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Interaction of Reaction-Diffusion Fronts and Marangoni Flow on the Interface of a Deep Fluid
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It is shown that interfacial solitary structures (spots) generated by a bistable chemical reaction can
be stabilized by Marangoni flow preventing the spread of a dynamically favorable state with a higher
surface tension. The solutions are constructed using the method of matched asymptotic expansions
to resolve the singularity at a sharp interface between the alternative states, and to compute the self-
induced flow velocity advecting the domain boundary. [S0031-9007(96)02088-1]

PACS numbers: 82.40.Ck, 47.20.Dr, 47.54.+r

It has long been realized that chemical instabilities caong-range controlling agent; its action is, however, highly
both induce and be strongly affected by hydrodynamimonlocal, which poses serious analytical difficulties.
flows. In early experiments with BZ and other oscillatory Recently, the boundary integral technique was applied
reactions, this interaction led to a transition from propato the computation of the motion of interfacial domains
gating waves in confined systems to cellular structures icoupled to the creeping motion of the underlying fluid
systems with a free interface where Marangoni flow wag11,12]. The effect of a sharp interface was, however, the
excited by concentration gradients of chemical origin [1].emergence of a finite time singularity [12] that ruled out
Strong interaction between chemical and interfacial instathe formation of stable structures. We shall further see
bilities has been the subject of a number of experimentahat the singularity can be indeed resolved when finite,
studies [2]. A related direction was the study of chemi-though low, diffusivity is taken into account. The method
cal fronts affected by buoyancy [3]; both effects wereof matched asymptotic expansions (akin to that used for
apparently relevant in the observations of patterns of phathe analysis of the motion of vortex lines [13]) will be
tochemical origin [4]. applied to resolve the structure of the domain boundary,

Following the linear analysis of chemical instability and to obtain a finite stationary velocity of the induced
coupled with Marangoni flow [5], theoretical analysis of flow. It will be further shown that inward flow can
the nonlinear development of reaction-convection instastabilize a solitary spot of a dynamically prevalent state
bilities has been restricted so far either to very shallowwith a higher surface tension.
layers enabling lubrication approximation [6] or to sys- Consider an insoluble surfactant taking part in an auto-
tems close to a bifurcation point [7]; both approaches areatalytic chemical reaction. The surface concentration
inapplicable to the most practical case of sharp reactionbeys the convective reaction-diffusion equation that we
fronts. The only alternative was numerical modeling [8]. write in a dimensionless form

This Letter demonstrates a possibility of the formation 6, = %VZQ — V- (cO) + £(6). (1)

of interfacial solitary structures generated by chemicakhe time scale is the characteristic reaction time
instabilities and stabilized by Marangoni flow. A suitable 1o coordinates are scaled by the diffusional length

basic system is a multistable chemical reaction invoIvingm whereD is the surface diffusivitye = vv/7/2D

an lnsolubl_e surfactant ta.k'n.g place on the mterfgcqs the dimensionless surface velocity, afip) is the

of deep fluid. The analysis is based on the followingginensionless net surfactant source due to chemical
assumptions:  (a) The induced flow is creeping, andeactions and exchange with the gas phase. We are
inertial effects can be neglected. (b) The boundary,i egied in the case when at least two stable stationary
between alternative surface states is sharp, which requires)| tions exist: therefore the functioh(#) should have
that the characteristic diffusional length be much smalleg, .o zeros, and its derivative at the smallest and largest

than both the characteristic viscous length and the size of,,q should be negative. The simplest function possessing

the emerging structures. this property is a cubic. By shifting and rescaling, the

Both assumptions are physically realistic, and allow,, stable zeros can be placed @t=0 and 6 = 1.

one to make use of the most powerful technique forr s we can assumg6) = —0(0 — ¢)(6 — 1), where
constructing and analyzing nonequilibrium patterns of; _ C} <1 ' '
phemlcal origin, based on tracing the motion of sharp Equation (1) with the cubic source has a simple
interfaces between alternative states of a bistable SySteQ?ationary solution in a co-moving frame that describes
interacting with a long-range field [9,10]. Marangoni 5 gyaight-line front propagating with the speeg =
flow that is induced by concentration gradients in the 1.

