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Static Color-Coulomb Force
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The static color-Coulomb interaction potential is calculated as the solution of a nonlinear int
equation which arises in the Hamiltonian Coulomb gauge when the restriction to the interior o
Gribov horizon is implemented. The potential obtained is in qualitative agreement with expecta
being Coulombic with logarithmic corrections at short range, and confining at long range. The v
obtained for the string tension andLMS are in semiquantitative agreement with lattice Monte Carlo a
phenomenological determinations. [S0031-9007(97)03027-5]
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The interaction energyEsrd of a pair of heavy quarks a
separationr is a prominent feature of QCD phenomeno
ogy. From fits to the charmonium and bottonium spec
[1,2], Esrd is well known in the range1 , r , 4 GeV21.
To calculate Esrd from first principles, one makes
Born-Oppenheimer approximation, in which heavy qua
move slowly, while gluons and light quarks rapidly a
just to the instantaneous position of the heavy quarks.
this approximation,Esrd is the potential energy that ap
pears in a nonrelativistic Schrödinger equation that
scribes the slow motion of the heavy quarks, and fro
which the phenomenological fit forEsrd is obtained. It
is calculated as the gauge-invariant ground-state ene
H C0 ­ EsrdC0, whereH is the field-theoretic QCD
Hamiltonian that describes the dynamics of gluons a
light quarks in the presence of an external quark-antiqu
pair at fixed separationr . In the absence of light or dy
namical quarks, it is generally believed thatEsrd grows
linearly at larger, Esrd , Kr, with string tensionK, and
this belief is supported by lattice-gauge calculations [
Pair production of dynamical quarks from the vacuu
causes “breaking” of the string at larger . However, in
the above energy range whereEsrd is known phenomeno-
logically, string breaking is not yet manifest, and we sh
ignore dynamical quarks in the following.

The Coulomb gauge is a so-called “physical” gau
in which the conjugate dynamical variables are thethree
dimensionaltransverse fieldsA ­ Atr and s2Etr d, where
Ea

x,i ­ sEtr da
x,i 2 s=iw

adx and w is the color-Coulomb
operator. Although the Coulomb gauge is not known
be renormalizable, a lattice Coulomb-gauge Hamilton
has been derived recently from the transfer matrix
Wilson’s gauge-invariant Euclidean lattice gauge theo
[4], so that gauge-invariant quantities such asEsrd have the
same continuum limit as in Wilson’s theory. For brevit
equations will be written formally in continuum notation
The exact lattice equations may be found in Ref. [4].

The transversality condition onA is not a complete
gauge fixing because of the existence of Gribov cop
[5]. To obtain a complete gauge fixing, we adopt t
minimal Coulomb gauge. In this gauge, the setL of
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gauge-fixed configurations, called the fundamental mod
lar region (FMR), consists of configurationsA for which
the Hilbert normkAk2 ;

R
d3xjAj2 of A is minimized

with respect to local gauge transformationsg: L ; hA :
kAk # kAgk for all gj. HereAg ­ gyAg 1 gy=g is the
gauge transform ofA. Configurations with this property
are transverse,A ­ Atr —so this gauge falls into the class
of Coulomb gauges—and moreover theFaddeev-Popov
(FP) operatorMsAd ; 2D ? = is symmetric MsAd ­
MysAd and positiveMsAd $ 0 for all A [ L [4]. Here
D ­ DsAd is the gauge-covariant derivativeDa,csAd ;
da,c= 1 g0fabcAb. In the following we writeA for Atr .

With E ­ Etr 2 =f, the non-Abelian Gauss’s law
constraint,D ? E ­ g0rqu, may be writtenMf ­ g0r.
Here rqu is the color-charge density of the quarks, an
ra ; 2fabcAtr,bEtr ,c 1 ra

qu is the color-charge density
of the dynamical degrees of freedom. BecauseMsAd is
a positive operator in the minimal Coulomb gauge, th
color-Coulomb fieldf may be expressed unambiguously
in terms of the dynamical degrees of freedom,f ­
g0M21r, and so also the color-electric fieldE ­ Etr 2

