturbation with dimensio
1, as opposed to terms,e

2
j which are only marginal and

therefore can be neglected. This explains the origin of
extra V -term in the extended spin ladder model (1) a
fixes the value of the constantV , 2g2

0gys2 1 gd , 0 .
Let us consider various phases of the model (1). W

assume thatV , 0, while the sign ofJ' can be arbitrary.
If J' , 0, the massms . 0, while the sign ofmt depends
on the strength ofjV j such that for smalljV j the signs of the
two masses are opposite. All results obtained in Ref.
are applicable to this case, and we present them bri
for completeness. The total (n1 ­ n1 1 n2) and relative
(n2 ­ n1 2 n2) staggered magnetizations are given b
[4]

n1 , ss1m2s3s0, m1s2s3s0, s1s2m3s0d , (5)

n2 , sm1s2m3m0, s1m2m3m0, m1m2s3m0d , (6)

wheresa andma sa ­ 1, 2, 3d are order and disorder pa
rameters of three, SU(2) degenerate noncritical Ising m
els corresponding to the massive triplet of the Majora
fields ja, while s0, m0 refer to the fourth, “singlet” Ising
model (j0). The Ising representation for total and relativ
dimerization fields,e6 ­ e1 6 e2, can be similarly found
to be

e1 , m1m2m3s0, e2 , s1s2s3m0 . (7)

The triplet mass determines the deviation of the Isi
models from criticality:mt , sT 2 TcdyTc , 0; this cor-
responds to the ordered Ising phase withmj ­ 0, ksjl fi

0 s j ­ 0, 1, 2, 3d, in which the two-point correlation func-
tions are given by [9]

kssrdss0dl ­ Gssmrd

. A

∑
1 1

1
8psmrd2

e22jmjr 1 Ose24jmjr d
∏

,

(8)

kmsrdms0dl ­ Gmsmrd .
A
p

K0sjmjrd 1 Ose23jmjr d ,

(9)

whereA is a nonuniversal parameter,K0sxd is the Mac-
Donald function, andr ­ sx, ystd.

In the region of parameters wherejmtj ø jmsj, the
lowest (triplet) part of the spin ladder spectrum d
scribes universal properties of theS ­ 1 spin chain
with the conventional and biquadratic exchang
H ­ J

P
nfSn ? Sn11 2 bsSn ? Sn11d2g, near the critical

point b ­ 1 [7]. This correspondence is valid for an
sign of mt . The present casemt , 0 describes the
Haldane massive phase (b , 1); the leading asymp-
totics for the spin correlation functions obtained fro
(5)–(9)

kn1srdn1s0dl , K0sjmtjrd f1 1 Ose22jmt jr dg ,

kn2srdn2s0dl ,
1

r3y2 e2s2jmt j1msdr
(10)
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reveal the role ofn1 which determines the staggered ma
netization of the effectiveS ­ 1 chain. SinceK0sjmjrd
is the real-space propagator of a free massive bos
kn1srdn1s0dl contributes ad peak to the imaginary part o
the dynamical spin susceptibility corresponding to a m
sive triplet magnon. Atq , 0, x 00sv, qd is determined by
the correlations of slow components of the total and re
tive magnetization, giving rise to thresholds at2jmtj and
jmt j 1 ms, respectively. Similarly, one finds

ke2srde2s0dl , K0sjmsjrd f1 1 Ose22mtr dg ,

ke1srde1s0dl ,
1

r3y2
e23mtr ,

(11)

implying that the singlet magnon is also a coheren
propagating particle—an elementary excitation of t
relative dimerization. Excitations of the total dimeriz
tion have a3jmt j threshold. On increasingjV j, jmtj

decreases whilems increases, the inequalityjmt j , ms

thus becoming stronger which makes the low-ene
effective picture of the gapful Haldane phase of t
S ­ 1 spin chain only better. Atmt ­ 0, ms ­ 4jJ'j
the triplet of the Majorana fields becomes massless, w
the singlet Majorana fermion remains massive. At th
point the correlation functions of the relative stagger
magnetization and dimerization field follow power law
kn2srdn2s0dl , ke2srde2s0dl , r23y4. This critical
point belongs to the universality class of the levelk ­ 2
SU(2)-symmetric Wess-Zumino-Novikov-Witten mod
with the central chargec ­ 3y2 [7].

