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Cross-Magnetic-Field Heat Conduction in Non-neutral Plasmas
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This Letter discusses cross-magnetic-field collisional heat transport for a non-neutral plasma in the
typical operating regime., > r., wherep is the Debye length and. is the cyclotron radius. The
dominant transport mechanism is the exchange of energy associated with velocity components parallel to
the magnetic field. For a thermal gradient scale lerdgth= 100Ap, the energy exchange is dominated
by interactions between particles separatedify,) and yields a thermal diffusivity ~ ».A%, where
v. = nvb? is the collision frequency. The diffusivity is even larger for lardgr, where the energy
exchange is dominated by the emission and absorption of plasma waves. [S0031-9007(97)03015-9]

PACS numbers: 52.25.Wz, 52.25.Fi

Magnetically confined non-neutral plasma experiments We need not look at the transport solely through
typically operate in the parameter regime< Ap, where the perspective of binary collisions. Rather, we can
r. = ©v/Q, is the cyclotron radius and, = \/T/47Tnez understand that charges on one field line make stochastic
is the Debye length. (Heredl is the temperaturey =  fields (thermal fluctuations) that accelerate charges on a
JT/m is the thermal speedn is the density, and spatially separated field line. If the separation is of order
Q. = eB/mc is the cyclotron frequency.) This Letter p ~ Ap > r., then the frequency of the stochastic fields
contains a calculation of the cross magnetic field thermals of order o ~ w, < ., so the cyclotron action is

conductivity for such a plasma. conserved and only parallel acceleration is significant.
One might be tempted to apply the well-known “clas- From this perspective, it is clear that the interaction

sical” expression for thermal conductivity [1k°'® =  distanceAx need not be limited td.

(8/3)/7 nv.r2In(r./b), where v, = nob? is the fre- The Cherenkov emission of a plasma wave by a particle

quency of large angle scatterings ahd= ¢/T is the and its absorption by another particle at a different
distance of closest approach. However, this expression lgcation can allow transfer of energy over larger distances.
not relevant in the regime. < Ap. The classical theory Now Ax ~ Lz, the thermal gradient scale length, and we
envisions a transport mechanism where binary collisiongxpecty ™" = vL}. However, the interaction rateis
produce the scattering of particle velocity vectors whichno longer the collision frequency. Rather, we can estimate
then results in cross-field stegsx ~ r. of the particle » as the rate that lightly damped waves are excited,
guiding centers. multiplied by the fractional energy density in these waves
The classical thermal diffusivity, Y28 = g°lass/  compared to the plasma thermal eneBg§7’ /2. Detailed
(5/2n), is then estimated ag‘'** ~ »(Ax)> ~ vr2, balance implies the excitation rate equals the damping rate
where here the interaction rate = v.In(r./b) is the vy of a wave that damps over a distarice. The damping
collision frequency. The logarithm enters through anrate is related taLy by y = V,/Lr, whereV, is the
integral over impact parameter that is cut off at the lowewave group velocity, which one can take to be of order
limit p = b and the upper limitp = r.. The upper v for plasma waves. The energy in each wave'jQ,
cutoff reminds us that velocity scatterings occur only forand the number of waves is approximately the density
collisions that have impact paramejer< r.. of statesA = V/(27r)*, whereV is the volume of the
However, forr. << Ap, many collisions have an impact plasma, multlplled by thé&-space volume of waves with
parameter in the rangep > p > r., and such collisions |k| < aAp', wherew is a number of order /B or less
do not scatter the velocity vectors. Indeed, to lowes{since only such waves are lightly damped).
order in r./p, the adiabatic invarian, = mv? /2B is Thus, we obtain the following estimate for the
conserved for each particle, so the collision reduces toate of energy transfer by waves ~ y(T/2) X
a one-dimensional elastic collision. Nevertheless, enerng(aAD )}/3]A/(3NT/2). The thermal diffusivity due
exchange can occur through the interchange of paralléb waves is then
velocities (as in any 1D collision), and this process X" ~ alvdpLr. @
dominates the heat transport. For interactions that arBote that y“¥es > yPeb¥ when Ly = Ap/a3. This
Debye shielded, the energy exchange can occur over rmugh estimate will be refined below. It shows, however,
distanceAx ~ Ap, and the thermal diffusivity is of order that lightly damped plasma waves play an important
x b ~ . A%, This is independent of magnetic field role in the thermal conductivity provided thdt; is
strength and is much larger than the classical diffusivitysufficiently large. This wave mechanism was discussed
in the parameter regime < Ap. originally by Rosenbluth and Liu [2], but these authors
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did not consider the relatively short-range Debye-shielded his evolution is governed by the guiding center Klimon-
interactions since they were interested in neutral plasmasvitch equation