=f. For wave functionalsFsAd and CsAd defined for
A in L, and with Etr ­ idydAtr, the Coulomb-gauge
Hamiltonian [6] is defined by the quadratic form

sF, HcoulCd ­
Z

L
dAtrs

Z
d3x221

3 fsEa
i FdpEa

i C 1 FpBa
i Ba

i Cg , (1)

where E has just been defined,Ba
i ; =jAk 2 =kAj 1

fabcAb
j Ac

k for i, j, and k cyclic, s ; detfMsAdyMs0dg,
and the quark Hamiltonian is suppressed. This Ham
tonian is symmetric with respect to the inner produc
sF, Cd ­

R
L dAtrsFpC, and ssAd is positive because

MsAd is.
The main novel ingredient in the present approach is th

implementation of the restriction of the preceding integra
to L, a nonperturbative effect [7]. For finite quantization
volumeV , the exact boundary ofL is not known. How-
ever, in [4] it is argued that, for periodic boundary condi
tions and in the limit of largeV , this region is adequately
© 1997 The American Physical Society
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approximated byGyV # 0, and moreover that this restric
tion may be implemented by use of the effective Ham
tonian Hcoul ) Heff ­ Hcoul 1 g0G. Here thehorizon
functionGsAd is defined for structure group SUsNd by

GsAd ;
Z

d3xd3yD
a,c
x,i D

a,d
y,i

3 sM21dc,dsx, yd 2 3sN2 2 1dV . (2)

The termg0G makes the wave functionals in the Foc
space ofHeff vanish rapidly outsideL, so the restriction
on the integrals may be ignored,

R
L dAtr )

R
dAtr . Here

g0 is a thermodynamic parameter that sets the scale
hadronic masses. Its value is determined by thehorizon
condition kGlyV ­ 0. Here and below, the expectatio
value is taken in the ground state ofHeff. The horizon
condition expresses the fact that, for largeV , the probabil-
ity gets concentrated on the boundaryGyV ­ 0.

The Coulomb energy

Ecoul ­
Z

dAtrs
Z

d3x221jg0=sM21rdFj2 (3)

contributes additively to the energy of a stateF, the
remaining terms being positive. Consider the contributi
to Ecoul from the part of M21 which is diagonal in
momentum space,

V 21sM21dq,a:q,b ­
Z

d3yeiq?y

3

∑
V 21

Z
d3xsM21dx,a;x1y,b

∏
.

(4)

For eachy, the term in brackets is a bulk quantity per un
volume. By translation invariance, its covariance matr
is of orderV 21. Consequently, for largeV , it approaches
its mean-field value

V 21sM21dq,a;q,b ­ Csqdda,b 1 O sV 21y2d , (5)

where

Csqdda,b ­
Z

d3yeiq?yksM21dx,a;x1y,bl (6)

is the three-dimensional FP propagator. Thusf andEcoul

receive the contributions̃fsqd ­ g0Csqdr̃sqd andZ
dAtrss2V d21

X
q

q2jg0Csqdr̃sqdFj2, (7)

where the color-charge density operatorr̃sqd satisfies
limq!0r̃asqd ­ Qa. HereQa, with fQa, Qbg ­ fabcQc,
is the total color charge.

The FP propagator is of the formC21sqd ­ q2 2

qiSi,jqj, where Si,jsqd is a self-energy. The horizon
condition is equivalent [4] to the conditionSi,js0d ­ di,j.
This givesC21sqd ­ qifSi,js0d 2 Si,jsqdgqj , so Csqd is
more singular atq ­ 0 than q22. We conclude that
-

or

n

t
x

the restriction to the FMR produces a long-range colo
Coulomb field, as originally foreseen by Gribov [5].

The self-energy S satisfies a Schwinger-Dyson
equation which we write symbolicallyqSq ­ Rsqd ;
g2

0

R
G0DCG, which givesC21sqd ­ Rs0d 2 Rsqd. Here

D is the gluon propagator, andG andG0 are the exact and
zeroth-order ghost-ghost-gluon vertex functions. WhenR
is evaluated in the ground state ofHeff, this equation [8]
provides the mean-field self-consistency condition (MS
that determines the mean-fieldfunctionCsqd.

