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Static Color-Coulomb Force
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The static color-Coulomb interaction potential is calculated as the solution of a nonlinear integral
equation which arises in the Hamiltonian Coulomb gauge when the restriction to the interior of the
Gribov horizon is implemented. The potential obtained is in qualitative agreement with expectations,
being Coulombic with logarithmic corrections at short range, and confining at long range. The values
obtained for the string tension andyz are in semiquantitative agreement with lattice Monte Carlo and
phenomenological determinations. [S0031-9007(97)03027-5]

PACS numbers: 12.38.Gc, 12.39.Pn

The interaction energk(r) of a pair of heavy quarks at gauge-fixed configurations, called the fundamental modu-
separatiorr is a prominent feature of QCD phenomenol- lar region (FMR), consists of configuratiodsfor which
ogy. From fits to the charmonium and bottonium spectrahe Hilbert norm||A|]> = [dx|A|> of A is minimized
[1,2], E(r) is well known in the rangeé < r < 4 GeV~!'.  with respect to local gauge transformatiogfisA = {A :

To calculate E(r) from first principles, one makes a ||A]| = ||A¢|| for all g}. HereAs = gtAg + ¢TVgisthe
Born-Oppenheimer approximation, in which heavy quarkggauge transform ofi. Configurations with this property
move slowly, while gluons and light quarks rapidly ad- are transversed = A" —so this gauge falls into the class
just to the instantaneous position of the heavy quarks. lof Coulomb gauges—and moreover tRaddeev-Popov
this approximationE(r) is the potential energy that ap- (FP) operatorM(A) = —D - V is symmetric M(A) =
pears in a nonrelativistic Schrédinger equation that deat(A) and positiveM(A) = 0 for all A € A [4]. Here
scribes the slow motion of the heavy quarks, and fromD = D(A) is the gauge-covariant derivativ@®“(A) =
which the phenomenological fit faE(r) is obtained. It §%°V + gof<A’. In the following we writeA for A",

is calculated as the gauge-invariant ground-state energy With E = E — V¢, the non-Abelian Gauss's law
HWY, = E(r)¥,, where H is the field-theoretic QCD constraint,D - E = gopqu, May be writtenM ¢ = gop.
Hamiltonian that describes the dynamics of gluons anddere p,, is the color-charge density of the quarks, and
light quarks in the presence of an external quark-antiquark® = — f¥¢ATP Erc + pg. 1S the color-charge density
pair at fixed separation. In the absence of light or dy- of the dynamical degrees of freedom. Becads@l) is
namical quarks, it is generally believed thatr) grows a positive operator in the minimal Coulomb gauge, the
linearly at larger, E(r) ~ Kr, with string tensiork, and  color-Coulomb field¢ may be expressed unambiguously
this belief is supported by lattice-gauge calculations [3]in terms of the dynamical degrees of freedogh,=
Pair production of dynamical quarks from the vacuumgoM 'p, and so also the color-electric field = E" —
causes “breaking” of the string at large However, in V¢. For wave functionalsb(A) and W(A) defined for
the above energy range whefér) is known phenomeno- A in A, and with E¥ = {§/5A", the Coulomb-gauge
logically, string breaking is not yet manifest, and we shallHamiltonian [6] is defined by the quadratic form

ignore dynamical quarks in the following.

The Coulomb gauge is a so-called “physical” gauge (®,H.,,¥) = f dA“af d3x27!
in which the conjugate dynamical variables are these A
dimensionaltransverse fieldd = A" and(—E"), where X [(E¢®)*EY + ®*BBW], (1)
E¢; = (EM)?;, — (Vi¢?), and ¢ is the color-Coulomb ' ’ t
operator. Although the Coulomb gauge is not known towhere E has just been defined! = V;A; — ViA; +
be renormalizable, a lattice Coulomb-gauge Hamiltoniarf“bCA?Ai for i, j, and k cyclic, o = defM(A)/M(0)],
has been derived recently from the transfer matrix ofand the quark Hamiltonian is suppressed. This Hamil-
Wilson’s gauge-invariant Euclidean lattice gauge theornyjtonian is symmetric with respect to the inner product
[4], so that gauge-invariant quantities suclés) have the (®,W¥) = [, dA¥oc®*V, and o(A) is positive because
same continuum limit as in Wilson's theory. For brevity, M(A) is.
equations will be written formally in continuum notation.  The main novel ingredient in the present approach is the
The exact lattice equations may be found in Ref. [4]. implementation of the restriction of the preceding integrals

