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Kolmogorov Turbulence in Low-Temperature Superflows
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Low-temperature decaying superfluid turbulence is studied using the nonlinear Schrödinger equation
in the geometry of the Taylor-Green (TG) vortex flow with resolutions up to5123. The rate of
(irreversible) kinetic energy transfer in the superfluid TG vortex is found to be comparable to that of the
viscous TG vortex. At the moment of maximum dissipation, the energy spectrum of the superflow has
an inertial range compatible with Kolmogorov’s scaling. Physical-space visualizations show that the
vorticity dynamics of the superflow is similar to that of the viscous flow, including vortex reconnection.
The implications to experiments in low-temperature helium are discussed. [S0031-9007(97)03046-9]

PACS numbers: 67.40.Vs, 47.37.+q, 67.40.Hf
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Superfluid flows are described mathematically in ter
of Landau’s two-fluid model [1]. When both normal flui
and superfluid vortices are present, their interaction, ca
“mutual friction,” must be taken into account as pioneer
by Schwarz [2]. At temperatures low enough for the no
mal fluid to be negligible (in practice belowT ­ 1 K for
helium at normal pressure), an alternative mathemat
description is given by the nonlinear Schrödinger equ
tion (NLSE), sometimes also called the Gross-Pitaevs
equation [3,4]. The NLSE reads

≠tc ­ sicy
p

2 jd sc 2 jcj2c 1 j2=2cd . (1)
The complex wave fieldc is related to the superflow’s
density r and velocityy by Madelung’s transformation
r ­ jcj2, ryj ­ sicjy

p
2 d sc≠jc 2 c≠jcd, wherej is

the so-called “coherence length” andc is the velocity
of sound (when the mean densityr0 ­ 1 [5]). The
superflow is irrotational, except near the nodal lines
c which are known to follow Eulerian dynamics [6,7
These topological defects correspond to the superfl
vortices that appear naturally, with the correct veloc
circulation, in this model [8].

The basic goal of the present Letter is to quali
the degree of analogy between turbulence in lo
temperature superfluids and incompressible viscous flu
We will do this by comparing numerical simulation
of NLSE with existing numerical simulations of th
Navier-Stokes equations, in particular the Taylor-Gre
(TG) vortex [9]. The TG vortex is the solution of th
Navier-Stokes equations with initial velocity fieldvTG ­
sss sinsxd cossyd cosszd, 2 cossxd sinsyd cosszd, 0ddd. This flow
is well documented in the literature [10–12]. It admi
symmetries that are used to speed up computations: r
tion by p about the axissx ­ z ­ py2d, sy ­ z ­ py
2d, and sx ­ y ­ py2d, and reflection symmetry with
respect to the planesx ­ 0, p , y ­ 0, p, z ­ 0, p. The
velocity is parallel to these planes which form the sides
the impermeable boxwhich confines the flow. The TG
flow is related to an experimentally studied swirling flo
96 0031-9007y97y78(20)y3896(4)$10.00
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[13–15]. The relation between the experimental flow a
the TG vortex is a similarity in overall geometry [13]
a shear layer between two counterrotating eddies. T
TG vortex, however, is periodic with free-slip boundarie
while the experimental flow is contained inside a ta
between two counterrotating disks.

We now show how to construct a vortex array who
NLSE dynamics mimics the vortex dynamics of the larg
scale flowvTG . The first step of our method is based on
global Clebsch representation ofvTG and the second step
minimizes the emission of acoustic waves [16].

The Clebsch potentialslsx, y, zd ­ cossxd
p

2j cosszdj,
msx, y, zd ­ cossyd

p
2j cosszdj sgnssscosszdddd (where sgn

gives the sign of its argument) correspond to the T
flow in the sense that=vTG ­ =l 3 =m. The complex
field cc, corresponding to the large scale TG flow ci
culation, is given byccsx, y, zd ­ sssc4sl, mddddfgdy4g with
gd ­ 2

p
2yspcjd (f g is the integer part of a real) and

c4sl, md ­ cesl 2 1y
p

2, mdcesl, m 2 1y
p

2 d
3 cesl 1 1y

p
2, mdcesl, m 1 1y

p
2 d ,

where cesl, md ­ sl 1 imd tanhs
p

l2 1 m2y
p

2jdyp
l2 1 m2.
The second step of our procedure consists of integra

to convergence the advective real Ginzburg-Landau eq
tion (ARGLE):

