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Cross-Magnetic-Field Heat Conduction in Non-neutral Plasmas
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This Letter discusses cross-magnetic-field collisional heat transport for a non-neutral plasma
typical operating regimelD ¿ rc, wherelD is the Debye length andrc is the cyclotron radius. The
dominant transport mechanism is the exchange of energy associated with velocity components pa
the magnetic field. For a thermal gradient scale lengthLT * 100lD , the energy exchange is dominate
by interactions between particles separated byOslDd and yields a thermal diffusivityx , ncl

2
D , where

nc ­ nyb2 is the collision frequency. The diffusivity is even larger for largerLT , where the energy
exchange is dominated by the emission and absorption of plasma waves. [S0031-9007(97)0301

PACS numbers: 52.25.Wz, 52.25.Fi
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Magnetically confined non-neutral plasma experimen
typically operate in the parameter regimerc ø lD, where
rc ­ ȳyVc is the cyclotron radius andlD ­

p
Ty4pne2

is the Debye length. (Here,T is the temperature,̄y ­p
Tym is the thermal speed,n is the density, and

Vc ­ eBymc is the cyclotron frequency.) This Lette
contains a calculation of the cross magnetic field therm
conductivity for such a plasma.

One might be tempted to apply the well-known “clas
sical” expression for thermal conductivity [1],kclass ­
s8y3d

p
p nncr2

c lnsrcybd, where nc ­ nȳb2 is the fre-
quency of large angle scatterings andb ­ e2yT is the
distance of closest approach. However, this expressio
not relevant in the regimerc ø lD. The classical theory
envisions a transport mechanism where binary collisio
produce the scattering of particle velocity vectors whic
then results in cross-field stepsDx , rc of the particle
guiding centers.

The classical thermal diffusivity,xclass ­ kclassy
s5y2nd, is then estimated asxclass , nsDxd2 , nr2

c ,
where here the interaction raten ­ nc lnsrcybd is the
collision frequency. The logarithm enters through a
integral over impact parameter that is cut off at the low
limit r ­ b and the upper limitr ­ rc. The upper
cutoff reminds us that velocity scatterings occur only f
collisions that have impact parameterr , rc.

However, forrc ø lD, many collisions have an impac
parameter in the rangelD . r ¿ rc, and such collisions
do not scatter the velocity vectors. Indeed, to lowe
order in rcyr, the adiabatic invariantm ­ my

2
'y2B is

conserved for each particle, so the collision reduces
a one-dimensional elastic collision. Nevertheless, ene
exchange can occur through the interchange of para
velocities (as in any 1D collision), and this proces
dominates the heat transport. For interactions that
Debye shielded, the energy exchange can occur ove
distanceDx , lD, and the thermal diffusivity is of order
xDebye , ncl

2
D . This is independent of magnetic field

strength and is much larger than the classical diffusiv
in the parameter regimerc ø lD .
0031-9007y97y78(20)y3868(4)$10.00
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We need not look at the transport solely throug
the perspective of binary collisions. Rather, we ca
understand that charges on one field line make stocha
fields (thermal fluctuations) that accelerate charges o
spatially separated field line. If the separation is of ord
r , lD ¿ rc, then the frequency of the stochastic field
is of order v , vp ø Vc, so the cyclotron action is
conserved and only parallel acceleration is significa
From this perspective, it is clear that the interactio
distanceDx need not be limited tolD .

The Cherenkov emission of a plasma wave by a parti
and its absorption by another particle at a differe
location can allow transfer of energy over larger distanc
Now Dx , LT , the thermal gradient scale length, and w
expectxwaves ­ nL2

T . However, the interaction raten is
no longer the collision frequency. Rather, we can estim
n as the rate that lightly damped waves are excite
multiplied by the fractional energy density in these wav
compared to the plasma thermal energy3NTy2. Detailed
balance implies the excitation rate equals the damping r
g of a wave that damps over a distanceLT . The damping
rate is related toLT by g ­ VgyLT , where Vg is the
wave group velocity, which one can take to be of ord
ȳ for plasma waves. The energy in each wave isTy2,
and the number of waves is approximately the dens
of statesL ­ Vys2pd3, where V is the volume of the
plasma, multiplied by thek-space volume of waves with
jkj & al

