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Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate
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We show how to fully characterize a quantum process in an open quantum system.
particularize the procedure to the case of a universal two-qubit gate in a quantum computer.
illustrate the method with a numerical simulation of a quantum gate in the ion trap quantu
computer. [S0031-9007(96)02142-4]
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Recently there has been a growing interest in “qu
tum tomography,” i.e., in the complete characterization
the state of a quantum systemrepresented by a densit
operatorr̂. Quantum tomography of an unknown qua
tum state (that can be repeatedly prepared) [1] consis
finding an appropriate sequence of measurements w
allows one to determine the complete density ope
tor r̂ (for experimental implementations and theoretic
schemes in quantum optics, see [1]). In this Letter we w
show how to completely characterize aphysical process in
an open quantum system.More specifically, suppose tha
a given quantum dynamicsE transforms input statesrin
into output statesrout, i.e.,

r̂in
E
! r̂out ­ E fr̂ing , (1)

with E a linear mapping. Our aim is to characterize t
processE , given as a “black box,” by a sequence
measurements in such a way that it is possible to pre
what the output state will be for any input state.

The particular problem that we will analyze after d
veloping a general formalism is the characterization of
two-bit universal quantum gate for quantum computi
[2]. A quantum computer consists ofn two-level atoms
with atomic statesj0li , j1li si ­ 1, . . . , nd representing
the quantum bits (qubits). States of the quantum co
puter aren-atom entangled states in the product Hilb
spacejcl [ H ­

Q
i ≠H2sid with H2sid ­ hj0li , j1lij.

Quantum computations corresponds to physical proce
jcoutl ­ Ûjcinl where a given input state is mapped
an output state by a unitary transformationÛ. This can
be carried out as a sequence of elementary steps (q
tum gates) involving operations on a few qubits. It h
been shown that any computation can be decomposed
single-bit gates, and a universal two-bit gate which
volves an entanglement operation on two qubits [2].
reality, due to the presence of decoherence and exp
mental imperfections, these gates (and therefore any c
putation) will not be ideal. In present experiments rela
to quantum computing based on both laser cooled trap
ions [3] and atoms in cavities [4], the difficult part is th
two-qubit gate, since it requires an interaction between
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two two-level systems via an auxiliary system (phonons
or photons) which leads to decoherence. In view of this
fact, we wish to develop a procedure for characterizing
a two-qubit gate, i.e., characterize a physical processE

involving entanglement of two qubits 1 and 2 in the
state spaceH2s1d ≠ H2s2d. Below we will show how
to implement this using onlyproduct states as inputs,an
single qubit measurements on the outputs(assuming that
single bit preparations and operations can be performed
reliably). We avoid utilizing any interaction (entangle-
ment) between the qubits which would be required to
prepare Bell state inputs and perform Bell measurement
since otherwise the decoherence and error induced by th
measurement itself would distort the characterization of
E . Furthermore, we will introduce four global parameters
to characterize the action of the quantum gate: the “gate
fidelity” sF d, the “gate purity”sP d, the “quantum degree”
sQd, and the “entanglement capability”sC d. These four
parameters can be calculated once the physical proces
is completely determined. To illustrate the procedure of
measuringE , we will analyze below simulation data from
a model of a two-bit quantum gate in an ion trap quantum
computer [5].

To develop the general formalism, let us consider
an experiment in which a quantum system undergoes
a physical processE . We assume that the system is
initially prepared in the pure state

jCinl ­
NX

i­0

cijil [ Hin , (2)

where j0l, j1l, . . . , jNl are orthogonal states spanning
the Hilbert space of (allowed) input statesHin with
dimensionN 1 1, a subspace of the system Hilbert space
HS. We will denote by rE ­

P
a vajEad sEa j the

initial state of the environment, i.e., of the other degrees
of freedom that will be coupled to our system. In its
most general form, the physical process will perform a
transformation defined by

jil jEad E
!

