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Nonlinear phase shifts at the two-photon level can be greatly enhanced by a cooperative
involving pairs of atoms, which can give a phase shift proportional to the square of the nu
of atoms in a medium. This is a nonlocal quantum effect that does not exist for classical s
of light. Cooperative effects of this kind may have practical applications in quantum compu
[S0031-9007(97)03199-2]

PACS numbers: 42.50.Dv, 03.65.–w, 42.65.Vh, 89.70.+c
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High-intensity fields are typically required to produc
any significant nonlinear effects [1,2] in optics, where
the electric field associated with a single photon is no
mally very weak. This poses a major challenge for th
development of an optical approach [3,4] to quantum co
puting [5–7], which would require nonlinear interaction
at the two-photon level. Although relatively large field
can be obtained by confining a single photon to a sm
cavity, that approach may not be feasible for the constru
tion of large-scale computers due to the size and cost
the high-Q cavities [3] required. This Letter describes
cooperative mechanism involving pairs of atoms that c
give a nonlinear phase shift proportional to the square
the numberNA of atoms in a medium. For large values o
NA, the resulting enhancement in the nonlinear phase s
is expected to be of practical use in optical quantum gat
These nonlinear phase shifts are also of fundamental
terest, since they are nonlocal quantum effects that do
exist for classical states of light.

Most mechanisms [1–3,8,9] for the production o
nonlinear phase shifts involve the interaction of tw
photons with the same atom, which gives a phase s
proportional to the number of atoms in the medium.
the cooperative mechanism of interest here, two photo
interact with each pair of atoms in a medium, such
those labeledA and B in Fig. 1. A typical interaction
is illustrated by the Feynman-like diagram of Fig. 2, i
which atomA absorbs photon 1 and reemits a photon wi
frequencyv2, after which atomB absorbs a photon with
frequencyv2 and reemits photon 1. This interchange o
the two photons has no net effect other than to produ
a shift in the energy of the system that can be calcula
using fourth-order perturbation theory. For simplicity,
will be assumed that the medium is an atomic vapor ce
although the theory applies equally well to a solid o
liquid for large detunings. It will be found that there is
large probability that both atoms will be left in the sam
momentum state that they occupied initially, in whic
case there are on the order ofN2

A different Feynman
diagrams leading to the same final state, one set
each pair of atoms. Under the appropriate experimen
conditions, the contribution from each pair of atoms w
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have the same phase and the total energy shift will
proportional toN2

A.
In the dipole approximation [10,11], the interactio

HamiltonianH 0 is given by

H 0  2q
X

i

ri ? ÊsRid , (1)

whereq is the charge of the electron,ri is the location of
an electron relative to the center-of-mass coordinateRi of
atom i, andÊsRid is the electric field operator at position
Ri . Steady-state perturbation theory [10] gives a fourt
order energy shift of

DE 
X0

lmn

k0jH 0jnl knjH 0jml kmjH 0jll kljH 0j0l
se0 2 end se0 2 emd se0 2 e1d

2
X0

ln

k0jH 0jnl knjH 0j0l k0jH 0jll kljH 0j0l
se0 2 end se0 2 e1d2

(2)

where j0l is the initial state with energye0 while jll,
jml, andjnl are a complete set of intermediate eigensta
with energiese1, em, anden. The same results [12] can
also be obtained using time-dependent perturbation the
in analogy with the usual forward-scattering amplitud
approach [10]. The phase shiftDf can be related to the
energy shiftDE by

Df  2
Z

DEstddtyh̄ 8 2DEDtyh̄ , (3)

FIG. 1. The geometry of interest, in which two photons a
incident upon a medium containingNA atoms, two of which
are labeledA andB.
© 1997 The American Physical Society
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FIG. 2. A Feynman-like diagram in which two atoms ex
change two photons, which can give a nonlinear phase s
proportional to the number of pairs of atoms.

whereDt is the interaction time. Equivalent results ca
be obtained by calculating the change in the dispers
relation giving the wave numberksvd as a function ofv.