that are very large when measured in Debye lengths.
However, non-neutral plasmas typically are many but not — +v,— + —E
thousands of Debye lengths across. We will provide a
unified treatment that retains both the Debye-shielded angthere E.(r,7) is related toN(r,v.,t) through Pois-

wave contributions to the thermal diffusivity. son’s equation. Following the usual approach we break

Before starting the analysis, it is worth noting that heaty into a smooth equilibrium distribution and a fluc-
conduction should be readily measurable in non-neutrauation, N = f(x,v.,7) + 8N(r,v,,7). Writing J. =

plasmas. A careful comparison between theory an@[dvzva then implies

experiment for this heat transfer mechanism (the exchange

of parallel energy through long-range interactions) would Q(x 1) = (JLE,) = e] dv,v,(SNSE,). (3)

be of interest not only as a novel effect in kinetic ar o o )

theory. Rosenbluth and Liu originally considered theThe evolution of the fluctuations is described by lineariz-
wave transport mechanism as a possible explanation ghg Eq. (2):

the anomalously large heat loss through the electron

channel in tokamak plasmas. More recently, Ware has 9oN + vvaé_N + C5E of _ 0. 4)
discussed the enhancement of the wave transport for a at T oz m- v,

non-Maxwellian particle distribution (€.g., a high energyrys equation can be solved simultaneously with Pois-
tail) [3]. Such distributions can be produced in a trapped;;yg equation by Fourier transforming inand z and

non-neutral plasma. Of course, the advantage of using Baplace transforming in, suppressing the time depen-

non-neutral plasma with. << Ap for such studies is that  yence off as it evolves on a slow transport time scale:
the mechanism of interest dominates the heat transport.

. . . A 9
This Letter is intended to lay the theoretical groundwork (p + ik,v,)8N = iikzé(p f
for such studies. m v,
In order to provide the most straightforward derivation + §N(t =
, . t =0,x,ky,k;,v;), (5
of the heat transport, we assurBeis constant in the; ( *oky ke vo), ()

direction, and we work in slab geometry. The plasmayhere SN (p, x, ky, k., v.) is the Fourier-Laplace trans-

density and temperature vary inbut not iny or z. form of 6N and SN(t = 0,x, k,, k., v;) is the Fourier
The average rate of change of the local plasma kinetigransform of the initial condition. Poisson’s equation

energy densityQ = n(x)(mv?/2), is given by the aver- provides a second relation betweé@ and SN, and

age work done on the particles by the electric fi#ld yijelds the following solution fol ¢ when combined with

d0/at = (J - E), where] is the plasma current density. Eq. (5):

That part of the work given b{J, - E ) yields the clas-

sical result for the heat flux, which we can neglect in the 54 — —477ef dx’fdeSN(t = 0,x,ky. k., v2)

regime of interestAp > r.. Here we concentrate on the

parallel work,(J.E.). This quantity can be evaluated to X (p,ky, k., x,x') (6)

lowest order in(r./Ap) by considering the evolution of R

guiding centers streaming parallel to the magnetic fie||dwhere¢ is a Green’s function satisfying