MX
j­0

jjl jEa
ijd, si ­ 0, . . . , Nd , (3)
© 1997 The American Physical Society
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where is the sum we have taken into account the poss
presence of other system states that might be popul
during the interaction (i.e.,M $ N in general; see also
below for the case of a quantum gate). The statesjEa

ijd
are unnormalized states of the environment. Combin
(2) and (3), and tracing over the environment degr
of freedom we get the following reduced system dens
operator:

r̂out ­
NX

i,i0­0

cifci0gpR̂i0i (4)

in the space of output states,Hout ­ hj0l, . . . , jMlj, and
where

R̂i0i ;
MX

j,j0­0

jjl kj0j
X
a

vasEa
i0j0 jEa

ijd si, i0 ­ 0, . . . , Nd

(5)

are system operators that do not depend on the in
state. From the knowledge of these operators one
predict the final density operator̂rout for any input
staterin For a mixed initial state, we diagonalizêrin ­P

n pnsjCsnd
in l kCsnd

in jd and use the fact that the evolutionE

is linear, which leads tôrout ­
P

n pnE sjCsnd
in l kCsnd

in jd.
Thus, the problem of fully characterizing the physic
processE on the system is reduce to finding thesN 1 1d2

“transfer operators”̂Ri0i in Hout. They fulfill TrhR̂i0ij ­
di0i andsR̂i0idy ­ R̂ii0 .

To develop a procedure to measure these operator
define two vectorial operators

$rout ; hr̂s1d
outr̂

s2d
out, . . . , r̂

sN11d2

out j , (6a)

$R ; hR̂1, R̂2, . . . , R̂sN11d2

j . (6b)

Here, the components ofr̂out are a set of output operator
corresponding tosN 1 1d2 different initial inputs of
the form (2) with coefficientsc

skd
i fk ­ 1, . . . , sN 1 1d2g.

All these density operators can be fully characteriz
using standard quantum tomography methods [1]. On
other hand, the components of the vector$R are defined
according toR̂q ­ R̂i0i , with q ­ sN 1 1di0 1 i 1 1. In
view of (4), these two vectorial operators are related
a set of linear equations, written in a matrix form
r̂out ­ M $R where M is a (c number) matrix whose
elements are defined asMkq ­ c

skd
i fcskd

i0 gp. The problem
of obtaining the transfer operators$R thus reduces to
finding a set of initial states of the system, such th
the matrix M is not singular. In that case we wi
have $R ­ M21r̂out, which solves the problem. Next, w
prove that such an invertible matrixM exists by explicit
construction. One can simply choose the initial states
follows:

c
skd
i ­

8>><>>:
1

p
2

sdik1 1 dik2d if k1 . k2 ,
dik1 if k1 ­ k2 ,

1
p

2
sdik1 1 idik2d if k1 , k2 ,

(7)

with k ­ sN 1 1dk1 1 k2.
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Let us now apply the above procedure to a univer
two-qubit gate. Now, the system is composed of tw
two-level subsystems 1 and 2 of levelsj0l1,2 and j1l1,2

each. We can define a set of orthogonal statesjil ­
ji1l1ji2l1 (with i ­ 2i1 1 i2, and i1, i2 ­ 0, 1) and write
the initial states as in (2) (with dimensionN 1 1 ­ 4).
The quantum tomography of the output states can
carried out following the lines proposed by Wootters [6
one writes the output density operator as

r̂out ­
15X

q­0

lqÂq , (8)

whereÂq ­ ŝ1
q1

≠ ŝ2
q2

sq ­ 4q1 1 q2d, with ŝa
qi

­ h1̂a,
ŝa

x , ŝa
y , ŝa

z j and a ­ 1, 2 refers to the first and second
qubit, respectively. By measuring the observablesÂq,
one can determine the coefficientslq, given thatlq ­
Trfr̂outÂqgy4 [7]. Note that all these measurements d
not require any interaction between the qubits (Bell st
measurements); that is, for all these measurements
two qubits can be measured independently, without
application of another two-qubit gate. This is need
since otherwise the measurement procedure would invo
errors that could not be separated from the gate its
However, some of the 16 initial states given abo
in order to make up the matrixM [cf., Eq. (7)] are
entangled states. Their preparation would involve t
application of a two-qubit gate which would also lea
to uncontrollable errors. Fortunately, there are other s
of initial states that are unentangled for which the mat
M is invertible. An example is the 16 product state
jcal1jcbl2 sa, b ­ 1, . . . , 4d, where

jc1l ­ j0l, jc3l ­
1

p
2

sj0l 1 j1ld ,

jc2l ­ j1l, jc4l ­
1

p
2

sj0l 1 ij1ld .

