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Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate
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We show how to fully characterize a quantum process in an open quantum system. We
particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We
illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum
computer. [S0031-9007(96)02142-4]
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Recently there has been a growing interest in “quantwo two-level systems via an auxiliary system (phonons
tum tomography,” i.e., in the complete characterization ofor photons) which leads to decoherence. In view of this
the state of a quantum systerepresented by a density fact, we wish to develop a procedure for characterizing
operatorp. Quantum tomography of an unknown quan-a two-qubit gate, i.e., characterize a physical procEss
tum state (that can be repeatedly prepared) [1] consists @fivolving entanglement of two qubits 1 and 2 in the
finding an appropriate sequence of measurements whidgtate spacefH,(1) ® H,(2). Below we will show how
allows one to determine the complete density operato implement this using onlproduct states as inputgn
tor p (for experimental implementations and theoreticalsingle qubit measurements on the outpiassuming that
schemes in quantum optics, see [1]). In this Letter we willsingle bit preparations and operations can be performed
show how to completely characteriz@lysical process in reliably). We avoid utilizing any interaction (entangle-
an open quantum systenMore specifically, suppose that ment) between the qubits which would be required to
a given quantum dynamicg transforms input states;,  prepare Bell state inputs and perform Bell measurements
into output statep,y,, i.e., since otherwise the decoherence and error induced by the

PO P Flpin] 1 measurement itself would distort the characterization of

. Pout Pinds E . Furthermore, we will introduce four global parameters
with Z a linear mapping. Our aim is to characterize theto characterize the action of the quantum gate: the “gate
processZ, given as a “black box,” by a sequence of fidelity” (F), the “gate purity”(P), the “quantum degree”
measurements in such a way that it is possible to predigt), and the “entanglement capabilityC). These four
what the output state will be for any input state. parameters can be calculated once the physical process

The particular problem that we will analyze after de-is completely determined. To illustrate the procedure of
veloping a general formalism is the characterization of theneasuringE , we will analyze below simulation data from
two-bit universal quantum gate for quantum computinga model of a two-bit quantum gate in an ion trap quantum
[2]. A quantum computer consists eftwo-level atoms  computer [5].
with atomic states|0);, [1); (i = 1,...,n) representing  To develop the general formalism, let us consider
the quantum bits (qubits). States of the quantum coman experiment in which a quantum system undergoes
puter aren-atom entangled states in the product Hilberta physical proces. We assume that the system is
spacdy) € H = []; ® H,(i) with H,(i) = {|0);.,[1);}. initially prepared in the pure state

Quantum computations corresponds to physical processes N

lhour) = Ulihin) where a given input state is mapped to Vi) = > ciliy € Hin, (2)
an output state by a unitary transformatidbn This can i=0

be carried out as a sequence of elementary steps (quaghere |0), |1),...,|N) are orthogonal states spanning

tum gates) involving operations on a few qubits. It hasthe Hilbert space of (allowed) input statehl;, with
been shown that any computation can be decomposed ingmensionv + 1, a subspace of the system Hilbert space
single-bit gates, and a universal two-bit gate which in-31.  we will denote by pr = 3, w.|E*) (E*| the
volves an entanglement operation on two qubits [2]. Inipjtial state of the environment, i.e., of the other degrees
reality, due to the presence of decoherence and expelif freedom that will be coupled to our system. In its

mental imperfections, these gates (and therefore any comost general form, the physical process will perform a
putation) will not be ideal. In present experiments relatedyansformation defined by

to quantum computing based on both laser cooled trapped M
ions [3] and atoms in cavities [4], the difficult part is the i) |Ea)i, Z i)Y 1ER), (i=0,...,N), 3
two-qubit gate, since it requires an interaction between the j=0 '
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where is the sum we have taken into account the possible Let us now apply the above procedure to a universal
presence of other system states that might be populatédio-qubit gate. Now, the system is composed of two
during the interaction (i.eM = N in general; see also two-level subsystems 1 and 2 of levél®;, and |1);,
below for the case of a quantum gate). The stdfs each. We can define a set of orthogonal stdi¢s=
are unnormalized states of the environment. Combiningi;);|i»); (with i = 2i; + i, andi;, i, = 0, 1) and write
(2) and (3), and tracing over the environment degreethe initial states as in (2) (with dimensiovi + 1 = 4).
of freedom we get the following reduced system densityThe quantum tomography of the output states can be

operator: carried out following the lines proposed by Wootters [6]:
N L one writes the output density operator as
Pout = Z cilei]'Rii (4) 15
Li=0 pout = D AgAg. 8
in the space of output state${,, = {|0),...,|M)}, and Pout ;) e ®)
where

