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Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events
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I derive a general method for accelerating the molecular-dynamics (MD) simulation of infrequent
events in solids. A bias potentiaA{/;) raises the energy in regions other than the transition states
between potential basins. Transitions occur at an accelerated rate and the elapsed time becomes
a statistical property of the systemAV, can be constructed without knowing the location of
the transition states and implementation requires only first derivatives. | examine the diffusion
mechanisms of a 10-atom Ag cluster on the Ag(111) surface usi2®0aus hyper-MD simulation.
[S0031-9007(97)03180-3]

PACS numbers: 68.35.Fx, 02.70.Ns, 71.15.Pd, 82.20.Db

The molecular-dynamics (MD) simulation method is been discovered only recently [6—8]. These mechanisms
a powerful tool, widely used in chemistry, physics, andare too complicated to allow advance prediction of all
materials science. A long-standing problem, howeverpossible transitions from a given overlayer configuration.
is that MD is typically limited to a time scale of Here | present a different approach to the infrequent-
nanoseconds or less, so many processes of interest caneoent problem, suitable for solid-state systems. Beginning
be simulated directly. from the TST approximation, a method is derived for

For many systems, the dynamics can be characterizezktending the time scale of MD simulations without
as a sequence of infrequent transitions from one poterany advanced knowledge of either the location of the
tial basin (“state”) to another. In these cases, longer timelividing surfaces or the states through which the system
scales can be accessed using transition state theory (TSMay evolve. A bias potentialA(V,) is designed to raise
[1,2], in which the state-to-state rate constant is approxithe energy of the system in regions other than at the
mated as the flux through a dividing surface separating ST dividing surfaces. Dynamics on the biased potential
the states. This flux is an equilibrium property of the sysdeads to accelerated evolution from state to state, while
tem, so actual dynamics need not be performed. Implicithe elapsed time becomes a statistical property of the
in TST is the assumption that successive crossings of theystem. The instantaneous gain (or “boost”) in the rate
dividing surface(s) are uncorrelated. In reality, correlatecat which time advances (relative to direct MD) depends
crossings events can occur. If desired, dynamical corre@xponentially on the bias potential.
tions [2,3] can be applied via short-time trajectories initi- This hyper-MD method was recently derived and
ated at the dividing surface. demonstrated for a 2D model potential and for surface

For processes such as surface or bulk diffusion, TSBelf-diffusion on a Ni(100) terrace with nine moving
often yields an excellent approximation to the exactatoms [9]. Exploiting the fact that at a saddle point
rate, especially if the TST surface is chosen to coincidehe lowest eigenvaluee() of the Hessian matrixH) is
with the saddle plane (the hyperplane orthogonal tmegative,AV, in that study was a simple function that
the unstable mode at the saddle point) to minimizeended to zero as, went negative. For largely-atom
recrossings. Even in the harmonic approximation, wheraystems, formation and diagonalization Bf becomes a
the rate depends only on properties at the saddle point arsrious computational bottleneck. Moreover, the fraction
the minimum [4], the typical errors in TST are still much of phase space for which all eigenvaluedbfre positive
smaller than those due to the approximate interatomidecreases rapidly witvV, making a simple function of
potential. Consequently, TST is used widely in solid-states; inadequate as a definition fa&xV,. This effect was
systems, and is the foundation (implicitly or explicitly) for observable even for th¥ = 9 case [9].
lattice-based kinetic Monte Carlo simulations [5]. This Letter addresses this issue of treating larger

However, the utility of TST in treating infrequent-event systems. A definition forAV, that provides significant
dynamics has always rested on two crucial assumptiond&ioost for hundreds of atoms is constructed from the
that one knows in advance what the different states ofwo lowest eigenvalues oH and the projection of the
the system will be, and that one can construct reasonablradient onto the lowest eigenvector Hf | show how
dividing surfaces along the boundaries between thes® compute thisAV, and the necessary derivatives in
states (or can find all the saddle points). Often, howeveny-scaling fashiorwithout ever constructing the Hessjan
knowledge of the states to which a system will evolveso that implementation of the hyper-MD method requires
is incomplete or incorrect. In metallic surface diffusion, only first derivatives of the interatomic potential, as for
for example, surprisingly complex, concerted events havaormal MD.
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Consider a TST-obeying, one-dimensional system, Equation (3) is the heart of the hyper-MD method. At
characterized at time by position x() and potential each integration step, thg clock is advanced bz, ,
energy V(x(¢)). (A more detailed, many-dimensional which depends on the instantaneous strength of the bias
derivation is given elsewhere [9].) The TST flux expres-potential. [Note that wherAV,(x;) = 0, A, = Atyp.]
sion for the escape from the present potential basin (stahile individual values ofAz, have litle meaning, at