(9)

In order to illustrate this procedure, we have studied
two-qubit gate in the ion trap quantum computer mod
[5]. We have considered two ions in a linear ion tra
interacting with two lasers. Let us denote byjgln ; j0ln

and jeln ; j1ln two internal states of thenth ion, and by
je0ln an auxiliary internal state. As we have shown
Ref. [5], the universal two-qubit gate defined by

je1l1je2l2 ! s21de1e2 je1l1je2l2, se1,2 ­ 0, 1d (10)

can be implemented in three steps: (i) Apply ap laser
pulse to the lower motional sideband corresponding to
transition jgl1 ! jel1 of the first ion; (ii) Apply a 2p

laser pulse to the lower motional sideband of the transit
jgl2 ! je0l2 of the second ion; (iii) as (i). By lower
motional sideband we mean that the laser frequency ha
be equal to the corresponding internal transition frequen
minus the trap frequency, in order to excite a center of m
phonon only. The interaction of the two ions and the las
is given by the following Hamiltonian [8]:
391
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H ­ 2D1jel11kej2D2je
0 l22ke0j 1 nay

c.m.ac.m. 1
p

3 nay
r ar 1

V1std
2

fjel11kgje2ihc.m.sac.m.1a
y
c.m.de2ihr sar 1a

y
r d 1 H.c.g

1
V2std

2
fje0l22kgje2ihc.m.sac.m.1a

y
c.m.deihr sar 1a

y
r d 1 H.c.g .
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Here,D1,2 andV1,2 are the laser detunings and Rabi fr
quencies of the laser acting on each ion, respectively.
operatorsa anday are annihilation and creation operato
of the center of mass (c.m.) and relativesrd motion mode,
h is the corresponding Lamb-Dicke parameter, andn is
the trap frequency.

We have calculated numerically the evolution given
this Hamiltonian. Following the steps mentioned abo
and for Rabi frequencies much smaller than the trap
quency this evolution corresponds to the gate (10)
For finite Rabi frequencies, however, the result will n
be ideal. After the gate operation, there will remain so
population in the phonon modes, which would lead to d
coherence. Moreover, there may remain some popula
in the auxiliary stateje0 l2, and therefore, in this case, w
have M ­ 4 . N ­ 3. With the numerical calculation
we have simulated the measurement of the operatorsR̂i0i ,
that fully characterize the evolution process. We emp
size that all the information regarding this (nonideal) g
is contained in these operators. In Fig. 1 we have co
pared the ideal case of a perfect gate [Fig. 1(a)] with
simulation results with realistic parameters [Figs. 1(b
1(d)]. We have plotted the matrix elements of 16 o
eratorsR̂i0i sorted according toEn,m ­ kj0jR̂i0ijjl, with
n ­ 4i 1 j and m ­ 4i0 1 j0. We have chosen a se
of parameters close to those planned in experime
hc.m. ­ hr ­ 0.5, D1 ­ D2 ­ 2n, and Rabi frequen-
ciesV1 ­ V2 ­ 0.1, 0.2, and0.5n [Figs. 1(b), 1(c), and
1(d)] [9]. As it is shown, for moderately small Rabi fre
quencies the simulated results almost coincide with
ideal ones.

FIG. 1. En,m in arbitrary units (see text for explanation
for a two-qubit gate in the ion trap quantum comput
(a) ideal gate; (b), (c), (d) numerical simulation with th
following parameters:hc.m. ­ hr ­ 0.5, D1 ­ D2 ­ 2n, and
V1 ­ V2 ­ 0.1, 0.2, 0.5n (b), (c), (d).
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In order to elucidate to what extent a two-qubit ga
implemented experimentally in a particular model
quantum computer approaches to the ideal one, we de
a parameter, the gate fidelity, as

F ­ kCinjÛyr̂outÛjCinl ,

where the overline indicates average overall possible in
statesjCinl, andÛ is the unitary operator correspondin
to the ideal gate. This parameter can be calculated o
the full characterization of the gate is performed using

F ­
1
8

3X
i­0

Fii
ii 1

1
24

X
ifij

sFii
jj 1 F

ji
ij d ,

whereFi0i
j0j ; kj0jÛyR̂i0iÛjjl. Obviously, a gate fidelity

close to one indicates that the gate was carried out alm
ideally.