≠tc ­ scy
p

2jd sc 2 jcj2c 1 j2=2cd 2 ivTG ? =c

2 fsvTGd2y2
p

2 cjgc , (2)

with initial datac ­ cc. This amounts to minimizing the
functional

F ­ scy
p

2 jd
Z

d3 $x f2jc j2 1 jcj4y2

1 j2j=c 2 sivTGy
p

2 cjdcj2g . (3)

It is shown in [17] that replacingvTG by a constant
vector yields as a minimum of (3) a boosted straig
vortex line that is an exact radiationless solution of (1
© 1997 The American Physical Society
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Minimizing (3) with the space-dependentvTG applies
to the vortex lines a local Galilean boost with veloci
vTG. The TG symmetries can be used to expandcsx, y,
z, td ­

PNy2
m­0

PNy2
n­0

PNy2
p­0 ĉsm, n, p, td cosmx cosny 3

cospz where N is the resolution and̂csm, n, p, td ­ 0,
unlessm, n, p are either all even or all odd integers. Im
plementing this expansion in a pseudospectral code yie
a saving of a factor 64 in computational time and memo
size when compared to general Fourier expansions.
ARGLE converged periodic vortex array obtained in th
manner is displayed on Fig. 1. Note that the radius
curvature of the vortex lines is large compared to th
radius.

The total energy of the vortex array, conserved
NLSE dynamics, can be decomposed into three p
Etot ­ s1y2pd3

R
d3x sEkin 1 Eint 1 Eqd, with kinetic

energy Ekin ­
1
2 ryjyj, internal energy Eint ­ sc2y

2d sr 2 1d2, and quantum energyEq ­ c2j2s≠j
p

r d2.
Each of these parts can be defined as the integral of
square of a field, for example,Ekin ­ 1

2 spryjd2. Using
Parseval’s theorem, the angle-averaged kinetic ene
spectrum is defined as

Ekinskd ­
1
2

Z
k2 sinu du df

3

Ç
1

s2pd3

Z
d3r eirjkj

p
r yj

Ç2
,

which satisfies Ekin ­ 1ys2pd3
R

d3x Ekin ­
R`

0 dk 3

Ekinskd. The angle-average is performed by summi
over shells in Fourier space. A mode (m, n, p) belongs to
the shellk ­ f

p
m2 1 n2 1 p2 1 1y2g. Ekin is further

decomposed into compressibleEc
kin and incompressible

Ei
kin parts, using

p
r yj ­ spr yjdc 1 spr yjdi with

=spr yjdi ­ 0. This simple decomposition has the a

FIG. 1. Three-dimensional visualization of the vector fie
= 3 sr $yd for the Taylor-Green flow at timet ­ 0 with
coherence lengthj ­ 0.1ys8

p
2 d, sound velocityc ­ 2, and

resolutionN ­ 512 in the impermeable boxf0, pg 3 f0, pg 3
f0, pg. The visualization is obtained by drawing the30 000
vectors of highest norm.
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vantage over the more conventional one,
p

r yj ­
p

r syjdc 1
p

r syjdi , of not involving a mixed
compressible-incompressible energy spectrum. We h
checked that both decompositions give the same beha
for Ei

kinskd in the runs presented below.
An exact solution of NLSE, describing a 2D axisym

metric vortex, is given bycvortsrd ­
p

rsrd expsimwd,
m ­ 61, wheresr , wd are polar coordinates. The vorte
profile

p
rsrd , r as r ! 0 and

p
rsrd ­ 1 1 Osr22d

for r ! `. It can be computed numerically using mappe
Chebychev polynomials expansions and an appropri
functional [17]. The corresponding velocity field is az
muthal and is given byysrd ­

p
2 cjyr . Using the ex-

pansion for
p

rsrd, the 2D angle-averaged spectrum o
p

r yj can then be computed with the formulaEvort
kin skd ­

sc2j2y2pkd f
R`

0 dr J0skrd≠r
p

r g2, whereJ0 is the zeroth
order Bessel function. It is shown in [17] that, when
3D isolated vortex line is almost straight, the 3D angl
averaged spectrum of the line is given byEline

kin skd ­
sly2pdEvort

kin skd, wherel is the length of the line.
Indeed, the incompressible kinetic energy spectru