The center-of-mass contribution to Eq. (2) can b
written as a factorfR given by

fR 
X

lc,mc ,nc

k0je2ik1?RB jncl kncje
ik2?RB jmcl

3 kmcje2ik2?RA jlcl klcjeik1?RA j0l . (4)

Here jlcl, jmcl, and jncl represent the atomic center-of
mass intermediate states and it has been assumed tha
recoil energy is sufficiently small that it has no significa
effect on the total energy of the intermediate states. Th
eigenstates are a complete set regardless of their fo
which allows Eq. (4) to be rewritten as

fR  k0j cosfsk1 2 k2d ? sRA 2 RBdgj0l . (5)

The fact that the sum over intermediate states includ
each pair of atoms (A, B) relabeled in the opposite orde
(B, A) has also been used. If the medium is sufficient
thin that

sk1 2 k2d ? sRA 2 RBd ø 1 , (6)

then the recoil factorfR is on the order of unity.
The recoil factorfR is the probability amplitude that
the final atomic momentum states will be exactly th
same as the initial states, in which case there w
be no loss of coherence due to entanglement of
photons with the recoil momentum of the atoms; th
is somewhat analogous to the recoillessg-ray emission
of the Mössbauer effect [13]. The remaining events
which there is a change in the atomic momentum sta
correspond to incoherent scattering events that occu
a rate proportional toNA and not N2

A. As a result,
the fraction of incoherent events due to atomic recoil
expected to be insignificant in the limit of largeNA.

The process shown in Fig. 2 can occur with eith
photon being absorbed first and with either atom maki
the first transition. This corresponds to four distin
diagrams whose total contribution to the energy shift
ift
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given by

DEA  M4N2
AfR

∑
n1sn2 1 1d

d
2
1 sd1 2 d2d

1
sn1 1 1dn2

d
2
2 sd2 2 d1d

∏
.

(7)

Here n1 andn2 are the number of photons with frequen
ciesv1 andv2, respectively, and the detuningsd1 andd2

are defined by

d1  h̄v1 2 Ea d2  h̄v2 2 Ea , (8)

whereEa is the atomic excitation energy. The detuning
are assumed to be much larger than the Doppler shift,
which cased1 andd2 are essentially the same for all of the
atoms and the Doppler shifts can be ignored. The mat
elementM is the same for all four transitions and is give
by

M  qE krl , (9)

whereE is the magnitude (variance) of the electric fiel
associated with a single photon whilekrl  jkejrjglj is
the matrix element of the displacement of the electro
For a single-mode cavity,E is given by

E  jkn  0jÊjn  1lj ,

s
h̄v

2eV
, (10)

where e is the permittivity of free space andV is the
volume of the cavity, whileE 2  kE2E1l for the case
of localized single-photon wave packets.

An additional set of Feynman-like diagrams in whic
both photons are absorbed before either is reemitted
illustrated in Fig. 3, while Fig. 4 shows a set of diagram
in which each atom absorbs and reemits the same pho
Including all of the possible sequences of the events, th
two sets of diagrams contribute energy shifts given by

DEB  M4N2
As1 1 fRdn1n2

3

∑
1

d1sd1 1 d2dd2
1

1
d1sd1 1 d2dd1

1
1

d2sd1 1 d2dd2
1

1
d2sd1 1 d2dd1

∏
.

(11)

FIG. 3. Additional Feynman-like diagrams in which both
photons are absorbed before either is reemitted.
3853
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FIG. 4. Additional Feynman-like diagrams in which eac
atom absorbs and reemits the same photon.

DEC  2M4N2
An1n2

∑
1

d
2
1d2

1
1

d
2
2d1

∏
. (12)

Higher-order perturbation calculations can be suscep
ble to various errors, such as the omission of a diagra
As a precaution, the total contribution from all of the dia
grams was calculated manually and then verifie
by a separate calculation that utilized a rule-bas
symbolic algorithm coded in Mathematica. The resul
obtained from perturbation theory were also compar
with numerical calculations. All three methods gave th
same results.

The total energy shift from all of the above diagram
can be reduced to

DE  M4N2
AfR

n1d
2
2 2 n2d

2
1

d
2
1d

2
2sd1 2 d2d

. (13)

This result may seem somewhat surprising, since it do
not contain any nonlinear terms proportional ton1n2. All
of the individual diagrams contain such terms but they a
cancel completely.

This cancellation between the diagrams can be avoid
by adding a buffer gas to increase the rate of collision
which affects the different Feynman diagrams by differe
amounts. To see why this is the case, suppose t
jd1 2 d2j ø jdj, whered  d1 , d2, and consider the
amount of time Dtvirt that the system spends in the
various virtual (intermediate) states. From the Heisenbe
uncertainty relation

Dtvirt ,
h̄

DEvirt
, (14)

where DEvirt is the lack of energy conservation in a
particular virtual state. As a result, the system spend
relatively large amount of time in the second intermedia
state of Fig. 2, whereDEvirt  jd1 2 d2j ø jdj, and is
much more likely to undergo a collision during that tim
than is the case for the diagrams of Fig. 3.