” whered, = &) ® 62 (q = 4q1 + o), with 62 = {1,
N Ad A0 Ad — 1
Ry = Z |j><j/|zwa(Eﬁ,-/|E?,) (.i' =0,....N) O'X,.(J'},,O'Z} an.d a = 1,2 refers tp the first and seAcond
o qubit, respectively. By measuring the observablgs
(5) one can determine the coefficientg, given thatA, =

are system operators that do not depend on the initial "[PoutA¢1/4 [7]. Note that all these measurements do

state. From the knowledge of these operators one caft require any interaction between the qubits (Bell state
predict the final density operatopo, for any input measurements); that is, for all these measurements the

statep;, For a mixed initial state, we diagonalize, — WO qubits can be measured independently, without the

5 pn(lq’i(:)><qfi(:)|) and use the fact that the evolutidh a_ppl|cat|on qf another two-qubit gate. This is ngeded
o . N ) since otherwise the measurement procedure would involve
is linear, which leads tgoy = X, P E (| Win Y {(¥in'|).

-\ ._errors that could not be separated from the gate itself.
Thus, the problem of fglly characte_r|2|_ng the phys'calHowever, some of the 16 initial states given above
processE on the system is reduce to finding thé + 1)

r Roin A : ./ in order to make up the matrixM [cf., Eq. (7)] are
;ragfgzlgp;raiog&’i in Houw. They fulfill THRii} = entangled states. Their preparation would involve the

ag)plication of a two-qubit gate which would also lead
To develop a procedure to measure these Operators Wg ncontrollable errors. Fortunately, there are other sets
define two vectorial 0[()1?ra(t2c))rs - of initial states that are unentangled for which the matrix

J:Jj'=0

Pout = {PoutPout, - -, Pout |, (6a) M is invertible. An example is the 16 product states
R={R".R%.. . RNy (6b) b lb)s (a,b = 1,...,4), where
Here, the components ¢f,, are a set of output operators _ _ L
correspondingpto(N Jr@l%2t different initialpiants of > = 103 g2 V2 (10 + 1)),
the form (2) with coefficientﬁgk) [k=1,....,(N + 1)?]. 1 )
All these density operators can be fully characterized i) = |1), lipa) = \/—§(|0> + il1)).
using standard quantum tomography methods [1]. On the
other hand, the components of the veciorare defined In order to illustrate this procedure, we have studied a

according taR, = Ryj, withg = (N + 1)i' + i + 1. In two-qubit gate in the ion trap quantum computer model

view of (4), these two vectorial operators are related byl°]- We have considered two ions in a linear ion trap
a set of linear equations, written in a matrix form asinteracting with two lasers. Let us denote fy, = [0),

Pout = MR where M is a  number) matrix whose andle), = 1), two internal states of theth ion, and by
k) (k) le’), an auxiliary internal state. As we have shown in

elements are defined a8, = ¢;"[c; I'. The problem o [5], the universal two-qubit gate defined by
of obtaining the transfer operato® thus reduces to

finding a set of initial states of the system, such that levile2)2 = (=D“[eilex)s,  (e12 =0,1) (10)

the matrix J\/EliAs not §ingular. In that case we will oo e implemented in three steps: (i) Applyralaser
haveR = M~ pour, Which solves the problem. Next, we [ se to the lower motional sideband corresponding to the
prove that such an invertible matri¥ exists by explicit  ransition |¢), — |e), of the first ion; (i) Apply a2

construction. One can simply choose the initial states agyser pulse to the lower motional sideband of the transition

follows: lg)> — le’y, of the second ion; (i) as (i). By lower
% (6, + 6ir,) i ki > ko, motional sideband we mean that the laser frequency has to
cl@k) = { Oix, if kj = ko, (7)  beequal to the corresponding internal transition frequency
L(aik + iy ifk <k, minus the trap frequency, in order to excite a center of mass
V2 ‘ ’ phonon only. The interaction of the two ions and the laser
with k = (N + Dk; + k. is given by the following Hamiltonian [8]:
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Qq (¢ . Py t
H = ~Aile(el—dalehnle/| + vaty, acn + VEvala, + A ey (gle o om0t 4 ]
+ Qsz[lel>22<gIeiinc.m.(acvm‘+azm,)ei7]r(ar+aj) + H.C.].

