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Interaction of Reaction-Diffusion Fronts and Marangoni Flow on the Interface of a Deep Fluid

L. M. Pismen
Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 1 August 1996)

It is shown that interfacial solitary structures (spots) generated by a bistable chemical reaction can
be stabilized by Marangoni flow preventing the spread of a dynamically favorable state with a higher
surface tension. The solutions are constructed using the method of matched asymptotic expansions
to resolve the singularity at a sharp interface between the alternative states, and to compute the self-
induced flow velocity advecting the domain boundary. [S0031-9007(96)02088-1]

PACS numbers: 82.40.Ck, 47.20.Dr, 47.54.+ r
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It has long been realized that chemical instabilities c
both induce and be strongly affected by hydrodynam
flows. In early experiments with BZ and other oscillato
reactions, this interaction led to a transition from prop
gating waves in confined systems to cellular structures
systems with a free interface where Marangoni flow w
excited by concentration gradients of chemical origin [
Strong interaction between chemical and interfacial ins
bilities has been the subject of a number of experimen
studies [2]. A related direction was the study of chem
cal fronts affected by buoyancy [3]; both effects we
apparently relevant in the observations of patterns of p
tochemical origin [4].

Following the linear analysis of chemical instabilit
coupled with Marangoni flow [5], theoretical analysis
the nonlinear development of reaction-convection ins
bilities has been restricted so far either to very shall
layers enabling lubrication approximation [6] or to sy
tems close to a bifurcation point [7]; both approaches
inapplicable to the most practical case of sharp react
fronts. The only alternative was numerical modeling [8

This Letter demonstrates a possibility of the formati
of interfacial solitary structures generated by chemi
instabilities and stabilized by Marangoni flow. A suitab
basic system is a multistable chemical reaction involvi
an insoluble surfactant taking place on the interfa
of deep fluid. The analysis is based on the followi
assumptions: (a) The induced flow is creeping, a
inertial effects can be neglected. (b) The bounda
between alternative surface states is sharp, which requ
that the characteristic diffusional length be much sma
than both the characteristic viscous length and the siz
the emerging structures.

Both assumptions are physically realistic, and allo
one to make use of the most powerful technique
constructing and analyzing nonequilibrium patterns
chemical origin, based on tracing the motion of sha
interfaces between alternative states of a bistable sys
interacting with a long-range field [9,10]. Marango
flow that is induced by concentration gradients in t
transitional region separating the two alternative sta
and, in its turn, advects this boundary, well qualifies a
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long-range controlling agent; its action is, however, hig
nonlocal, which poses serious analytical difficulties.

Recently, the boundary integral technique was app
to the computation of the motion of interfacial domai
coupled to the creeping motion of the underlying flu
[11,12]. The effect of a sharp interface was, however,
emergence of a finite time singularity [12] that ruled o
the formation of stable structures. We shall further
that the singularity can be indeed resolved when fin
though low, diffusivity is taken into account. The meth
of matched asymptotic expansions (akin to that used
the analysis of the motion of vortex lines [13]) will b
applied to resolve the structure of the domain bound
and to obtain a finite stationary velocity of the induc
flow. It will be further shown that inward flow ca
stabilize a solitary spot of a dynamically prevalent st
with a higher surface tension.

Consider an insoluble surfactant taking part in an au
catalytic chemical reaction. The surface concentratiou

obeys the convective reaction-diffusion equation that
write in a dimensionless form

ut ­
1
2 =2u 2 = ? scud 1 fsud . (1)

The time scale is the characteristic reaction timet,
the coordinates are scaled by the diffusional lenp

2Dt, whereD is the surface diffusivity,c ­ v
p

ty2D
is the dimensionless surface velocity, andfsud is the
dimensionless net surfactant source due to chem
reactions and exchange with the gas phase. We
interested in the case when at least two stable statio
solutions exist; therefore the functionfsud should have
three zeros, and its derivative at the smallest and lar
zero should be negative. The simplest function posses
this property is a cubic. By shifting and rescaling, t
two stable zeros can be placed atu ­ 0 and u ­ 1.
Thus, we can assumefsud ­ 2usu 2 qdsu 2 1d, where
0 , q , 1.