21
D , wherea is a number of order 1y3 or less

(since only such waves are lightly damped).
Thus, we obtain the following estimate for th

rate of energy transfer by wavesn , gsTy2d 3

f4psal
21
D d3y3gLys3NTy2d. The thermal diffusivity due

to waves is then
xwaves , a3nclDLT . (1)

Note that xwaves . xDebye when LT * lDya3. This
rough estimate will be refined below. It shows, howeve
that lightly damped plasma waves play an importa
role in the thermal conductivity provided thatLT is
sufficiently large. This wave mechanism was discuss
originally by Rosenbluth and Liu [2], but these autho
© 1997 The American Physical Society
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did not consider the relatively short-range Debye-shield
interactions since they were interested in neutral plas
that are very large when measured in Debye leng
However, non-neutral plasmas typically are many but
thousands of Debye lengths across. We will provide
unified treatment that retains both the Debye-shielded
wave contributions to the thermal diffusivity.

Before starting the analysis, it is worth noting that he
conduction should be readily measurable in non-neu
plasmas. A careful comparison between theory a
experiment for this heat transfer mechanism (the excha
of parallel energy through long-range interactions) wo
be of interest not only as a novel effect in kinet
theory. Rosenbluth and Liu originally considered t
wave transport mechanism as a possible explanatio
the anomalously large heat loss through the elect
channel in tokamak plasmas. More recently, Ware
discussed the enhancement of the wave transport f
non-Maxwellian particle distribution (e.g., a high ener
tail) [3]. Such distributions can be produced in a trapp
non-neutral plasma. Of course, the advantage of usin
non-neutral plasma withrc ø lD for such studies is tha
the mechanism of interest dominates the heat transp
This Letter is intended to lay the theoretical groundwo
for such studies.

In order to provide the most straightforward derivati
of the heat transport, we assumeB is constant in thez
direction, and we work in slab geometry. The plasm
density and temperature vary inx but not iny or z.

The average rate of change of the local plasma kin
energy density,Q ­ nsxd kmy2y2l, is given by the aver-
age work done on the particles by the electric fieldE:
≠Qy≠t ­ kJ ? El, whereJ is the plasma current density
That part of the work given bykJ' ? E'l yields the clas-
sical result for the heat flux, which we can neglect in t
regime of interest,lD ¿ rc. Here we concentrate on th
parallel work,kJzEzl. This quantity can be evaluated t
lowest order insrcylDd by considering the evolution o
guiding centers streaming parallel to the magnetic fie
th
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This evolution is governed by the guiding center Klimon
tovitch equation

≠N
≠t

1 yz
≠N
≠z

1
e
m

Ez
≠N
≠yz

­ 0 , (2)

where Ezsr, td is related to Nsr, yz , td through Pois-
son’s equation. Following the usual approach we bre
N into a smooth equilibrium distribution and a fluc
tuation, N ­ fsx, yz , td 1 dNsr, yz , td. Writing Jz ­
e

R
dyzyzN then implies

≠Q
≠t

sx, td ­ kJzEzl ­ e
Z

dyzyzkdNdEzl . (3)

The evolution of the fluctuations is described by lineari
ing Eq. (2):

≠dN
≠t

1 yz
≠dN
≠z

1
e
m

dEz
≠f
≠yz

­ 0 . (4)

This equation can be solved simultaneously with Po
son’s equation by Fourier transforming iny and z and
Laplace transforming int, suppressing the time depen
dence off as it evolves on a slow transport time scale:

sp 1 ikzyzddN̂ ­
e
m

ikzdf̂
≠f
≠yz

1 dNst ­ 0, x, ky , kz, yzd , (5)

where dN̂sp, x, ky, kz , yzd is the Fourier-Laplace trans-
form of dN and dNst ­ 0, x, ky, kz , yzd is the Fourier
transform of the initial condition. Poisson’s equatio
provides a second relation betweendf̂ and dN̂ , and
yields the following solution fordf̂ when combined with
Eq. (5):

df̂ ­ 24pe
Z

dx0
Z

dyzdNst ­ 0, x0, ky , kz, yzd

3 csp, ky , kz , x, x0d , (6)

wherec is a Green’s function satisfying
t satisfy
in
n a time
∑
≠2

≠x2 2 k2
y 2 k2

z 1
4pe2

m
ikz

Z dyz≠fy≠yz

p 1 ikzyz

∏
csp, ky , kz, x, x0d ­ dsx 2 x0d . (7)