transitional region separating the two alternative stated ~ 2 1

X
and, in its turn, advects this boundary, well qualifies as a O=T7T.=="73 <1 + tanh?>. (2
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The x axis is directed normally to the front, and the the surface flow velocity
velocity is positive when the lower state advances. The )
front is stationary when the interface is advected in c(x) = _M] G(x — yDVé(y)dy, (7)

the direction opposite to chemical propagation with the _ . .
same speed. Generally, + ¢ - n is the displacement where M = (Ao /u)y'7/2D) is the Marangoni number

speed of a point on a curved front along the normapased on the characteristic diffusional length ahd

n. This speed can be corrected to account for a weal® the difference of surface tension between the lower
cﬁrvature effect (6 = 0) and upper{ = 1) stationary states (it is assumed

The interfacial flow velocity appearing in Eq. (1) is in- that the surface tension decreases linearly with growing

duced by the Marangoni force due to an instantaneougoncentrat'on)' This solution exists_provided(x) =

distribution of surface tensiowr(x) that corresponds to ponst at!xl - Usmg Eq. (7) in Eq. (1) yields an
a given instantaneous surface concentration profile. U ntegro-differential equation of the surface concentration.

der a realistic assumption of large Prandtl numkrs= his equation isionlocalso that the motion is dependent
»/D (v is the kinematic viscosity), the characteristic flow on the instantaneous distribution of domains occupied by

relaxation time is far shorter than the characteristic diffu-the alternative states in the entire region.

sional time. Assuming/77 > L, the viscous response The thickness of the front region where the change of

time can be neglected, and the stationary Stokes equati(me surfactant concentration occurs is determined by the

is applicable. The 2D horizontal velocity vectarand characteristic diffusional length/2D/7. On distances

the vertical velocityw are expressed, assuming vanishingfar egceedm% th'g scalte, th.e coTchntratlﬁon d_dlstn?unon
vertical vorticity, respectively, ag = Vy,, w = —V2y, ;:an e c00n5| r?re as stepwise. | sing the Iljgon (l)nuous
whereV is the 2D vector differential operator. The veloc- unction 6(x) that assumes two alterative valués=

: : ; : . —and # = 1 in the domains separated by a boundaty
ity potentialy (x, ) is determined by the Stokes equation (presumed smooth but not necessarily simply connected)

(V2 + 92’y = 0. (3)  brings Eq. (7) to the form
We shall solve this equation in an infinitely deep and in- c(x) = M [ n ds (8)
finitely extended layer < 0 with the Marangoni bound- 4 Jr r(s)

ary conditions on the undeformable free boundary 0: ~ Where the contour is parametrized by the arc lengtnd
r(s) = |x — y(s)| is the distance from the reference point

x(x,00 =0,  ux;x0 =-Vo, (4)  to a point on the contour; by convention, the normal is
where is the dynamic viscosity directed towards the domain occupied by the upper state.
The solution is found most readily by Fourier transform quatlon (8) is quite adequate for computing the flow
[14], yielding velocity far from the fronts but cannot be applied to the
’ problem of front dynamics, since the integral diverges

on the front location. To compute the velocity induced
2k within the front region, one has to remove a short arc
where hats denote Fourier transforms of the respectiv%egTem fr%[n t.he ITtIegrth(i). On the rekmoyed segment,
functions, dependent on the wave numbet |k|. The € |n|t|e_d| usional length has to be ta ﬁn Into account
only quantity relevant for our purpose is the interfacialby ﬁpp ylngth. (7) fcohntamlng a sm(:ot h concen:}raélon
velocity, which is computed as = V¢ (x); the interfacial profile. Both parts of the contour are further matched as

. - in Ref. [13].
flow potential¢(x) = x:(x, 0) can be expressed as We presume that the local curvature radius of the frontis

1 2 of the same order of magnitude as the characteristic macro-
$(x) = u f G(x = yDo(y)dy, (8)  scopic scalel, and far exceeds the diffusional length.
Then the concentration gradient is directed normally to the
%ront, and the contour segments are almost rectilinear on
fdistances < L. Inaccordance with acommon procedure
of the theory of front dynamics [9,10], we transform to a
local coordinate frame co-moving with the front, and take
a certain contour, say, = ¢, as the origin of the normal
coordinateZ. The origin of the tangential coordinaigis
| o 1 taken at the foot of the normal drawn from the reference
= — ] Jolkr)dk = — . point. Consider a point with a normal coordingtex L,
4m Jo 4mr and cut from the contour integral in Eq. (8) a small arc
It is convenient to express the velocity through theof the length2s, whereé < § < L. On the remaining
gradient of surface tension. After transforming to the part of the contour¢ can be neglected; thus, the veloc-
dimensionless variables, we obtain the expression foity induced at the reference point by the “far” contour is