The transversality condition oA is not a complete to A, a nonperturbative effect [7]. For finite quantization
gauge fixing because of the existence of Gribov copiesolumeV, the exact boundary ok is not known. How-
[5]. To obtain a complete gauge fixing, we adopt theever, in [4] it is argued that, for periodic boundary condi-
minimal Coulomb gauge. In this gauge, the sktof tions and in the limit of largé/, this region is adequately
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approximated by; /V = 0, and moreover that this restric- the restriction to the FMR produces a long-range color-
tion may be implemented by use of the effective Hamil-Coulomb field, as originally foreseen by Gribov [5].
tonian Heoug = Hetf = Heout + Y0G. Here thehorizon The self-energy 3 satisfies a Schwinger-Dyson
functionG(A) is defined for structure group $N) by equation which we write symbolically3g = R(q) =

g3  ToDCT, which givesC~!(¢) = R(0) — R(g). Here

D is the gluon propagator, addandI’y are the exact and
zeroth-order ghost-ghost-gluon vertex functions. WRen
is evaluated in the ground state Bf, this equation [8]

()
) ) provides the mean-field self-consistency condition (MSC)
The termy,G makes the wave functionals in the Fock that determines the mean-fidishction C(q).

space ofH.s+ vanish rapidly outside\, so the restriction  go far our results are exact, but in the following we

on the integrals may be ignorefl, dA" = [dA". Here resort to approximations to solve the MSC. This equation

Yo is a thermodynamic parameter that sets the scale fQipntradicts the usual perturbative expansion, as one sees

hadronic masses. Its value is determined byhbdzon  fom the appearance df)? in R, whereasC, D, and

conditi'on<G)/V. = 0. Here and below, the expe(_:tation T are nominally of leading ordefg,)’. To obtain an

value is taken in the ground state Bti;. The horizon  eypansion in powers gf, that is consistent with the MSC,

pond|t|on expresses the fact that, for lafgethe probabil-  \ye assume thaf'(¢) is of leading ordexgo)~!, namely,

ity gets concentrated on the boundaryV = 0. Clg) = go_lu(q) + 0(1), and that all other correlation
The Coulomb energy functions are analytic irgo. To leading order, the MSC

is an integral equation that determingg):

G(A) = f d*xd’yD{ D&Y

X (MY (x,y) — 3(N? = V.

Ecoul = f dA" o ] d*x27 goVM ' p)®I*  (3)

1\ — -3 3
contributes additively to the energy of a state the (q) = NQm) ]d kDo (k)
remaining terms being positive. Consider the contribution 5 5o
X [g” = (g - k)7 /k"][ulk) — uk — q)].(8)

t0o E.u from the part of M~! which is diagonal in
momentum space, The kernelDy is the gluon propagator

Vﬁl(Mil)q,a:q,b = deyeiq-y

X |:V1fd3x(M1)x,a;x+)7,hi|-
(4)

For eachy, the term in brackets is a bulk quantity per unit
volume. By translation invariance, its covariance matrix

is of orderV~!. Consequently, for larg¥, it approaches
its mean-field value

VM Y yags = C(@)8%" + O(V?),  (5)

where

Clg)s* = f Pye (M nsrs) ()

is the three-dimensional FP propagator. ThuandE.,,
receive the contributiong (¢) = goC(¢)p(g) and
[ aaton) ' S flac@p@er, @
q
where the color-charge density operatptg) satisfies
lim,—op%(¢q) = Q°. HereQ*, with[Q¢, Q"] = f*Q°,
is the total color charge.

The FP propagator is of the forn~!(q) = ¢*> —
q:2ijq;j, Where X, (¢q) is a self-energy. The horizon
condition is equivalent [4] to the conditiay; ;(0) = & ;.
This givesC~'(q) = ¢i[2:;(0) — 3, j(¢)]g;, S0 C(q) is
more singular aty = 0 than ¢~2. We conclude that

D()(k) (51".]' - kikj/k2)8b’c = f d3xe7ik.x<A,€+y,iA;,j>0s
)

evaluated in the ground state of

Ho=Y wpalaain + @V)7'Y p%upl.  (10)
k,A k

whereab anday , are creation and annihilation operators
for A" andEY, A is a two-valued polarization index, and
wr = (k¥ + p*ux)'/2. This is the zeroth-order part of
H.¢r, Obtained by systematically expandifg: in powers
of go, with vy, scaled according tgy = (2Ngo) ' u*. In
addition to a harmonic oscillator Hamiltonia#, also
contains a color-Coulomb interaction Hamiltonian with
interaction potentiab, = k%u; that is independent of;,
as is consistent with dimensional transmutation.