“A”") through a TST boundary at = ¢ is given by long times, by constructiory, converges on the correct
KIST = (|ldx/dt|8(x — ¢))a. (1) result. What is a “long” time depends on the statistical

. . . . properties of the time-dependent boost factdt?"» (1)
Here 5(.-) is a Dirac delta function and ), indicates ¢ escape from a state requires so many steps that the

a classical, canonical-ensemble average restricted to ttg%/ A : -
. . erage boost factofdP2Ve) is well approximated
configuration space of state J (d )4,) pp '

Now consider adding to/(x) the non-negative bias individual escape times will be meaningful, exhibiting

. .9 . the proper exponential probability distribution [11]. In
potential, AV, (x), which is zero at the TST boundaries. contrast, an aggressive choice fav, may stimulate

J\/Zﬁ Lsﬁoﬁsggpge;;tea'ss tﬁghi?i(;?r?alb %;rjseHg]ﬁe\%?sg cape in so few steps that predicted escape times are very
this modification preserves the ratio of the. TST escap; [OISY- Then_the time s_cale becomes meanlng_ful only_ after

. D ‘?‘nany transitions. In either case, the escape-time estimates
rates fromA to any two adjacent states [9]. This is a are unbiased and their errors are uncorrelated, so, from the

crug?l)pio&e‘;t% )W'tql the conséequer?ce th?jt. a tr‘::“eft?%entral limit theorem, the relative error ip decreases as
on Vix p(x) WiIl escape 1o a given adjacent Stale  —1/> "o\ e if every state is different.

(say,B) with the correct relative probability. Because the The key to implementing the hyperdynamics is design-

system obeys TST, this trajectory will thermalize in state. : L
B. If, in turn, stateB has a biasing potential, the system ing a computationally tractable definition fav, that does

: . o .~ not require advanced knowledge of the transition states.
will again exhibit accelerated escape to a state ad]acerlltormally,AVb must be zero at all the dividing surfaces,
gz/ (ﬁ\’/einf?oi:) S?géeA:Oa;a?gﬁﬁl(;rfgdugﬁgg’ r(teh?e?éittzrt?must not block rapid ergodic sampling within a state, and
of the exact dvnamics(le. the robgbilit of aﬁ iven fust not introduce TST-violating correlations among the

yA B-A C(b E p " yth Y9 f transitions. In practice, these requirements need only be
S€quence, €.gab-A-L-D-k..., IS exactly Ine same 10 ot 14 5 good approximation (the saddle points are the most
the biased dynamics as for the exact dynamics.) r'

X g portant regions), and candidate forms fdV, can be
now present the corrected time scale for this accelerate[(?sted on benchmark systems. | show here that a viable
evolution. [

. . . . approach is to bas&V, on local properties of the poten-
Ma?'puiat'?]g. Eq. (113 \.N'th standard  importance- tial via the gradient vectog [ g; = oV (r)/dx;, wherex;
sampling techniques [10] gives is a component of theN-dimensional vector], and Hes-

EkTST — <|dx/dt|5(x — q)>Ab (2) sian matrix,H [Hij = 82V(r)/8xiaxj].

A (eBAVID), 7 Although the definition of the best TST dividing surface
in which the averages are taken over the biased stat# inherently nonlocal (requiring steepest-descent trajecto-
A,. Here B = 1/kgT, where kg is the Boltzmann ries), Sevick, Bell, and Theodorou [12] have proposed a
constant andT is the temperature. BecauskV, = local definition: the set of points im space for which
0 where 6(x — ¢g) # 0, the numerator in Eq. (2) has € <0 andg;, = 0, whereg,, = C}Lg is the projection
been simplified fron{|dx/dt|8(x — q) exd BAV,(x)])s,. Of g onto the lowest eigenvectolC() of H. Near the
Consequently, the numerator is exactly the TST escapgaddle points this is an excellent approximation to the
rate from the biased state. The averages in Eq. (2) cahST surface, and the same quantities(f) and g;,(r)]
be evaluated using a trajectory on the biased potentiatan be used to construct a good definition fov,(r).
confined to statd, by reflecting boundaries. In athought Taking a sine wave with barrier heightand perio®27d
experiment, the averages can be evaluated to arbitrafy’°S(x) = (k/2) codx/d)] as a representative potential
accuracy by making the trajectory extremely long. Asfor an activated process, | defide/;°%(x) as that function
shown previously [9], a simple definition for the time of €,(x) andg;,(x) that exactly “cancels” this potential,
evolved per biased MD stepAf;) is then obtained b cos _ 2 2 7 g2\1/2
requiringri[hat the average tirrﬁé )between escape atteympts AVPZ = h/2A1 + e/(er + g1,/d) . “)