Further increase ofjV j makesmt positive. The change
of sign of mtms amounts to the duality transformation i
the singlet (j0) Ising system, implying that in formulas
(6)–(8) the order (s0) and disorder (m0) parameters
must be interchanged. Moreover, since we are now
the disordered Ising phase (mt , T 2 Tc . 0), km0l fi

0, ks0l ­ 0, the right-hand sides of formulas (8) an
(9) should also be interchanged. As a result, the s
and dimerization correlation functions are now given
different expressions:

kn1srd ? n1s0dl , K2
0 smtrd ,

kn2srd ? n2s0dl , K0smtrdK0smsrd ,
(12)

ke1srde1s0dl , C

∑
1 1 O

µ
e22mt,s

r2

∂∏
,

ke2srde2s0dl , K3
0 smtrdK0smsrd ,

(13)

whereC is a constant.
From (13) we conclude that the new phase is char

terized by long-range dimerization ordering along ea
chain, with zero relative phase:ke1l ­ ke2l ­ s1y2d ke1l.
In the decoupling limit,J' ­ V ­ 0, each Heisenberg
chain possesses aZ2 symmetry: this is the symmetry with
respect to the interchange of even and odd sublattices
erated by one lattice spacing translation. The interch
coupling lowers thisZ2 3 Z2 down toZ2, the symmetry
undersimultaneoustranslations bya0 on the both chains.
-

n,

-

-

y

le

d

n

n

-
h

n-
in

Thus, the onset of dimerization is associated with spo
taneous breakdown of the residual translationalZ2 sym-
metry, taking place when the interactionjV j exceeds a
critical value jVcj , J'. This phase coincides with the
dimerized phase of the generalizedS ­ 1 spin chain with
a biquadratic exchange [8].

In the dimerized phase the spin correlations under
dramatic changes. From (12) we obtain

Im x1sv, p 2 qd ,
usv2 2 q2 2 4m2

t d
mt

p
v2 2 q2 2 4m2

t

,

Im x2sv, p 2 qd ,
ufv2 2 q2 2 smt 1 msd2gp

mtms

p
v2 2 q2 2 smt 1 msd2

,

(14)

where6 signs refer to the case where the wave vector
the direction perpendicular to the chains is equal to 0 a
p , respectively. We observe the disappearance of cohe
magnon poles in the dimerized spin fluid; instead we fi
two-magnon thresholds atv ­ 2mt and v ­ mt 1 ms,
similar to the structure ofx 00sv, qd at small wave vectors
in the Haldane fluid phase. The fact that two massi
magnons, each with momentumq , p , combine to form
a two-particle threshold, still atq , p rather than2p ; 0
is related to the fact that, in the dimerized phase with2a0

periodicity, the new umklapp is justp .
To get a better understanding of the fact that in t

dimerized phase the spectral weight of the spin ex
tations is entirely incoherent, it is instructive to con
sider the limiting caseJ' ­ 0. Sinceej s j ­ 1, 2d are
scalars in spin space, the model (1) displays the SUs2d 3

SUs2d ø SOs4d symmetry with respect to independen
spin rotations on each chain. Thus, the spectrum is
scribed by O(4) quadruplet of massive Majorana fermio
or equivalently, two noninteracting massive Dirac ferm
ons—quantum solitons of two decoupled sine-Gord
models with the coupling constantb2 ­ 4p:

H ­ H1 1 H2 ­
X

s­6

Ω
ys

2
fP2

s 1 s≠xFsd2g

2
m

pa0
cos

p
4p Fs

æ
. (15)

The massive Dirac fermions are in fact quantum doma
walls (kinks) connecting twoZ2-degenerate dimerized
vacua of the two-chain system withke1l ­ 6je0j. This
can be shown by the following simple consideration.
dimerization kink assumes local changese1 ! 2e1, e2 !

2e2. This is equivalent to simultaneous translations b
a0 on each chain, under whichFj ! Fj 6

p
py2. This,

in turn, reduces to one of two possibilities:F1 ! F1 1p
p, F2 ! F2, or F1 ! F1, F2 ! F2 1

p
p. Butp

p is just the period of the cosine potentials in (15
Therefore, a single kink of the relative dimerization
nothing but a quantum sine-Gordon soliton (Dirac fermio
carrying a unit topological charge, either in thes1d or s2d
channel. Now, in all physical excitations defined in th
sector with zero total topological charge, the solitons c
3941
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appear only in pairs. Since two or more massive solito
(Dirac fermions) cannot propagate coherently, and sin
there are no soliton-antisoliton bound states atb2 ­ 4p

(free fermions), one has to conclude that there will be n
particleliked function peaks in the spectral function ofany
local physical quantity of the system.