=0, )

[8_2 R 47Tezikz dvzaf/avz
dx2 Y : m p + ik, v,

}w(p,ky,kz,x,x') =6(x —x'). (7)

We can now evaluate the right-hand side of Eq. (3), averaging over a set of uncorrelated initial fluctuations that satisfy
(6N(t = 0,r,v,)6N(r = 0,r',v])) = f(x,v,)6(v; — v])8(r — r/). We then employ the Bogoliubov ansatz [4] in

order to evaluate the inverse Laplace transforms, assuming that the fluctuations relax to their asymptotic form on a time
scale rapid compared to the transport rate. The result is

] 47re?)? dk,dk; .
a—? = (—m ] dvzvzf (2;)2Zk§fdx'dv;ﬂ6[kz(vz - v;)]|¢(—lkzv;,ky,kz,x,x')|2

0 (x,v2) 0F (', v)
o v L

X {f(x’, v! (8)

The right-hand side is merely the energy integral of the Equation (8) can be further simplified if we assume that
Balesceu-Lenard collision operator for 1D collisions [5], all interactions are short range compared to the variation
except that particles can be on different field lines and thén f, implying that ¢ is sharply peaked ifx — x/|;

plasma is inhomogeneous in thealirection. so that the integrand may be Taylor expanded around
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x''=x. If we also assumef is a local Maxwellian the Green’s functiony in Eq. (8) is sharply peaked in
with slowly varying temperature and density, we obtain|x — x’[. Instead, we will expands in the eigenmodes
the thermal diffusion equatiohQ /dr = V - («VT). The of the dispersion operator appearing on the left-hand side

thermal conductivityk is of Eg. (7). While this can be done in general via a
WKB analysis, here we will present the results of a more
K= 53 fd3 [dﬁﬁze_“ straightforward analysis by assuming thatc) = const
momy o between conducting plates at= 0 and L, and T'(x) is
agp
|k:|k3 ©) almost constant. Working to lowest order in the variation

of T(x), we can neglect this variation when determining
the eigenmodes, so the eigenmodes\A£L sink,x with
k. = nw /L, and the Green’s function is

k2D (w0 = kv, k)1

where i = v_ /9, k = kAp, and D(w,k) =1 + [1 +
(Z(D)k™? is the plasma dielectric  function,
{ = w/V2kw, and Z({) is the plasma dispersion  y(w, k. k,, x,x') = = Z sin kzx)sm(k x)’ (10)
function. In this derivation we employed the identity k*D(w, k)

Jax'(x — x"?|¢|* = 2 [ dk.k?/(7|k*D]*), which fol- ———— :
lows from the Fourier transform in of Eq. (7), together wherek = Vk; + k; + k;. The integrals in Eq. (8) can
with the assumption that is strongly peaked it — x'|. then be performed asymptotlcally when the parameter

— 2
If we consider only particles interacting via a Debye = mAp/L is small. Sincey|® appears in the integrand
shielded potential, so thab = 1 + k2, the integrals of Eq. (8), there appears a double SL,’m ower >, k-
in Eq. (9) can be performed analytlcally We obtain However, the flux is dominated by = & otherwise the
k = kPeb¥e where kDb = o251 /(48 /7 m), which is integral overx’ phase mixes away (because the integrand

of ordernucx\%, as expected from the previous intuitive is QOm|nated byk of 0(Ap), so sink.x' oscillates
picture. rapidly). Equation (8) then reduces to

However, if instead the exact dielectrib(w, k) is dQ _ (4me®) ] V212 (v, )] dkydk. 1
employed in Eqg. (9), the integrand diverges. This can dt mL2T? vz (2m)?

be observed in Fig. 1, where we plot the functigfk),

where g(k) = (m/2k) [ dui*e™ “/|D|* is obtained by 5 5 p cogAk,x)
integrating the integrand in Eq. (9) over solid anglekin ki k D(w’k)k D*(w, k) w=k.v