Here,A;, and(},, are the laser detunings and Rabi fré- In order to elucidate to what extent a two-qubit gate
quencies of the laser acting on each ion, respectively. Thimmplemented experimentally in a particular model of
operatorsz anda' are annihilation and creation operators quantum computer approaches to the ideal one, we define
of the center of mass (c.m.) and relativé motion mode, a parameter, the gate fidelity, as
7 is the corresponding Lamb-Dicke parameter, ants . T
the trap frequency. F = <\Pin|U1-poutU|\Pin> s

We have calculated numerically the evolution given bywhere the overline indicates average overall possible input
this Hamiltonian. Following the steps mentioned abovestates|¥;,), and U is the unitary operator corresponding
and for Rabi frequencies much smaller than the trap freto the ideal gate. This parameter can be calculated once
quency this evolution corresponds to the gate (10) [5]the full characterization of the gate is performed using
For finite Rabi frequencies, however, the result will not
be ideal. After the gate operation, there will remain some 1 e i 1 i i
population in the phonon modes, which would lead to de- F = R Z Fi + 24 Z(Fjj + Fij),
coherence. Moreover, there may remain some population i=0 i#
in the auxiliary statde’),, a_nd therefore, .in this case, we WhereF}'-ij'- = (j|UR:;U|j). Obviously, a gate fidelity
haveM = 4 > N = 3. With the numerical calculation  ¢jose to one indicates that the gate was carried out aimost
we have simulated the measurement of the oper#ers  jgeally.
that fully characterize the evolution process. We empha- |5 5 similar way we can define the gate purl) =

size that all the information regarding this (nonideal) gat H(pou)?} that reflects the effects of decoherence on

is contained in these operators. In Fig. 1 we have compe ‘gate” P close to one indicates that the effects of
pared the ideal case of a perfect gate [Fig. 1(a)] with thgyecoherence are negligible. It can be shown that
simulation results with realistic parameters [Figs. 1(b)— 3

1(d)]. We have plotted the matrix elements of 16 op- ,, _ 1 P2 4 1
eratorsR;,; sorted according t&, ,, = (j'|Ry;|j), with P 8 ;Tr{(R”) !
n=4i + j andm = 4i' + j'. We have chosen a set

of parameters close to those planned in experimentsa 'f'_‘ agd't'oﬂ’ the ‘.‘quanturr|1 de%rehe of thle gst@’ IS "
Nem. = 1 =05, A; = A, = —», and Rabi frequen- d€fine as the maximum value of the overlap between al

ciesQ, = Q, = 0.1,0.2, and0.5» [Figs. 1(b), 1(c), and possible output states that are obtained starting from an
1(d)] [9]. As it is shown, for moderately small Rabi fre- gnentangled state and all the maximally entangled states,
quencies the simulated results almost coincide with th&€-

ideal ones. Q= mlaX (Wmelpout|Wme) »
ﬁo“l? q’me

Z Tr{RiiRi/i/ + Ri’ikii’} .
i#j

where p,, denote the output states corresponding to
unentangle input statd®,) = |1l )2, and| W) is

a maximum entangled state [10]. As has been shown,
when the overlap between a density operator and a
maximally entangled state is larger thén+ 3/2)/8 =
0.78, Clauser-Horne-Shimony-Holt (CHSH) inequalities
are violated [11]. Finally, another useful parameter is
the entanglement capability [10], given as the smallest
eigenvalue of the partial transposed density magrjy,,

for unentangled inputs states. As has been recently
shown [10], the negativity of this quantity is a necessary
and sufficient condition for nonseparability of density
operators of two spifi/2 systems. These quantities can

) . . ) be calculated numerically starting from the gate operators
FIG. 1. Z,, in arbitrary units (see text for explanation) &. . \yith a maximization/minimization procedure.

for a two-qubit gate in the ion trap quantum computer: .