The effects of collisions can be estimated by assumi
that each of the virtual states has a finite lifetime du
to collisions, which is equivalent to replacing the energ
em of each intermediate state with a complex energ
em 2 iw, wherew is equal to the spectral linewidth due
to collisions. Making this substitution in Eqs. (7), (11)
3854
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and (12) gives a total energy shift of

DE  2
2M4N2

An1n2fR

d3

w2

sd1 2 d2d2 (15)

to lowest order [14] inwysd1 2 d2d, where the nonlinear
term proportional ton1n2 is the only one that has bee
retained. It can be seen that the nonlinear phase shi
proportional to a collision factorfC defined by

fC 
w2

sd1 2 d2d2
. (16)

Experiments can be designed in such a way thatfC , 1,
in which case the collisions effectively eliminate th
contribution from one set of diagrams while having litt
effect on the others. It should be noted that large valu
of the detuning itselfsjdj ¿ wd are still possible under
these conditions and that a very wide range of collisi
times can be obtained by an appropriate choice of sol
liquids, or gases.

The effects of collisions can be rigorously calculated
including the buffer gas atoms and their scattering Ham
tonian as part of the system and doing perturbation the
to higher (sixth) order [15]. The results obtained have t
same form as those of Eq. (15), where the value of the
rameterw depends on the details of the collision proce
and the detuning. Higher-order perturbation theory sho
that there can be a large contribution from virtual collisio
processes that do not conserve energy and are tempo
in the sense that the system quickly returns to its origin
state. It should be noted that these virtual collision pr
cesses cannot be included in a master-equation appro
in which the buffer gas is considered to be part of the “e
vironment” whose effects are assumed to be irreversi
and represented by various decay rates for the density
trix of the “system.”

This dependence on collisions is somewhat simi
to the collision-induced resonances observed in fo
wave mixing, where the probability amplitudes for certa
processes are zero in the absence of collisions
give rise to extremely narrow (subnatural) linewidths
high pressures [16]. Collisions need not introduce lar
amounts of decoherence or random phase fluctuatio
For example, consider the usual linear phase shift (ind
of refraction) of visible light in air or a transparent soli
such as glass. Although there are a large number
collisions taking place, there is also a large probabil
amplitude for the virtual processes responsible for t
change in the index of refraction to occur without
collision process. The remaining processes are incohe
and correspond to a relatively small scattering rate, sin
the incoherent processes have a stronger dependenc
the detuning than does the coherent phase shift. Ph
fluctuations due to the random nature of the collisi
process are not significant since the observed phase i
average over a macroscopically large number of atom
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A similar situation is expected for the nonlinear pha
shifts of interest here in the limit of largeNA and large
detunings.

The magnitudeDfnon of the nonlinear phase shift ca
be put in perspective by comparing it to the magnitu
Dflin of the usual linear phase shift, which can b
calculated [10] from the second-order energy shift:

DEs2d 
X

l

k0jH 0jll kljH 0j0l
e0 2 e1

 M2 NA

d
. (17)

Consider the ratioR defined by

R 

Ç
Dfnon

sDflind2

Ç
 2

h̄
dDt

fRfC 
2

dvDt
fRfC , (18)

where dv is the detuning expressed as an angu
frequency. Experiments can be designed [15] in suc
way thatfR , 1, fC , 1, anddvDt , 1, in which case

Dfnon , Df2
lin . (19)

If NA is sufficiently large thatDflin is equal to 1 rad,
then Dfnon will also be on the order of 1 rad, which i
sufficient for the implementation of quantum logic gate
An approximate calculation suggests that a nonlin
phase shift of p rad can be obtained from a 1 cm
path length through a typical atomic vapor cell with
detuning of 10 GHz; much larger detunings are possi
for crystalline materials.

An interesting feature of this effect is the fact that e
ergy is not conserved at the location of atomA nor at
atom B but it is conserved globally, which requires no
local correlations between the effects of the two atom
It can be shown that nonlinear phase shifts of this ki
cannot be derived from the commonly used assumpt
[1,2] that the polarization of the medium is proportion
to a set of nonlinear susceptibility coefficientssx s3dd; the
local nature of the polarizations induced in this way is i
consistent with the nonlocal nature of the effect. It c
also be shown that nonlinear phase shifts of this kind c
be produced only by photon number (Fock) states, wh
high-intensity coherent states will produce a small amo
of incoherent scattering instead.

Some of the potential advantages of an optical appro
for quantum computing based on this effect have be
described previously [4]. The increased magnitude
the phase shift can be used to relax the requireme
on the system and may eliminate the need for highQ
cavities [3], atomic beams, etc., none of which appear
be well suited for the construction of a full-scale quantu
computer. More importantly, it should be possible
use large detunings to avoid the decoherence assoc
with scattering [17] and absorption, which is one of t
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main concerns in quantum computing. This approa
may eventually allow the construction of large numbe
of quantum gates on a single substrate using opti
waveguides and microfabrication techniques.
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