At small k, g diverges because of a near zerdircaused > ]d / AT — T 11
by lightly damped plasma waves. These waves can travel ¥ cosk ) [T() (], (11)

long distances across the magnetic field so mteractlor\ﬁhereAk — k, — k., andk’ = m

are no Ionger short range, and Eq. (9) is no longer valid. £ . _, o the mtegrand takes two asymptotic forms,

Of course, in the Debye-shielding approximation, plasmfﬂependlng on the size @fAp, i.e., on the wave number

waves are n_eglecte3d2§5|gdk) is r](2)t4smgu_lar taking the ¢ oach eigenmode mediating the interaction. These

form gPe?(k) = 7*/2k3/4(1 + k*)*. This function is 16 torms can be asymptotically matchedkat, = 0.4.

also plotted in Fig. 1 for comparison. When kAp > 0.4 there are no lightly damped waves
In order to obtain a finite result for the thermal transport 4 1/D is slowly varying ink. By Taylor expanding

without resorting to arad hoc Debye shielding model 1/k2D(w, k') in Ak,, one finds that theAk,)° term
of the interaction, we should no longer assume thabamshes because o

— > cosAkx f dx' cosAkx'[T(x") — T(x)] =0,
g || Ak, 0 (12)

----- Debye 1,

—E(R;a()k) and the(Ak,)! term vanishes because it is odd Ak,.

’ The O(Ak,)* term leads back to the local form for the
conductivity, given by Eqg. (9), except that the integral is
limited tokAp > 0.4.

In the regimekAp < 0.4, lightly damped waves pro-
T vide the main contribution to the integral. Whennears
h a zero of the dielectric function, ai = w,(k) — iy(k),
1/D(w, k)D*(w, k') becomes sharply peaked, and this
peak provides the wave contribution to the flux. Assum-
ing thaty < w,, and integrating over the peak, one finds

100 ¢

—
(=]
T

—
T

g(k), h(je,k)

e
=

0.010

FIG. 1. The functionsg(k), gDe"ye(k) and h(k, je) versus
wave numberk = kAp; h(k,je) is shown for three values dv, - 27 /||

of je wheree = wAp/L. The respective areas under these D(w,k)D*(0,k") lw=k.v. 0D/dw,dD/dw!
curves determine the local, the Debye-shielded, and the nonlo- o _ .

cal contributions to the thermal conductivity, i.@ecar, k2™¢, 2y —iAw (13)
and k/ 492 + Aw?’

waves "
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where o) = w,(k’), Aw = w,(k) - o,(k’), and TABLE I. Wave contribution to heat transport.
y = [vy(k) + y(k')]/2. The imaginary part van- : , .
ishes because it is odd upon interchange kgf and J€ Kiaves/ (€"1/ M)