So far our results are exact, but in the following w
resort to approximations to solve the MSC. This equati
contradicts the usual perturbative expansion, as one s
from the appearance ofsg0d2 in R, whereasC, D, and
G are nominally of leading ordersg0d0. To obtain an
expansion in powers ofg0 that is consistent with the MSC,
we assume thatCsqd is of leading ordersg0d21, namely,
Csqd ­ g21

0 usqd 1 Os1d, and that all other correlation
functions are analytic ing0. To leading order, the MSC
is an integral equation that determinesusqd:

u21sqd ­ Ns2pd23
Z

d3kD0skd

3 fq2 2 sq ? kd2yk2g fuskd 2 usk 2 qdg . (8)

The kernelD0 is the gluon propagator

D0skd sdi,j 2 kikjyk2ddb,c ­
Z

d3xe2ik?xkAb
x1y,iA

c
y,jl0 ,

(9)

evaluated in the ground state of

H0 ;
X
k,l

vka
y
k,lak,l 1 s2V d21

X
k

r̃
a
2kykr̃

a
k , (10)

wherea
y
k,l andak,l are creation and annihilation operator

for Atr andEtr , l is a two-valued polarization index, and
vk ­ sk2 1 m4ukd1y2. This is the zeroth-order part of
Heff, obtained by systematically expandingHeff in powers
of g0, with g0 scaled according tog0 ­ s2Ng0d21m4. In
addition to a harmonic oscillator Hamiltonian,H0 also
contains a color-Coulomb interaction Hamiltonian wit
interaction potentialyk ; k2u2

k that is independent ofg0,
as is consistent with dimensional transmutation.

This term prevents us from calculatingD0skd exactly.
We neglect it, soD0 is approximated byD

s0d
0 skd ;

s2vkd21, and we call wq ; u
s0d
q the solution to (8)

with kernel D
s0d
0 . We expect thatD0skd is even more

suppressed at lowk thanD
s0d
0 skd, so by (8)uq is enhanced

at low q compared towq corresponding to an even longe
range force than we find.

The asymptotic form ofwq at high and lowq has been
determined analytically [4], and it has been found nume
cally for intermediateq with 2% accuracy (see [9,10] for
3815
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details). We writewsqd ­ gcsqdyq2, where gcsqd is a
renormalized running Coulomb-coupling constant, and w
express our results in terms of the static color-Coulom
potential yq ­ q2w2sqd ­ g2

csqdyq2, which appears in
H0, and the Fourier transform ofyq (normalized for a pair
of external quarks), which is given (apart from an additiv
constant) by

V srd ­ 2 sN2 2 1d s4Np2d21

3
Z `

0
dq g2

csqd sqrd21 sinsqrd , (11)

corresponding to a forcefsrd ­ 2V 0srd.
The asymptotic form ofgc at highq is given by

g22
c ­ bct 1 621bc lnsbctd 1 O st21 ln td , (12)

wheret ­ lnsqymd, bc ­ s3p2d21N , m ­ Cm, andC is
a constant. The first and second terms are of the fo
of the one- and two-loop contributions to the runnin
coupling constantgrg of the perturbative renormalization
group, but the coefficients are different. This differenc
arises because at high momentum the interaction is
purely static Coulombic, and it is verified in [4] that the
difference in the first coefficient is correctly accounted fo
by terms that are neglected here. The coefficient of t
second term is a new result. The limiting behavior of th
forcefsrd at smallr is given by

fsrd ø 3psN2 2 1d s4N2r2d21

3 flnsL2
Rr2d 1 321 ln lnsl2r2dg21, (13)

where LR ; eg21m, g is Euler’s constant, andl is a
constant.

The confinement properties of the theory in the prese
approximation are determined by the asymptotic form
gcsqd at low q, which is given bygcsqd ­ Bsmyqd4y3,
where B23y2 ­ Np22Gs8y3dGs2y3dyGs16y3d (see [4]).
This corresponds to a color-Coulomb potentialV srd ,
r5y3 which rises more rapidly withr than a string tension
Kr. This somewhat surprising result may be an artifa
of the approximations made. On the other handV srd,
which appears in the (approximate) quantum-field the
retic Coulomb-gauge Hamiltonian, must be distinguish
from the gauge-independent quark-pair energyEsrd dis-
cussed in the introduction, and it is shown in [4] tha
Esrd # V srd. If V srd does grow more rapidly thanKr
at larger, then the wave functionCsAtr d, whose defining
property is to minimizeEsrd, adjusts itself soEsrd rises
no more rapidly thanKr [11]. It does so by changing the
two superposed spherically symmetric long-range colo
Coulomb fields into a flux tube.