Equation (1) with the cubic source has a sim
stationary solution in a co-moving frame that describ
a straight-line front propagating with the speedc0 ­
q 2

1
2 :

u ­
1

1 1 e2x ;
1
2

µ
1 1 tanh

x
2

∂
. (2)
© 1997 The American Physical Society
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The x axis is directed normally to the front, and th
velocity is positive when the lower state advances. T
front is stationary when the interface is advected
the direction opposite to chemical propagation with t
same speed. Generally,c0 1 c ? n is the displacemen
speed of a point on a curved front along the norm
n. This speed can be corrected to account for a w
curvature effect.

The interfacial flow velocity appearing in Eq. (1) is in
duced by the Marangoni force due to an instantane
distribution of surface tensionssxd that corresponds to
a given instantaneous surface concentration profile.
der a realistic assumption of large Prandtl numbersPr ­
nyD (n is the kinematic viscosity), the characteristic flo
relaxation time is far shorter than the characteristic dif
sional time. Assuming

p
nt ¿ L, the viscous respons

time can be neglected, and the stationary Stokes equa
is applicable. The 2D horizontal velocity vectorv and
the vertical velocityw are expressed, assuming vanishi
vertical vorticity, respectively, asv ­ =xz , w ­ 2=2x,
where= is the 2D vector differential operator. The velo
ity potentialxsx, zd is determined by the Stokes equatio

s=2 1 ≠2
zd2x ­ 0 . (3)

We shall solve this equation in an infinitely deep and
finitely extended layerz , 0 with the Marangoni bound-
ary conditions on the undeformable free boundaryz ­ 0:

xsx, 0d ­ 0, mxzzsx, 0d ­ 2=s , (4)

wherem is the dynamic viscosity.
The solution is found most readily by Fourier transfor

[14], yielding

x̂skd ­ 2
1

2km
zekzŝskd , (5)

where hats denote Fourier transforms of the respec
functions, dependent on the wave numberk ­ jkj. The
only quantity relevant for our purpose is the interfac
velocity, which is computed asv ­ =fsxd; the interfacial
flow potentialfsxd ­ xzsx, 0d can be expressed as

fsxd ­ m21
Z

Gsjx 2 yjdss ydd2y , (6)

where the integration is carried out over the entire f
surface. The kernelGsrd depends only on the 2D distanc
r ­ jx 2 yj, and is obtained as the inverse transform
x̂zs0d:

Gsrd ­
1

8p2

Z
k21e2ik?xd2k

­
1

4p

Z `

0
J0skrddk ­

1
4pr

.

It is convenient to express the velocity through t
gradient of surface tension. After transforming to th
dimensionless variables, we obtain the expression
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the surface flow velocity

csxd ­ 2M
Z

Gsjx 2 yjd=us ydd2y , (7)

where M ­ sDsymd
p

ty2Dd is the Marangoni numbe
based on the characteristic diffusional length andDs

is the difference of surface tension between the low
(u ­ 0) and upper (u ­ 1) stationary states (it is assume
that the surface tension decreases linearly with grow
concentration). This solution exists providedssxd ­
const at jxj ! `. Using Eq. (7) in Eq. (1) yields an
integro-differential equation of the surface concentrati
This equation isnonlocalso that the motion is depende
on the instantaneous distribution of domains occupied
the alternative states in the entire region.

The thickness of the front region where the change
the surfactant concentration occurs is determined by
characteristic diffusional length

p
2Dyt. On distances

far exceeding this scale, the concentration distribut
can be considered as stepwise. Using the discontinu
function usxd that assumes two alternative valuesu ­ 0
and u ­ 1 in the domains separated by a boundaryG

(presumed smooth but not necessarily simply connec
brings Eq. (7) to the form

csxd ­ 2
M
4p

I
G

n
rssd

ds , (8)

where the contour is parametrized by the arc lengths, and
rssd ­ jx 2 yssdj is the distance from the reference poi
to a point on the contour; by convention, the normal
directed towards the domain occupied by the upper sta

Equation (8) is quite adequate for computing the flo
velocity far from the fronts but cannot be applied to t
problem of front dynamics, since the integral diverg
on the front location. To compute the velocity induc
within the front region, one has to remove a short
segment from the integral (8). On the removed segm
the finite diffusional length has to be taken into accou
by applying Eq. (7) containing a smooth concentrat
profile. Both parts of the contour are further matched
in Ref. [13].