Ei
kinskd of the ARGLE converged vortex array of Fig. 1

displayed on Fig. 2(a) is well represented, at largek,
by an isolated line spectrumEline

kin skd with total vortex
length given byly2p ­ 175. In contrast, the small wave
number region cannot be represented byEline

kin skd. This
stems from the average separation distance between
vortex lines in Fig. 1. Calling this distancedbump ,
k21

bump ­ 1y16, the wave number range between th
large-scale wave numberk ­ 2 and the characteristic
separation wave numberkbump can be explained by

FIG. 2. Plot of the incompressible kinetic energy spectru
Ei

kinskd. The bottom curve (a) (circles) corresponds to time
t ­ 0 (same conditions as in Fig. 1). The spectrum of
single axisymmetric 2D vortex multiplied bysly2pd ­ 175 is
shown as the bottom solid line. The top curve (b) (plusses)
corresponds to timet ­ 5.5. A least-square fit over the interva
2 # k # 16 with a power lawEi

kinskd ­ Ak2n givesn ­ 1.70
(top solid line).
3897



VOLUME 78, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 19 MAY 1997

c

l

v
h
m

re

s

-
e
a
-
n
-

u

k
ti
e

n
u
o

n

at

ion

is

t.
in

tex

so

be

n
of
interference effects. Because of constructive interferen
the energy spectrum atk ­ 2 has a value close to
its corresponding value in TG viscous flow (name
0.125), which is much above the value ofEline

kin sk ­ 2d.
In contrast, for2 , k # kbump , destructive interference
decreasesEi

kinskd below Eline
kin skd. This spectral situation

can be understood by analogy with the reproduction
a grey scale picture using black dots. The small wa
number spectrum of the reproduction will be that of t
original picture, while the large wave number spectru
will be that of the individual dots. Here the dots a
vortex lines and the picture isvTG .

The evolution in time via NLSE (1) of the incompres
ible kinetic energy is shown in Fig. 3 for various value
of j, the resolutionN being adjusted to maintain accu
racy. The main quantitative result of this Letter is the r
markable agreement of the energy dissipation r
2dEi

kinydt with the corresponding data in the in
compressible viscous TG flow. Both the mome
tmax , 5 10 of maximum energy dissipation (the inflec
tion point of Fig. 3) and its valueestmaxd , 1022 at that
moment are in quantitative agreement with the visco
data [10,18]. Furthermore, bothtmax andestmaxd depend
weakly on j. This is remarkably similar to the wea
dependence of the corresponding viscous dissipa
in the limit of small viscosity. This weak dependenc
is considered a hallmark of numerical evidence for
Kolmogorov regime in decaying turbulence [18].

Another important quantity studied in viscous decayi
turbulence is the scaling of the kinetic energy spectr
during time evolution and, especially, at the moment

FIG. 3. Total incompressible kinetic energyEi
kin plotted

versus time for j ­ 0.1ys2
p

2 d and resolution N ­ 128
( long-dash line); j ­ 0.1ys4

p
2 d, N ­ 256 (dash); j ­

0.1ys6.25
p

2 d, N ­ 400 (dot); and j ­ 0.1ys8
p

2 d, N ­
512 (solid line). All runs are realized withc ­ 2. The
evolution of the total vortex filament length divided by2p
(crosses) for theN ­ 512 run is also shown (scale given o
the righty axis).
3898
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maximum energy dissipation, where ak25y3 range can be
observed [10]. Figure 2(b) shows the energy spectrum
t ­ 5.5. A least-square fit over the interval2 # k # 16
with a power lawEi

kinskd ­ Ak2n givesn ­ 1.70 (solid
line). For 5 , t , 8, a similar fit givesn ­ 1.6 6 0.2
(data not shown). Although uncertain, the value ofn
is compatible with Kolmogorov’s5