) = ——— k6 (k). 5)

where the integration is carried out over the entire fre
surface. The kernal(r) depends only on the 2D distance
r = |x — y|, and is obtained as the inverse transform o
X:(0):
_ 1 -1 —ik-x ;2
G(r) = 32 ke d°’k
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determined by Eq. (8). The normal velocity computed inwherep, @ are polar coordinates, arlfl, E are complete
this way diverges logarithmically @& — 0, and can be ex- elliptic integrals. The radial flow velocity vanishes at

pressed as r = 0 and decreasesl/r atr — o (Fig. 2).
0 _ M | C 9 As expected, there is a divergence in the vicinity of the
= NS ©®)  front:
where C is a constant dependent on the shape of the M 3/
contour in the far region. In the near region, we introduce c=——1n — até — 0, (13)
a stretched coordinate = s/¢&, and compute the inner 2m e¢
integral as 5/ whereé = p — [ and/ > & = O(1). The divergence is
; . <, resolved using the asymptotic procedure described above.
(&)=~ 2 5}'?130 o 0'(¢ = §)d j; The resulting finite expression for the flow velocity at
d distances¢é = O(1) from the spot circumference coin-
X e cides with Eq. (11), wher€ = 8[/¢%. In the outer limit
vVt 1n? x — oo, Eq. (11) coincides with the inner limit (13) of the
M * outer solution. The uniformly valid composite expansion
T o [In(26) B ]_m 116" — {)d{] can be obtained by adding up Egs. (11) and (12), and ex-

(10) tracting their common limit (13).
For the purpose of semiquantitative estimation, one

The auxiliary valueé falls out when both integrals are S
added up. The resulting finite expression for the flowcan assume that the front propagation is affected mostly

velocity in the front region is by the maximum advection velocity in the front region,

M C which is observed at the location where the concentration
c(é)=——1In ——, gradient is also at its maximum. Using the numerical
2 B(E) value 8(0) = 0.882, the maximum velocity is computed

e , asc, = —(M/2m)In(0.955/). Since the dependence on
InB(£) = j_m Inlg = lo'd¢. (1) s \ogarithmical, this velocity may be a(1) on the
Sinced'({)—0atl —x, B(£) = ¢ até>1. The func- diffusional scale and balance the intrinsic front velocity
tion B(¢) computed numerically using the analytical solu-cy = g — % when M = O(1) and [ > 1, but In/ is
tion 0’(§)=% secH% corresponding to Eq. (2) is plotted not exceedingly large. The curvature correction to the
in Fig. 1. intrinsic speed of the chemical front is 6f(/ '), and can

In view of the nonlocal character of the inducedbe neglected. The radius of a stationary spot is computed
motion, only a symmetric configuration may be stationary.as
Consider a spot of the radius occupied by the lower 72q — 1)
state on the infinite interface occupied by the upper state. Iy = L/V2D7 = 1.047 exp
We presume that the spot radius is large when measured ) o
on the diffusional scale, so that the dimensionless radius'"ce the variable flow velocity is actually smaller than

I = L/y2D7 > 1. The induced surface flow velocity is its maximal value, a.somewhat larger radius mig'ht be
computed using Eq. (8) as actually necessary to induce the flow counterbalancing the

M (7 cosada speed of the chemical front; thus, the above expression
c(p) = Ry ] > gives a lower estimate of the spot size; the correction
7 Jo 1+ (p/)* — 2(p/I)cosa would only amount, however, to modifying the numerical
—% [K(%) - E(%)], atp > I, 1 coefficient. The above analysis is applicable if the spot
— —f—/ﬁ[K(%) _E®)]. atp <1, (12)  radius is bounded by the condition®r < L < /77.

(14)
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FIG. 1. The velocity profile in the vicinity of the front (the FIG. 2. The interfacial radial velocity in and around a solitary
maximum velocity is taken as zero level). spot.
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The dynamic equation for the dimensionless radius obpots are attracted one to the other by the induced inward
a circular spot isil/dt = ¢y + ¢, (). Sincec,,(l) <0, flow; clearly, the system shows a tendency to aggregation
the spot should be stable to homogeneous perturbationlsut coalescing spots should shrink again to the same
indeed, an increase of the radius would causéfat 0) stable radius at which the inward flow is compensated
an increased inward flow restoring the stationary state. by the chemical propagation speed. Thus, Marangoni
Stability to perturbations breaking the circular sym-flow serves as an efficient mechanism for preventing the
metry can be checked with the help of the methodspread of the state with a higher surface tension when it is
of boundary perturbations similar to that of Ref. [10]. dynamically favorable.
Integrating Eq. (8) over a weakly distorted circle with the This research has been supported by the Fund for Pro-
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