We presume that the local curvature radius of the fron
of the same order of magnitude as the characteristic ma
scopic scaleL, and far exceeds the diffusional lengt
Then the concentration gradient is directed normally to
front, and the contour segments are almost rectilinear
distancess ø L. In accordance with a common procedu
of the theory of front dynamics [9,10], we transform to
local coordinate frame co-moving with the front, and ta
a certain contour, say,u ­ q, as the origin of the norma
coordinatej. The origin of the tangential coordinateh is
taken at the foot of the normal drawn from the referen
point. Consider a point with a normal coordinatej ø L,
and cut from the contour integral in Eq. (8) a small a
of the length2d, wherej ø d ø L. On the remaining
part of the contour,j can be neglected; thus, the velo
ity induced at the reference point by the “far” contour
383
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determined by Eq. (8). The normal velocity computed
this way diverges logarithmically atd ! 0, and can be ex
pressed as

csod } 2
M
2p

ln
C
d

, (9)

where C is a constant dependent on the shape of
contour in the far region. In the near region, we introdu
a stretched coordinateh ­ syj, and compute the inne
integral as

csidsjd ­ 2
M
2p

lim
dyj!`

Z `

2`

u0sj 2 z ddz
Z dyz

0

3
dhp

z 2 1 h2

­ 2
M
2p

∑
lns2dd 2

Z `

2`

ln jz ju0sj 2 z ddz

∏
.

(10)
The auxiliary valued falls out when both integrals ar
added up. The resulting finite expression for the fl
velocity in the front region is

csjd ­ 2
M
2p

ln
C

bsjd
,

ln bsjd ­
Z `

2`

ln jj 2 z ju0sz ddz . (11)

Sinceu0sz d ! 0 at z ! `, bsjd } j at j ¿ 1. The func-
tion bsjd computed numerically using the analytical so
tion u0sjd ­

1
4 sech2 j

2 corresponding to Eq. (2) is plotte
in Fig. 1.

In view of the nonlocal character of the induc
motion, only a symmetric configuration may be stationa
Consider a spot of the radiusL occupied by the lowe
state on the infinite interface occupied by the upper st
We presume that the spot radius is large when meas
on the diffusional scale, so that the dimensionless ra
l ­ Ly

p
2Dt ¿ 1. The induced surface flow velocity i

computed using Eq. (8) as

cs rd ­ 2
M
2p

Z p

0

cosadap
1 1 s ryld2 2 2s ryld cosa

­

(
2

M
p fKs l

r d 2 Es l
r dg , at r . l,

2
Ml
pr fKs r

l d 2 Es r

l dg , at r , l ,
(12)

FIG. 1. The velocity profile in the vicinity of the front (th
maximum velocity is taken as zero level).
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wherer, a are polar coordinates, andK, E are complete
elliptic integrals. The radial flow velocity vanishes a
r ­ 0 and decreases~1yr at r ! ` (Fig. 2).

As expected, there is a divergence in the vicinity of th
front:

c } 2
M
2p

ln

Ç
8l

e2j

Ç
at j ! 0 , (13)

wherej ­ r 2 l andl ¿ j ­ Os1d. The divergence is
resolved using the asymptotic procedure described abo
The resulting finite expression for the flow velocity a
distancesj ­ Os1d from the spot circumference coin-
cides with Eq. (11), whereC ­ 8lye2. In the outer limit
x ! `, Eq. (11) coincides with the inner limit (13) of the
outer solution. The uniformly valid composite expansio
can be obtained by adding up Eqs. (11) and (12), and
tracting their common limit (13).