3 value. The time
evolution of ly2p obtained by representing the high-k
region of Ei

kin by a line spectrumEline
kin is displayed in

Fig. 3. The length saturates beyondtmax at roughly three
times its t ­ 0 value. Although the volume occupied
by the vortices has increased, it remains a small fract
lpj2ys2pd3 , 0.4% of the total volume of the box. The
computations were performed withc ­ 2 corresponding
to a root-mean-squareMach numberMrms ; jvTG

rmsjyc ­
0.25. As it is very costly to decreaseMrms, we checked
[17] that compressible effects were nondominant at th
value ofMrms. In particular,Ei

kin is well above the other
energy spectra throughout the run fork , kbump.

It is known [19] that NLSE vortex lines can reconnec
The vortex lines are visualized in physical space
Figs. 4 and 5 at timest ­ 4 and t ­ 8. At t ­ 4, no
reconnection has yet taken place while a complex vor
tangle is present att ­ 8. Detailed visualizations (data
not shown) demonstrate that reconnections occur fort .

5. Note that in the viscous TG vortex reconnection al
sets in fort . 5.

As seen above, the spectral behavior of NLSE can
compared to viscous turbulence only fork # kbump ,
d21

bump , where dbump is the average distance betwee
neighboring vortices. We now estimate the scaling
kbump in terms of the flow integral scalel0 and velocity
u0 and of the velocity of soundc and coherence length
j. The numbernd of vortex lines crossing a large-
scale l2

0 area is given by the ratio of the circulation
l0u0 to the quantum of circulationG ­ 4pcjy

p
2, i.e.,

nd , l0u0ycj. Assuming that the vortices are uniformly

FIG. 4. Same visualization as in Fig. 1, but at timet ­ 4.
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FIG. 5. Same visualization as in Fig. 1, but at timet ­ 8.

spread over the large scale area givesnd , l2
0yd2

bump.
Equating these two evaluations ofnd yields dbump ,
l0

p
scjdysl0u0d.

In the case of helium, the viscosity at the critica
point (T ­ 5.174 K, P ­ 2.2105 Pa) is ncp ­ 0.27 3

1027 m2 s21 while the quantum of circulation,G ­
hymHe has the value0.99 3 1027 m2 s21. Thus,4ncp ,
G anddbump , l0y

p
Rcp , ll, whereRcp is the integral

scale Reynolds number at the critical point andll the
Taylor microscale. The value ofdbump in a superfluid
helium experiment atT ­ 1 K is thus of the same order
as the Taylor microscale in the same experimental set
run with viscous helium at the critical point.

An experiment corresponding to the numerical resu
of the present Letter must be performed at a temperat
low enough for the normal component of the flow to b
neglected. In this regime, second sound attenuation m
surements cannot be performed. Preliminary measu
ments (J. Maurer, private communication) in the swirlin
flow of Ref. [14] did not seem to show any significan
change in energy dissipation for temperatures as low
1.6 K where the normal fluid and the superfluid are in th
same proportion. It would be interesting to know if suc
behavior persists atT , 1 K. In viscous turbulence, it
is well known that Kolmogorov’s theory is only approxi
mate since it neglects intermittency [18]. Inertial rang
“intermittency corrections” are measured [14,20,21] o
velocimetry data by monitoring the scaling of high orde
moments of velocity increments. If the corresponding s
perfluid quantities could be measured experimentally b
low T ­ 1 K by an as-yet-to-be-developed velocimetr
probe, significant differences might appear.

In summary, turbulent solutions of NLSE—and thu
low-temperature superfluid turbulence—approximate
l
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obey Kolmogorov’s scaling. A question, open to ex
perimental investigations, is to know the exact limits
of this analogy between superfluid and viscous turbu
lence. Some important experimental properties, such
Kolmogorov’s scaling, still evade first principle deriva-
tion from the Navier-Stokes equations [18]. These har
problems may be easier to solve, when the analogy
valid, using the NLSE rather than the Navier-Stoke
equations.

Computations were performed on the C94-C98 o
the Institut du Développement et des Ressources
Informatique Scientifique. We would like to thank
L. Tuckerman for her helpful discussions on this work.
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