In a similar way we can define the gate purityP ­
Trhsr̂outd2j that reflects the effects of decoherence
the gate. P close to one indicates that the effects
decoherence are negligible. It can be shown that

P ­
1
8

3X
i­0

TrhsR̂iid2j 1
1

24

X
ifij

TrhR̂iiR̂i0i0 1 R̂i0i R̂ii0j .

In addition, the “quantum degree of the gate”Q is
defined as the maximum value of the overlap between
possible output states that are obtained starting from
unentangled state and all the maximally entangled sta
i.e.,

Q ­ max
r̃out,jCmel

kCmejr̃outjCmel ,

where r̃out denote the output states corresponding
unentangle input statesjCinl ­ jcal1jcbl2, andjCmel is
a maximum entangled state [10]. As has been sho
when the overlap between a density operator and
maximally entangled state is larger thans2 1 3

p
2 dy8 .

0.78, Clauser-Horne-Shimony-Holt (CHSH) inequalitie
are violated [11]. Finally, another useful parameter
the entanglement capabilityC [10], given as the smalles
eigenvalue of the partial transposed density matrixr̂out,
for unentangled inputs states. As has been rece
shown [10], the negativity of this quantity is a necessa
and sufficient condition for nonseparability of densi
operators of two spin-1y2 systems. These quantities ca
be calculated numerically starting from the gate operat
R̂i0i with a maximization/minimization procedure.

In Fig. 2 we have plotted these four parameters a
function of the Rabi frequencyV ; V1 ­ V2 for three
different Lamb-Dicke parameters and the same parame
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FIG. 2. (a) Fidelity, (b) purity, (c) quantum degree, and (
entanglement capability for a two-qubit gate in the ion tr
quantum computer as a function of the Rabi frequency. T
value of the Lamb-Dicke parameter are indicated. All the oth
parameters are as in Fig. 1.

as in Fig. 1. As expected, the best results are obtai
for small Rabi frequencies. This is due to the fact th
transitions to undesired levels are suppressed. On
other hand, a Lamb-Dicke parameter close to one a
improves the results. This is due to the fact that
contrast to Ref. [5] we are considering here traveli
wave excitation, in which transitions that do not chan
the phonon number can be excited by the laser. T
ratio between the effective Rabi frequencies of the low
sideband and these unwanted ones is proportional th

in the Lamb-Dicke limit. The figures also indicate th
the F , P , Q, andC decay in a different manner whe
the parameters deviate from the conditions of operat
of the ion trap quantum computer.

Finally, we wish to mention another application o
this procedure of characterization of a quantum physi
process. Let us consider a quantum system coupled
Markovian reservoir. In the case that the Hamiltonian
time independent, one can describe the evolution of
reduced system density operatorr̂ in terms of a master
equation of the formÙ̂r ­ L r̂, whereL is a Liouvillian
superoperator. The formal solution to this equation af
a time t is r̂out ­ eL tr̂in. The full characterization of
the physical process in this case would allow one
“measure” the LiouvillianL , and therefore to determin
the master equation fulfilled by the system. Moreov
choosing different interaction times one could che
whether a given process is Markovian or not.
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In conclusion, we have shown how to perform the fu
characterization of aphysical process. This requires the
preparation of various initial states, and the quantum
mography of the corresponding output states. We ha
illustrated these results for the case of a quantum g
and have defined four parameters that give the qua
of the gate. In addition, we have presented numeri
simulations for the ion trap quantum computer. The co
plete characterization of the quantum gates is relev
both from an experimental point of view to evaluate im
plementations of quantum gates in the laboratory, as w
as a theoretical tool to compare the expected performa
of specific quantum computer model systems.
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