This term prevents us from calculatid@y(k) exactly.

We neglect it, soDy is approximated byD(()o)(k) =
Qwr)~!, and we callw, = uS; the solution to (8)
with kernel D(()O). We exFect thatDy(k) is even more

suppressed at low thanDOO) (k), so by (8)u, is enhanced
at low g compared tov, corresponding to an even longer
range force than we find.

The asymptotic form ofv, at high and lowg has been
determined analytically [4], and it has been found numeri-
cally for intermediatey with 2% accuracy (see [9,10] for
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details). We writew(q) = g.(¢)/q?, whereg.(q) is a phenomenological models: the Cornell potential [1] and
renormalized running Coulomb-coupling constant, and wehe Richardson potential [2], both of which fit the and
express our results in terms of the static color-Coulomibb spectra well.

potential v, = ¢*w?(q) = g2(¢q)/q*, which appears in  To connect dimensionless quantities and the real world,
Hy, and the Fourier transform ef, (normalized for a pair ~ we fix the length scale by using Sommer’s [12] dimension-

of external quarks), which is given (apart from an additiveless phenomenological relatiorf f(ro) = —1.65 which

constant) by holds for the Cornell force atya = Ry = 2.48 GeV .
From the value ofa in GeV'' we obtain the string

V(r)= —(N* = 1) @N=*)! tension,/o = \/min,[—f(r)Ja~' = 518 MeV. [By this

" definition, we are evaluatingr where f/'(r) = 0, i.e.,
X [0 dq g2(q) (qr)~" sin(gr), (11) where the potential is approximately linear.] It is not

corresponding to a forcg(r) = —V/'(r). Forces (case 1)
The asymptotic form og,. at highg is given by

g. 2 =bct + 6 b.In(bet) + O 'Ing),  (12)

wheret = In(g/m), b = 37> 'N,m = Cu, andC is

a constant. The first and second terms are of the form
of the one- and two-loop contributions to the running
coupling constang,, of the perturbative renormalization
group, but the coefficients are different. This difference
arises because at high momentum the interaction is not
purely static Coulombic, and it is verified in [4] that the
difference in the first coefficient is correctly accounted for
by terms that are neglected here. The coefficient of the
second term is a new result. The limiting behavior of the
force f(r) at smallr is given by

f(r) = 37(N?> — 1) @N?*r?)7!

R (Gev'Y)
X [In(A3r%) + 37 Inin(A?rH)]7!,  (13)

Forces (case 2)

where Ax = ¢” 'm, v is Euler's constant, and is a
constant.

The confinement properties of the theory in the present
approximation are determined by the asymptotic form of
gc(g) at low g, which is given byg.(q) = B(u/q)*?,
where B3/2 = N7 72I'(8/3)I'(2/3)/T(16/3) (see [4]).
This corresponds to a color-Coulomb potentialr) ~
r3/3 which rises more rapidly with than a string tension
Kr. This somewhat surprising result may be an artifact
of the approximations made. On the other hadnd),
which appears in the (approximate) quantum-field theo-
retic Coulomb-gauge Hamiltonian, must be distinguished
from the gauge-independent quark-pair eneffy) dis-
cussed in the introduction, and it is shown in [4] that
E(r) = V(r). If V(r) does grow more rapidly thakr
at larger, then the wave functio’(A"), whose defining
property is to minimizeE(r), adjusts itself s (r) rises
no more rapidly tharkr [11]. It does so by changing the FIG. 1. Plot of (i) our force f(R) (the curve which is

two superposed spherically symmetric long-range colorincreasing negative at larg®), (i) the forces (for thecc
Coulomb fields into a flux tube. and thebb cases) derived from the Cornell potential (the two

We shall compare our results for(r) with phe- curves very close to each other), and (jii) the Richardson force
nomenological fits taE(r), to see if there is a range of (tzhe h|giest curve). In case 1 (a) we set the length scale by
. . A ’ ! rof(ro) = —1.65 from the Cornell force, while in case 2 (b)
small” r for which V(r) agrees withE(r), as suggested we use the conditionf(r,) = —1.35 from the Richardson

by asymptotic freedom. To this end, we consider twoforce, both atR, = 2.48 GeV .