We shall compare our results forV srd with phe-
nomenological fits toEsrd, to see if there is a range of
“small” r for which V srd agrees withEsrd, as suggested
by asymptotic freedom. To this end, we consider tw
3816
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phenomenological models: the Cornell potential [1] an
the Richardson potential [2], both of which fit thecc and
bb spectra well.

To connect dimensionless quantities and the real wor
we fix the length scale by using Sommer’s [12] dimensio
less phenomenological relationr2

0 fsr0d ­ 21.65 which
holds for the Cornell force atr0a ; R0 ­ 2.48 GeV21.
From the value ofa in GeV21 we obtain the string
tension

p
s ;

p
minr f2fsrdga21 ­ 518 MeV. [By this

definition, we are evaluatings where f 0srd ­ 0, i.e.,
where the potential is approximately linear.] It is no

FIG. 1. Plot of (i) our force fsRd (the curve which is
increasing negative at largeR), (ii) the forces (for thecc
and thebb̄ cases) derived from the Cornell potential (the tw
curves very close to each other), and (iii) the Richardson for
(the highest curve). In case 1 (a) we set the length scale
r2

0 fsr0d ­ 21.65 from the Cornell force, while in case 2 (b)
we use the conditionr2

0 fsr0d ­ 21.35 from the Richardson
force, both atR0 ­ 2.48 GeV21.



VOLUME 78, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 19 MAY 1997

o

p

g
g

n

t

n

-

u

n
is

nd
h
ion

re-

b

l.)

t

easy to estimate an uncertainty for the string tensio
However, its value seems to depend very weakly
the values of the parameters of our trial solution [9
If we identify the parameterLR ; eg21m in (13) with
the corresponding physical parameter [13], then from t
relation [13] LMS ­ LR exps2g 1 1 2 31y66d we ob-
tain LMS ­ 124 6 12 MeV (see [9,14]). In Fig. 1(a) we
plot our result forfsrd, the two Cornell forces [1], and the
Richardson force [2]. Our force gets its maximum value
a separation of about2.5 GeV21 and it is almost constant
up to4 GeV21, the variation being of order 12%.

These results depend on the phenomenological con
tions that we have used to set the length scale. If we u
the dimensionless relationr2

0 fsr0d ­ 21.35, which holds
for the Richardson force atR0 ­ 2.48 GeV21, we obtainp

s ­ 468 MeV, LMS ­ 118 6 12 MeV, and the plot
shown in Fig. 1(b). In this case the agreement is ev
better: our force reaches its maximum value at a se
ration of about2.75 GeV21, and its variation at4 GeV21

is of order 8%.
As an exact result, we have found that the restriction

the fundamental modular region causes an infrared sin
larity of the color-Coulomb propagator and thus a lon
range color-Coulomb potential. Although our calculatio
of this potential required possibly severe approximatio
that are described above, nevertheless it gives results wh
are in qualitative agreement with phenomenologically d
termined potentials. The fit is surprisingly good. Afte
setting the scale by Sommer’s method, the force is in qua
tative agreement with phenomenological models, and
values obtained for the string tension andLMS are in
semiquantitative agreement with lattice Monte Carlo a
phenomenological determinations (see [1,3,15]). It wou
appear that the approximate equalityV srd ø Esrd extends
to the ranger , 4 GeV21, and moreover that the approxi
mations made in our calculation ofV srd do not quali-
tatively destroy this agreement. Although there is noa
priori reason to expect that vacuum polarization of gl
ons should not be important in this range, this may not
n.
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so surprising after all. For although vacuum polarizatio
(pair production) of quarks does “break” the string, this
not yet manifest forr , 4 GeV21.
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