(a) ideal gate: (b), (c), (d) numerical simulation with the In _F|g. 2 we hav_e plotted these four parameters as a
following parametersyem = 1, = 0.5, A; = A, = —», and  function of the Rabi frequenc§) = O, = (), for three

Q) =0, =0.1,0.2,0.5v (b), (c), (d). different Lamb-Dicke parameters and the same parameters
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In conclusion, we have shown how to perform the full
characterization of @hysical process This requires the
preparation of various initial states, and the quantum to-
mography of the corresponding output states. We have
illustrated these results for the case of a quantum gate,
and have defined four parameters that give the quality
0 of the gate. In addition, we have presented numerical
(d simulations for the ion trap quantum computer. The com-
C plete characterization of the quantum gates is relevant
n=0.1 both from an experimental point of view to evaluate im-
plementations of quantum gates in the laboratory, as well
-0.5 as a theoretical tool to compare the expected performance

0 0.1 0.2 0 0.1 0.2 g
Qv Qv of specific quantum computer model systems.

FIG. 2. (a) Fidelity, (b) purity, (c) quantum degree, and (d)~ ‘e, (ank A. Barenco, J. Kimble, H. Mabuchi,
entanglement capaBiIity for a 'two-qubit gate in the ion trapT' Pellizzari, and R. Walser for discussions. This work

quantum computer as a function of the Rabi frequency. Thevas supported by the Austrian Science Foundation,

value of the Lamb-Dicke parameter are indicated. All the other'Acciones Integrades,” and the European TMR network

parameters are as in Fig. 1. ERB4061PL95-1412. J.F.P. acknowledges the “J.C.
Castilla-La Mancha.”

as in Fig. 1. As expected, the best results are obtained

for small Rabi frequencies. This is due to the fact that

transitions to undesired levels are suppressed. On the

other hand, a Lamb-Dicke parameter close to one also1) For a review, see, for example, U. Leonhardt and H. Paul,

improves the results. This is due to the fact that in Prog. Quantum Electronl9, 89 (1995), and references

contrast to Ref. [5] we are considering here traveling therein.

wave excitation, in which transitions that do not change [2] See, for example, D.P. DiVincenzo, Scien2&0, 255

the phonon number can be excited by the laser. The (1995); A. Ekert and R. Jozsa, Rev. Mod. Phys. (to be

ratio between the effective Rabi frequencies of the lower  Published), and references therein.

sideband and these unwanted ones is proportionaj to [3] C. Monroeet al., Phys. Rev. Lett75, 4714 (1995).

in the Lamb-Dicke limit. The figures also indicate that [4] Q-A. Turchetteet al., Phys. Rev. Lett75, 4710 (1995);

the F, P, 9, andC decay in a different manner when M. Bruneet al., ibid. 76, 1800 (1996).

. " . [5] J.I. Cirac and P. Zoller, Phys. Rev. Lem4, 4091 (1995).
the parameters deviate from the conditions of operatlon[e] W. K. Wootters, Ann. Phys. (N.Y.176, 1 (1987).

of the ion trap qu_antum ComPUter- . [7] In some gate models auxiliary internal atomic levels are
'Flnally, we wish to mention another application Qf used, and the output states can have amplitudes in those
this procedure of characterization of a quantum physical  |evelsm > N = 3. In Eq. (8), pou denotes a projection

process. Let us consider a quantum system coupled to @ of the density operator ofH>(1) ® H>(2), i.e., Trpou <
Markovian reservoir. In the case that the Hamiltonian is 1 which is the probability of ending up in the right Hilbert
time independent, one can describe the evolution of the  space. . .
reduced system density operaiorin terms of a master [8] In contrast to Ref. [5] we have chosen lasers in a traveling
equation of the fornp = £ p, where L is a Liouvillian 9 ;/va%/efcoglﬁg#ralflonb Dicke limi | g
superoperator. The formal solution to this equation after [%] !n Ref. [5], the Lamb-Dicke limity., < 1 was assumed.

- A Tia L One can extend the results beyond the Lamb-Dicke limit
atimet is pour = e~ 'pin. The full characterization of

h hvsical in thi id all by correcting the time duration of the laser pulses. Here
the physical process in this case would allow one to we have used these corrected times.

“measure” the LiouvillianL , and therefore to determine [10] A. Peres, Phys. Rev. Leff7, 1413 (1996); R. Horodecki,
the master equation fulfilled by the system. Moreover, P. Horodecki, and R. Horodecki, Report No. quant-ph/
choosing different interaction times one could check 9605038.

whether a given process is Markovian or not. [11] C.H. Bennettet al., Phys. Rev. Lett76, 722 (1996).
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