(reflections) is equal to the correct value, which isl.e., V®(x) + AV;*(x) = h/2 for all x; the energy ev-
1/k35T. This yields erywhere is raised to that of the transition state. Be-

Mot causee; and g;, are scalars, Eq. (4) is readily applied
Aty = AtypePaVet), t, = ZAtb,, (3) to the3N-dimensional system. Settiryrd to a physi-

i cally reasonable transition length (e.g., a nearest-neighbor
where Aryvp is the MD integration time steps is the distance) and taking to be somewhat smaller than the
total number of MD steps, ang indicates the time at the lowest anticipated barrier in the system gives the desired
ith MD step. The total elapsed boosted timeyis behavior.
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A second bias term provides a smoothly increasing/ielding vectorss., and s_,, respectively. A good
repulsion between the two lowest eigenvalues when thegpproximation to the square of , is found from [14]
differ by less tham\e.. Definingg = (e; — €1)/Ae.,
AVbAE _ {a[l - 3q¢% + 24°], if € — € = Ae,, (g1, 2= [efY" — €X3"]/2A. (10)
0, if &2 — € > Ae,. ) )
5) Be(?aus_esﬂt and s_, are stationary, calculatlng the
derivative of (g7,™)> with respect to atom coordinates
proceeds as foe, by differentiating Egs. (9) and (10).
. - i i The approximate character of Egs. (6) and (10) has no ad-
plane. This term complimentaV,™ in regions where yerse impact on the biased-potential dynamics, because
g1p passes through zero as and e; cross. It also he MD forces are obtained from direct differentiation
improves the numerical stability of the algorithm for ¢ \he anproximate forms. However, incomplete conver-
computingey, €2, andg,, which is described next. gence of the minimizations introduces errors. Computing

While direct differentiation of AV, requires third (Ay,) and its derivatives scales @ (for finite-ranged
derivatives ofV(r), | now present a method that requires nstentials) if the number of required iterations is constant
only first derivatives. Becaudd is the matrix of second \ith N as preliminary tests indicate.

derivatives, findinge; is equivalent to minimizing the 14 ghow this bias potential gives correct results in a
second derivative o with respect to the direction of |qgjisic application, | simulate the diffusive motion of a
the vectors .along_ whlch the derlvat.|ve_ is calcu_lated. Ag adatom on the Ag(100) surface At= 400 K using
Replacing this derivativesf V (r)/ds] with its numerical 5 embedded atom method (EAM) interatomic potential
approximation, [15]. The simulation cell, periodic i andy, with free
€"™(s) = [V(r + ms) + V(r — 5s) — 2V(r)]/n’ boundaries ir, is expanded to the quasiharmonic lattice
(6) constant forT = 400 K. Fifty-five moving atoms (the
(n is a small number), this minimizatios (~ sm;,) can adatom and the top three substrate layers) are in contact
be performed as a steepest-descent or conjugate-gradieith two deeper, nonmoving layers. The MD time step is

search, requiring only first derivatives Bt For example, Afmp =2 X 107" s and a Langevin thermostat with a
genum coupling rate o2 x 10'2 s™! gives canonical sampling.

Py [gi(x + ns) — gi(r — s)]/n, (7) In this system, the adatom diffuses by both hop and

, substrate-exchange [6] events. From molecular statics,
whereg; ands; are components of ands, respectively. o parriers for these mechanisms are 0.542 eV (hop)
The vectors can be initialized from a random vector, 54 g 555 eV (exchange), and the Hessian eigenvalues at
or using smin from the previous hyper-MD step. At 1o saddles aree; = —0.87 eV/A2, €, = 0.39 eV/A2
convergence, the eigenvector and eigenvalue within thifhop) and e, = —0.54 eV/AZ, ¢ _ 0.44 eV/A? (ex-
numerical approximation are given " = s, and ’ !