Now let us consider the caseJ' . 0, when mt . 0
while ms may change its sign. Ifms , 0, the definitions
(5)–(7) still hold, but sincemt , T 2 Tc . 0, we are in
the disordered Ising phase. This case can be mapped
the J' , 0 one by interchanging all order and disorde
parameters. As long asjmsj . mt , the triplet branch of
the spectrum describes the Haldane phase with the r
tive magnetizationn2, forming effectively the staggered
component of the spin density in theS ­ 1 spin chain:
kn2srd ? n2s0dl , K0sjmtjrd.

On increasingjV j jmsj decreases, and the inequalit
jmsj . mt will eventually be replaced by the opposit
one, jmsj , mt . One might argue that as long asjxj ¿

js (the maximal correlation lengthjs , ysyjmsj), the
asymptoticr dependence of then2 correlator remains
intact and the coherent magnon peak, though with
reduced amplitude, should still exist. However, this is n
so because the large-distance (jrj ¿ js) asymptotics of
the n2 correlator determines its Fourier transformkn2 ?

n2lq,v at jp 2 qj, jvj ø ms, so that energiesjvj , mt

are not accessible. At these energiesx 00sqvd is mainly
contributed by the asymptotics of the correlatorskn6srd ?

n6s0dl in the rangejt $ jxj ¿ js sjt , ysymtd, where
m0 cannot be replaced by a constant:

kn2srdn2s0dl ,
1

r1y4
K0smtrd ,

kn1srdn1s0dl ,
1

r1y4 K2
0 smtrd .

(16)

Thus, even before reaching the critical pointms ­ 0,
the d peak in dynamical susceptibility disappears, an
the effective picture of the Haldane liquid breaks dow
when, due to softening of the singlet mode,jmsj becomes
comparable withmt .

At ms ­ 0 sjV j ­ 3J'd the singlet excitations become
gapless, and the intermediate asymptotics (16) are n
exact. The dynamical spin susceptibilityx 00

7sqvd displays
thresholds atv ­ mt and v ­ 2mt , respectively. Near
the thresholds

Im x1sv, p 2 qd ,
usv2 2 q2 2 4m2

t d
sv2 2 q2 2 4m2

t d3y8
,

Im x2sv, p 2 qd ,
usv2 2 q2 2 m2

t d
sv2 2 q2 2 m2

t d1y8
,

(17)

The correlation function of the total dimerization follow
a power law ke1srde1s0dl , r21y4. Thus the critical
3942
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point ms ­ 0 belongs to the Ising universality class (with
central chargec ­ 1y2) and signals a transition to a
spontaneously dimerized phase withke1l fi 0. In the
dimerized phase (ms . 0) the singlet mass gap is always
the smallest indicating that the spin ladder is not in th
regime of an effectiveS ­ 1 spin chain.

The Haldane liquid has a nonlocal topological (string
order parameter [10] whose nonzero value is associa
with the breakdown of a hidden discrete (Z2 3 Z2) sym-
metry. In the two-chain realization of the HaldaneS ­ 1
phase the string order parameter is expressed in term
the Ising order and disorder variables [4]:

lim
jx2yj!`

kOstringsx, ydl , ks1l2ks2l2 1 km1l2km2l2 (18)

(notice that the singlet mode does not appear in th
expression). Since the Ising systems are noncritical in b
phases, it follows from (18) that the string order parame
will be nonzero in the dimerized phases as well, vanishi
only at the critical pointmt ­ 0.

Thus we have demonstrated that the Haldane spin liq
is not the only possible phase of a disordered magnet. T
distinctive features of another dimerized phase, which c
be tested by inelastic neutron scattering and NMR expe
ments is the absence of coherent single-magnon mo
and thep periodicity of the spin excitation spectrum, a
opposed to the undimerized phase where the ratio of
energy gaps atq , 0 andq , p is 2. The Haldane and
dimerized phases are separated by critical points, eithe
the Ising type or belonging to the universality class of th
critical S ­ 1 quantum spin chain.
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