We can now evaluate the right-hand side of Eq. (3), averaging over a set of uncorrelated initial fluctuations tha
kdNst ­ 0, r, yzddNst ­ 0, r0, y0

zdl ­ fsx, yzddsyz 2 y0
zddsr 2 r0d. We then employ the Bogoliubov ansatz [4]

order to evaluate the inverse Laplace transforms, assuming that the fluctuations relax to their asymptotic form o
scale rapid compared to the transport rate. The result is

≠Q
≠t

­ 2
s4pe2d2

m

Z
dyzyz

Z dkydkz

s2pd2 k2
z

Z
dx0dy0

zpdfkzsyz 2 y0
zdg jcs2ikzy0

z , ky , kz , x, x0dj2

3

Ω
fsx0, y0

zd
≠fsx, yzd

≠yz
2 fsx, yzd

≠fsx0, y0
zd

≠y0
z

æ
. (8)
at
tion

und
The right-hand side is merely the energy integral of
Balesceu-Lenard collision operator for 1D collisions [
except that particles can be on different field lines and
plasma is inhomogeneous in thex direction.
e
],
he

Equation (8) can be further simplified if we assume th
all interactions are short range compared to the varia
in f, implying that c is sharply peaked injx 2 x0j;
so that the integrand may be Taylor expanded aro
3869
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x0 ­ x. If we also assumef is a local Maxwellian
with slowly varying temperature and density, we obta
the thermal diffusion equation≠Qy≠t ­ = ? sk=T d. The
thermal conductivityk is

k ­
e2n

2p2mȳ

Z
d3k̄

Z
dūū2e2ū2

3
jk̄zjk̄2

x

jk̄2Dsv ­ kzyz , kdj4
, (9)

where ū ­ yzyȳ, k̄ ­ klD, and Dsv, kd ­ 1 1 f1 1

z Zsz dgk̄22 is the plasma dielectric function
z ­ vy

p
2kzy, and Zsz d is the plasma dispersion

function. In this derivation we employed the identiR
dx0sx 2 x0d2jcj2 ­ 2

R
dkxk2

xyspjk2Dj4d, which fol-
lows from the Fourier transform inx of Eq. (7), together
with the assumption thatc is strongly peaked injx 2 x0j.

If we consider only particles interacting via a Deby
shielded potential, so thatD ­ 1 1 k̄22, the integrals
in Eq. (9) can be performed analytically. We obta
k ­ kDebye where kDebye ­ e2nys48

p
p mȳd, which is

of order nncl
2
D, as expected from the previous intuitiv

picture.
However, if instead the exact dielectricDsv, kd is

employed in Eq. (9), the integrand diverges. This c
be observed in Fig. 1, where we plot the functiongsk̄d,
where gsk̄d ­ spy2k̄3d

R
dūū2e2ū2 yjDj4 is obtained by

integrating the integrand in Eq. (9) over solid angles ink.
At small k̄, g diverges because of a near zero inD caused
by lightly damped plasma waves. These waves can tra
long distances across the magnetic field so interacti
are no longer short range, and Eq. (9) is no longer va
Of course, in the Debye-shielding approximation, plas
waves are neglected andgsk̄d is not singular, taking the
form gDebyesk̄d ­ p3y2k̄5y4s1 1 k̄2d4. This function is
also plotted in Fig. 1 for comparison.