For the purpose of semiquantitative estimation, o
can assume that the front propagation is affected mos
by the maximum advection velocity in the front region
which is observed at the location where the concentrati
gradient is also at its maximum. Using the numeric
value bs0d ­ 0.882, the maximum velocity is computed
ascm ­ 2sMy2pd lns0.955ld. Since the dependence on
l is logarithmical, this velocity may be ofOs1d on the
diffusional scale and balance the intrinsic front velocit
c0 ­ q 2

1
2 when M # Os1d and l ¿ 1, but lnl is

not exceedingly large. The curvature correction to th
intrinsic speed of the chemical front is ofOsl21d, and can
be neglected. The radius of a stationary spot is compu
as

ls ­ Ly
p

2Dt ­ 1.047 exp
ps2q 2 1d

M
. (14)

Since the variable flow velocity is actually smaller tha
its maximal value, a somewhat larger radius might b
actually necessary to induce the flow counterbalancing
speed of the chemical front; thus, the above express
gives a lower estimate of the spot size; the correcti
would only amount, however, to modifying the numerica
coefficient. The above analysis is applicable if the sp
radius is bounded by the conditions

p
Dt ø L ø

p
nt.

FIG. 2. The interfacial radial velocity in and around a solitar
spot.
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The dynamic equation for the dimensionless radius
a circular spot isdlydt ­ c0 1 cmsld. Sincec0

msld , 0,
the spot should be stable to homogeneous perturbati
indeed, an increase of the radius would cause (atM . 0)
an increased inward flow restoring the stationary state

Stability to perturbations breaking the circular sym
metry can be checked with the help of the meth
of boundary perturbations similar to that of Ref. [10
Integrating Eq. (8) over a weakly distorted circle with th
radius lsfd ­ ls 1 l̃einsf2f0d, l̃ ø ls, proves that the
spot is stable atM . 0 also to inhomogeneous bounda
perturbations. A reverse setup, with a spot occupied
the upper state (with a lower surface tension), is trea
formally in the same way, but, as the flow in this ca
is outward, the stationary state is evidently unstable.
similar instability was observed in experiment with rad
spreading of a surfactant [15].

A rational expansion can be carried out for the ca
when the Marangoni number is small, and the tw
alternative states are close to the Maxwell constructi
The most interesting situation arises when front curvat
effects are also of the same order of magnitude. Thus
can takel21 as the small parameter of the expansion, a
set q ­

1
2 1 q1yl, M ­ M1yl. Expanding u ­ u0 1

l21u1 1 . . . , c ­ l21c1 1 . . . , yields in the zero order
u0 defined by Eq. (2). The homogeneous part of the fi
order equation valid in the vicinity of the boundary
a circular spot with the radiusl has a zero eigenvalu
corresponding to the translational symmetry of the ze
order equation. The solvability condition of the firs
order equation requires that its inhomogeneous part
orthogonal to the corresponding eigenfunctionu

0
0s rd ­

1
2 sech2 j

2 ; j ­ r 2 l. Since the eigenfunction falls of
sharply at j ¿ 1, the asymptotic expression for th
velocity valid in the front region, Eq. (11) withM
replaced byM1 can be used forc1. This yields a relation
betweenq1 andM1 that has to be satisfied at a stationa
front:

1
2

2 q1 1
M1

2p
ln

l
l0

­ 0 , (15)

where

ln l0 ­ 6
Z `

2`
u00

0 sjdu0sjddj

3
Z `

2`
ln jj 2 z ju0

0sz ddz ­ 1.344 .

The first term in Eq. (15) describes the curvature effe
If it is neglected, Eq. (14) is recovered, but with a larg
numerical coefficient expsl0d ­ 1.969.

If there are a number of spots removed at distan
far exceeding the diffusional length, the induced flow
additive, since the Stokes problem is linear. Sepa
of
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spots are attracted one to the other by the induced inw
flow; clearly, the system shows a tendency to aggregat
but coalescing spots should shrink again to the sa
stable radius at which the inward flow is compensat
by the chemical propagation speed. Thus, Marang
flow serves as an efficient mechanism for preventing
spread of the state with a higher surface tension when
dynamically favorable.
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