€' = e"™M(snn). Becausee™™(sy,) is stationary
with respect t®, the derivatives ok, needed for the MD

forces are simply

num
(:)61

Ae. should be set smaller thae, — €, for a typical
saddle point in the system sbV;'€ = 0 in the saddle

cos

change). Using this information, the bias potential
(AV, = AVE™ + AV/)€) was parametrized withh =
03 eV,d = 0.46A, Ae, = 0.4 eV/A?, anda = 0.6 eV.
A 3.7 X 10°-step hyper-MD run gave an average boost of
L — g + ns) + gi(r — 7us) 1356, for a total time 09.89 + 0.5 us. Each hyper-MD

9x; step required~30 times the computational work of a

— 200}/ 7 Js=s... - (8) direct-MD step, so the net computational boost was 45.
The same procedure can be used to indby maintain- Rate constants computed from the observed 23 hop events

ing orthogonality toC}™™ during the minimization. Note a1d 16 exchange -event. = 0.5 X 10° s (hop),
that this approach to the eigenvalue problem is relate 6 = 0.4 X 107 s _(exchange)] are in agreemtznt_\lmth
to the fictitious Lagrangian method used to diagonalizeI e ful harmonlcﬁ: (Yllneyard [4]) rates o84 X 10° s

the Hamiltonian in electronic structure calculations [13].(h0p), 1.84 X'10° s (excha_nge)_].

However, in the present formulation, the eigenvalues are '€ Second demonstration is for a more complex
found without ever constructing the matrix. system: a 10-atom Ag cluster on the Ag(111) surface

The projected gradient needed for Eq. (4) could bt T = 300 K. Setting A =03 eV, Ae. = 02 eV/A,
num : anda = 0.4 eV, and allowing two free layers (70 atoms
computed asg;, = C; g, but this would not be

easily differentiable. Instead, the minimization method iSmovmg), the procedure is otherwise as described above

. : for the (100) face. [Note that thi\V, would be
t .
35?1'1'?n?nt1?zit:ge two matriceHl + Agg' andH — AggT, inappropriately strong for a single adatom on Ag(111),

) for which the diffusion barrier is less than 0.1 eV [16].]
€N (s) = €Mim(s) = )\[ V(e + ns) = V(r — 775)} . Overarunfor, = 2212 us, the average boost ratio was
- 27 8310. Although the cluster does not move far on this time
(9) scale, three distinct mechanisms are observed.
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At 9.5 us, all 10 atoms jump in the same direction to be estimated from the length of a direct MD simulation
move the cluster from hcp to fcc registry [Figs. 1(a) andthat shows no events at a given temperature. Chodsing
1(b)], a mechanism seen in simulations of crystal growtHower than this barrier estimate, and taking a conservative
[7] and cluster motion [8,17]. This occurred many times,(small) value forAe., should give a “safe” bias potential.
with the jump direction essentially always perpendicularlf necessary,z can be increased until events occur by
to the long axis of the cluster. At the saddle point theapplying this procedure iteratively, using hyper-MD to
cluster is rotated about’8allowing the atoms at one end set successively higher bounds on the barrier. However,
of the cluster to remain close to perfect hcp positionsas the system evolves, one must watch for qualitative
while atoms at the other end come close to perfect fcchanges that may be accompanied by the onset of new,
positions. For the other two jump directions, clusterlower-barrier mechanisms, such as the cluster periphery
rotation causes the atoms at the ends of the cluster wiffusion seen above.
deviate unfavorably from their ideal paths; these saddles To summarize, the hyper-MD method appears promis-
exhibit less rotation and are at higher energy. ing, offering a way to extend the MD time scale by

At 94.5 us, the cluster breaks out of its compact2 or more orders of magnitude for strongly coupled,
configuration, allowing adatom motion at the clusterinfrequent-event systems. It operates in continuous space
periphery [Figs. 1(c)—1(f)], as occurs on Ag(100) [15]. A (requiring no lattice mapping) and reduces to direct MD as
few of the initiation events [Fig. 1(c}» Fig. 1(d)] were AV, — 0. Without prior knowledge of the transition state
observed, but usually the cluster returned immediatelpurfaces, an efficient bias potential can be constructed
to the compact form. These periphery jumps are fastirom local properties of (based onH and g), while
with barriers of ~0.3 eV, causing concern that the bias implementation requires only first derivativesof
potential (withz = 0.3 eV) might be too strong for an | am grateful for stimulating discussions and comments
accurate description of this section of the trajectory.on the manuscript from J. Kress, P. Davids, W. WindlI,
However, tests withh = 0.2 eV showed no qualitative S. Valone, and F. Houle, and for support from the Los
difference in the behavior. Alamos LDRD program.
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