In order to obtain a finite result for the thermal transpo
without resorting to anad hoc Debye shielding model
of the interaction, we should no longer assume t

FIG. 1. The functionsgskd, gDebyeskd, and hsk, jed versus
wave numberk ­ klD; hsk, jed is shown for three values
of je where e ­ plDyL. The respective areas under the
curves determine the local, the Debye-shielded, and the no
cal contributions to the thermal conductivity, i.e.,klocal, kDebye,
andkj

waves.
3870
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the Green’s functionc in Eq. (8) is sharply peaked in
jx 2 x0j. Instead, we will expandc in the eigenmodes
of the dispersion operator appearing on the left-hand s
of Eq. (7). While this can be done in general via
WKB analysis, here we will present the results of a mo
straightforward analysis by assuming thatnsxd ­ const
between conducting plates atx ­ 0 and L, and T sxd is
almost constant. Working to lowest order in the variatio
of Tsxd, we can neglect this variation when determinin
the eigenmodes, so the eigenmodes are

p
2yL sinkxx with

kx ­ npyL, and the Green’s function is

csv, ky , kz, x, x0d ­
2
L

X
kx

sinskxxd sinskxx0d
k2Dsv, kd

, (10)

wherek ­
p

k2
x 1 k2

y 1 k2
z . The integrals in Eq. (8) can

then be performed asymptotically when the parame
e ­ plDyL is small. Sincejcj2 appears in the integrand
of Eq. (8), there appears a double sum overkx,

P
kxk0

x
.

However, the flux is dominated bykx . k0
x; otherwise the

integral overx0 phase mixes away (because the integra
is dominated bykx of Osl21

D d, so sinkxx0 oscillates
rapidly). Equation (8) then reduces to
dQ
dt

­
s4pe2d2

mL2T2

Z
dyzy2

z f2syzd
Z dkydkz

s2pd2
jkzj

3
X
kxk0

x

1
k2Dsv, kdk02Dpsv, k0d

É
v­kzyz

cossDkxxd

3
Z

dx0 cossDkxx0d fT sx0d 2 T sxdg , (11)

whereDkx ­ kx 2 k0
x, andk0 ­

p
k02

x 1 k2
y 1 k2

z .
For e ! 0 the integrand takes two asymptotic forms

depending on the size ofklD , i.e., on the wave number
of each eigenmode mediating the interaction. The
two forms can be asymptotically matched atklD ­ 0.4.
When klD . 0.4 there are no lightly damped wave
and 1yD is slowly varying in k. By Taylor expanding
1yk02Dsv, k0d in Dkx , one finds that thesDkxd0 term
vanishes becauseX

Dkx

cosDkxx
Z L

0
dx0 cosDkxx0fT sx0d 2 T sxdg ­ 0 ,

(12)

and thesDkxd1 term vanishes because it is odd inDkx .
The OsDkxd2 term leads back to the local form for the
conductivity, given by Eq. (9), except that the integral
limited to klD . 0.4.

In the regimeklD , 0.4, lightly damped waves pro-
vide the main contribution to the integral. Whenv nears
a zero of the dielectric function, atv ­ vr skd 2 igskd,
1yDsv, kdDpsv, k0d becomes sharply peaked, and th
peak provides the wave contribution to the flux. Assum
ing thatg ø vr , and integrating over the peak, one findZ dyz

Dsv, kdDpsv, k0d

Ç
v­kzyz

.
2pyjkzj

≠Dy≠vr≠Dy≠v0
r

3
2ḡ 2 iDv

4ḡ2 1 Dv2
, (13)
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where v0
r ­ vr sk0d, Dv ­ vr skd 2 vr sk0d, and

ḡ ­ fgskd 1 gsk0dgy2. The imaginary part van-
ishes because it is odd upon interchange ofkx and
k0

x. The small k “wave” contribution to the flux
is evaluated by substituting Eq. (13) into Eq. (11
taking Dv . Dkx≠vry≠kx , and using the small
k limit of the magnetized plasma dispersion rela
tion: vr > vpk̄zs1 1 3k̄2y2dyk̄, g > 2

p
p vp 3

e21y2k̄223y2ys2
p

2 k̄4d, ≠Dy≠vr , 2skzvpykd2yv3
r .