k.. The small k “wave” contribution to the flux 0.1 0.021

is evaluated by substituting Eg. (13) into Eg. (11), 0.05 0.046

taking Aw = Ak,dw,/dk,, and using the small 0.01 0.168

k limit of the magnetized plasma dispersion rela- 8'88“;’ 8'323

tion: o, = w,k(1 +3k*/2)/k, y=—Jmw, X 0.0005 1367

e V(02K 0D /0w, ~ 2k 0, /K] o}, 0.0001 4.645
Substituting Eg. (13) into Eq. (11), we note that
Eqg. (11) is unchanged by the addition of any function
independent ofAk, to the right-hand side of Eq. (13)
[this follows from Eq. (12)]. We therefore subtract resonant plasma waves greatly increaée) compared to
a/[lk.||dD/dw,.?y(k)], which causes the integrand of gPe®¥(k) (see Fig. 1). Only fok = 3 do these functions
Eq. (11) to vanish wheAk, = 0. Then upon integrating approach one another.
by parts once in’, taking Ak, = jar /L, turning the sum For je — 0, an asymptotic analysis df(k, je) reveals
over k, into an integral, and adding in the contribution thatx/, ., = [2k*' /(3 je)]e’n/m®, wherek*( je) is the
from kAp > 0.4, we arrive at a finite heat transport rate: wave number at the maximum oi(k, je), given by
x . k* ~ 1/\/—2In(—je/In je) for je < 1. For example,
Q0 _ 9 > (Kioeal + K )TisinlZt . (14) for je = 0.001, we obtain},,., = (0.2)°nv.ApLy, in
it ax 5 navesJ L agreement with the heuristic estimate of Eq. (1).
In conclusion, whemp > r. we have shown that the
Here, T, = (2/L) fg dx' 9T /ax'sin(jmx'/L) is the classical theory of magnetized plasma thermal conduc-
Fourier transform of the temperature gradierf,.,; =  tvity is not relevant. In thl_s regime the conductivity is
en/Qm?mv) [;, g(k) dk is the contribution to the ther- independent of the magnetic field strength. For thermal
mal conductivity due to large wave number short-rangescale lengthsly = 1004, across theB field, emission
interactions, andk/ = 2n/QmmD) fg'4 n(k, je) dk and absorption of lightly damped plasma waves is the

waves

is the lightly damped wave contribution due to smalldominant heat transport me_chanism. For smaller scale
wave numbers.i(k, je) is a resonance function derived !€N9ths, short-range interactions on the scalé gfpro-
from Egs. (11) and (13): vide the domlnant.tranqurt mechams_m. Both the sh_ort-
range and wave interaction mechanisms were obtained
- - - o - as limiting cases of a unified transport theory. It may
hik,je) = 27k2f dQlk |k} /[(jeko)* + 4y7k°], be worth noting that a similar wave mechanism also en-
(15)  hances the cross-field like-particle collisional particle flux
in plasmas which are sufficiently large [6]. Experiments
where d() is the element of solid angle. This function to measure the thermal conductivity and particle flux in
is displayed in Fig. 1. Whene < 1, h(k,je) = g(k)  both Maxwellian and non-Maxwellian non-neutral plas-
over a region neak = 0.4, so we Car_1 asymptotically mas are now under way.
match the local and wave contributionskat= 0.4. How- This work was supported by Office of Naval Research

ever, h(k, je) is not divergent at smalk, so the heat Grant No. N00014-96-1-0239 and National Science Foun-
flux is now finite, and depends on the scale length of thgjation Grant No. PHY94-21318.

thermal gradient.; through the parametere [Eq. (14)
implies thatLy = L/jm, soje = Ap/Ly]. Performing
the required integrals ovet numerically we find that
Klocal = 0.097Se2n/m17 andx/ is provided in Table | [1] M.N. Rosenbluth and A.N. Kaufmann, Phys. R&@9, 1

waves

for different values ofje. We see thaic/ .. > Kiocal (1958).
only for je < 0.02. ) [2] M.N. Rosenbluth and C.S. Liu, Phys. Fluid®, 815
Note that the conductivityki..,; from the rigorous (1976).

3] A.A. Ware, Phys. Fluids B, 2769 (1993).

eigenmode analysis is an order of magnitude larger tha 4] D.C. Montgomery and D.A. TidmanPlasma Kinetic

the value xP®¥*obtained withad hoc Debye shielding. Theory(McGraw-Hill New York, 1964, ) p. 66

This is because the interaction cannot be accuratelys] S. Ichimaru. Basic P,rinciples of Plasma ﬁ’hyéic(w. A
characterized by the simple Debye-shielded dielectric” ~ gepjamin, London, 1973), p. 28.

responseD = 1 + k2, even though the range over [g] D.H.E. Dubin and T.M. O'Neil,Proceedings of the US-

which particles interact is limited t@(Ap) when the Japan Joint Institute for Fusion Theory Prograidagoya
wave number of the interaction satisfiegs> 0.4. Off- Univ., Nagoya, Japan, 1986), pp. 265-279.
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