£(R)

R (Gev!)

3816



VOLUME 78, NUMBER 20 PHYSICAL REVIEW LETTERS 19 My 1997

easy to estimate an uncertainty for the string tensionso surprising after all. For although vacuum polarization
However, its value seems to depend very weakly or{pair production) of quarks does “break” the string, this is
the values of the parameters of our trial solution [9].not yet manifest for < 4 GeV .
If we identify the parameten; = ¢” 'm in (13) with We are grateful to Tony Duncan, Martin Schaden, and
the corresponding physical parameter [13], then from thélberto Sirlin for informative discussions. This research
relation [13] Az = Agrexp(—y + 1 — 31/66) we ob-  was supported in part by the National Science Foundation
tain Ay;g = 124 = 12 MeV (see [9,14]). In Fig. 1(a) we under Grant No. PHY93-18781.
plot our result forf(r), the two Cornell forces [1], and the
Richardson force [2]. Our force gets its maximum value at
a separation of aboat5 GeV ! and it is almost constant
up to4 GeV !, the variation being of order 12%.  TElectronic address: zwanzige@act2.nyu.edu
{ons that we have used to set the longth scale. If e s & Ehien et al, Phys. Rev. Lett34 360 (1975)

) ) . o E. Eichtenet al., Phys. Rev. D21, 203 (1980); E. Eichten
the dimensionless relatiorg f(ro) = —1.35, which holds and F. Feinberg, Phys. Rev. I3, 2724 (1981).
for the Richardson force &, = 2.48 GeV !, we obtain [2] J.L. Richardson, Phys. Let82B, 272 (1979).
Jo =468 MeV, Ays = 118 = 12 MeV, and the plot  [3] G.S. Bali and K. Schilling, Nucl. Phys. (Proc. Supi83,
shown in Fig. 1(b). In this case the agreement is even 147 (1994).
better: our force reaches its maximum value at a sepad{4] D. Zwanziger, Nucl. PhysB485, 185 (1997).
ration of about2.75 GeV ™!, and its variation a# GeV ! [5] V.N. Gribov, Nucl. PhysB139, 1 (1978).
is of order 8%. [6] N. Christ and T.D. Lee, Phys. Rev. 22, 939 (1980).

As an exact result, we have found that the restriction to [7] An alternative approach which has been advocated re-
the fundamental modular region causes an infrared singu-  C€NUY IS to integrate over a™ without restriction, but
larity of the color-Coulomb propagator and thus a long- with o(4) as a signed measure [see R. Friedbergl,

y propag g

: . Ann. Phys. (N.Y.)246 381 (1996)].
range color-Coulomb potential. Although our calculation 8] In the IYanc(iau g)jauge wr(leré{ )]= 1, this equation is

of this potential required possibly severe approximations "~ jyyariant under renormalizationthe Z's canceland a
that are described above, nevertheless it gives results which  corresponding property should also hold in the Coulomb

are in qualitative agreement with phenomenologically de-  gauge.

termined potentials. The fit is surprisingly good. After [9] A. Cucchieri, Ph.D. thesis, New York University, 1996.
setting the scale by Sommer’'s method, the force is in qualifl0] A. Cucchieri and D. Zwanziger, Nucl. Phys. (Proc. Suppl.)
tative agreement with phenomenological models, and the 53, 815 (1997).

values obtained for the string tension andz;s are in  [11] E. Seiler, Phys. Rev. 02, 2412 (1980).
semiquantitative agreement with lattice Monte Carlo anqlz] R. Sommer, Nucl. Phys3411, 839 (1994).
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phenomenological determinations (see [1,3,15]). It woul 12{ ?ﬁgiﬂztz}t;ﬁs'ol_r]?\tt;loct?ngzzfr((nln‘?iﬁ)é uncertainties on
appear that the approximate equalityr) = E(r) extends y onhars

. the values ofz, and of the parameten entering into the
1
to the range < 4 GeV™, and moreover that the approxi- definition of Az. By solving Eg. (8) numerically, we have

mations made in our calculation of(r) do not qgall- found the value ofr with an estimated accuracy of about
tatively destroy this agreement. Although there isao 10%. We have considered negligible the uncertainty;on
priori reason to expect that vacuum polarization of glu-[15] L. Montanetet al., Particle Data Group, Phys. Rev. 5D,
ons should not be important in this range, this may not be 1173 (1994).
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