Substituting Eq. (13) into Eq. (11), we note tha
Eq. (11) is unchanged by the addition of any functio
independent ofDkx to the right-hand side of Eq. (13)
[this follows from Eq. (12)]. We therefore subtrac
pyfjkzj j≠Dy≠vr j

2gskdg, which causes the integrand o
Eq. (11) to vanish whenDkx ­ 0. Then upon integrating
by parts once inx0, takingDkx ­ jpyL, turning the sum
over kx into an integral, and adding in the contributio
from klD . 0.4, we arrive at a finite heat transport rate

≠Q
≠t

­
≠

≠x

X̀
j­1

sklocal 1 kj
wavesdT̂j sin

jpx
L

. (14)

Here, T̂j ; s2yLd
RL

0 dx0 ≠Ty≠x0 sins jpx0yLd is the
Fourier transform of the temperature gradient,klocal ­
e2nys2p2mȳd

R`
0.4 gsk̄d dk̄ is the contribution to the ther-

mal conductivity due to large wave number short-ran
interactions, andkj

waves ­ e2nys2p2mȳd
R0.4

0 hsk̄, jed dk̄
is the lightly damped wave contribution due to sma
wave numbers.hsk̄, jed is a resonance function derived
from Eqs. (11) and (13):

hsk̄, jed ­ 2gk̄2
Z

dVjk̄zjk̄
2
xyfs jek̄xd2 1 4g2k̄6g ,

(15)

where dV is the element of solid angle. This function
is displayed in Fig. 1. Whenje ø 1, hsk̄, jed ø gskd
over a region near̄k ­ 0.4, so we can asymptotically
match the local and wave contributions atk̄ ­ 0.4. How-
ever, hsk̄, jed is not divergent at small̄k, so the heat
flux is now finite, and depends on the scale length of t
thermal gradientLT through the parameterje [Eq. (14)
implies thatLT ­ Lyjp, so je ­ lDyLT ]. Performing
the required integrals over̄k numerically we find that
klocal ­ 0.0975e2nymȳ andkj

waves is provided in Table I
for different values ofje. We see thatkj

waves . klocal
only for je & 0.02.

Note that the conductivityklocal from the rigorous
eigenmode analysis is an order of magnitude larger th
the valuekDebyeobtained withad hoc Debye shielding.
This is because the interaction cannot be accurat
characterized by the simple Debye-shielded dielect
responseD ­ 1 1 k̄22, even though the range ove
which particles interact is limited toOslDd when the
wave number of the interaction satisfiesk . 0.4. Off-
,
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e
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e
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TABLE I. Wave contribution to heat transport.

je kj
wavesyse2nymyd

0.1 0.021
0.05 0.046
0.01 0.168
0.005 0.270
0.001 0.827
0.0005 1.367
0.0001 4.645

resonant plasma waves greatly increasegsk̄d compared to
gDebyesk̄d (see Fig. 1). Only for̄k * 3 do these functions
approach one another.

For je ! 0, an asymptotic analysis ofhsk̄, jed reveals
thatkj

waves . f2kp4 ys3pjedge2nymȳ, wherek̄ps jed is the
wave number at the maximum ofhsk̄, jed, given by
k̄p , 1y

p
22 lns2jey ln jed for je ø 1. For example,

for je ­ 0.001, we obtainkj
waves ø s0.2d3nnclDLT , in

agreement with the heuristic estimate of Eq. (1).
In conclusion, whenlD ¿ rc we have shown that the

classical theory of magnetized plasma thermal condu
tivity is not relevant. In this regime the conductivity is
independent of the magnetic field strength. For therm
scale lengthsLT * 100lD across theB field, emission
and absorption of lightly damped plasma waves is t
dominant heat transport mechanism. For smaller sc
lengths, short-range interactions on the scale oflD pro-
vide the dominant transport mechanism. Both the sho
range and wave interaction mechanisms were obtain
as limiting cases of a unified transport theory. It ma
be worth noting that a similar wave mechanism also e
hances the cross-field like-particle collisional particle flu
in plasmas which are sufficiently large [6]. Experimen
to measure the thermal conductivity and particle flux
both Maxwellian and non-Maxwellian non-neutral plas
mas are now under way.
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