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We show that eigenvalue correlations in unitary-invariant ensembles of large random matrices sa
novel universal laws that only depend on a multicriticality of the bulk density of states near the
edge of the spectrum. Our consideration is based on the previously unknown observation tha
genuine density of states and then-point correlation function are completely determined by the Dyson
density analytically continued onto the entire real axis. [S0031-9007(97)03184-0]
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Random matrices have been introduced in a phys
context since the works by Wigner [1] and Dyson [2
Initially proposed as an effective phenomenological mo
for description of the higher excitations in nuclei [3
the invariant ensembles of large random matrices fo
numerous applications in very diverse fields of phys
such as two-dimensional quantum gravity [4], quant
chromodynamics [5], quantum chaos [6], and mesosco
physics [7]. Apparently, this ubiquity owes its origin t
the very idea of the construction of the invariant on
matrix model [8], which only reflects the fundament
symmetry (orthogonal, unitary, or symplectic) of th
underlying physical system/phenomenon but discards
(irrelevant) microscopic details. Since the symme
constraints follow from first principles, even a rather cru
matrix model allows identification of universal featur
which persist for a variety of systems with the sam
symmetry. This circumstance emphasizes the importa
of the study of universality intrinsic to random matrices

The simplest invariant random-matrix model is defin
by the probability density

PfHg ­
1

ZN
exph2bTrV fHgj (1)

of the entriesHij of the N 3 N random matrix H,
where the functionV fHg referred to as the “confinemen
potential” must ensure existence of the partition funct
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ZN , N ¿ 1. The symmetry parameterb is equal to
the number of independent elements of the nondiago
entries of matrixH. In the following we restrict our
consideration to the unitary invariant, UsNd, matrix model
with b ­ 2.

Nowadays it is widely believed that UsNd invariant en-
sembles of large random matrices with rather strong le
confinement may exhibitthree different types of locally
universal eigenlevel correlations which are characteriz
by the appropriately scaled two-point kernels.

(i) Bulk scaling limit is associated with a spectrum
range where the confinement potential is well behave
and density of levels can approximately be taken as
constant. It has been proven in Refs. [9–11] that f
rather strong confinement potentials [12] the two-poi
kernel follows theuniversal sine law

Kbulkss, s0d ­
sinfpss 2 s0dg

pss 2 s0d
. (2)

Here the scaling variables is measured in the units of the
mean level spacing:s ­ ´yDN .

(ii) Origin scaling limit deals with that part of the
spectrum where the confinement potential displays
logarithmic singularity:V s´d ! V s´d 2 a ln j´j. In the
vicinity of the singularity ´ ­ 0, the two-point kernel
satisfies theuniversal Bessel law[13],
Korigss, s0d ­
p

2

p
ss0

Ja11y2spsdJa21y2sps0d 2 Ja21y2spsdJa11y2sps0d
s 2 s0

. (3)
m
r

ls,
n

Here s is scaled by the level spacing near the orig
s ­ ´yDN s0d.

(iii) Soft-edge scaling limit,relevant to the tail of eigen
value support where crossover occurs from a nonz
density of states to a vanishing one [14], has been only
vestigated for Gaussian unitary ensemble [15], and q
recently for UsNd invariant ensembles of large rando
matrices associated with quartic and sextic confinem
potentials [16]. It has been found that in the soft-ed
scaling limit, for all these ensembles the two-point ke
,

ro
in-
ite

nt
e

r-

nels follow theAiry law

Ksoftss, s0d ­
Ai ssdAi 0ss0d 2 Ai ss0dAi 0ssd

s 2 s0
. (4)

Here s ~ N2y3s´yDN 2 1d with DN being the end point
of the spectrum. Whereas universality in the spectru
bulk and near its origin has rigorously been proven fo
a wide class of strong symmetric confinement potentia
the supposed universality of the Airy kernel has not bee
proven.
© 1997 The American Physical Society
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Our aim here is to demonstrate that the problem
eigenvalue correlations in the random-matrix ensemb
with nonsingular confinement potentials can be treated
a unified way by means of the new universal seco
order differential equation for the wave functions
fictitious noninteracting fermions naturally appearing
x
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the method of orthogonal polynomials [8]. This allow
us to prove that the Airy correlations, Eq. (4), bein
universal for a wide class of matrix models Eq. (1), a
indeed a particular case of more general novel univer
correlations which are represented by the scaledmth
multicritical two-point kernel
K
smd
softss, s0d ­

GssjnpdG0ss0jnpds3y22np

2 Gss0jnpdG0ssjnpd ss0d3y22np

s 2 s0
, (5)

where the functionG is expressed through the Bessel functions as

Gssjnpd ­
1

2
p

np

∑
sin

µ
p

4np

∂
1 s21dnp23y2

∏21y2

3

8<: ss1y2d snp21y2dfIs21y2d s121y2npds
snp

np d 2 Is1y2d s121y2npds
snp

np dg, s . 0 ,

jsjs1y2d snp21y2dfJs21y2d s121y2npds
jsjnp

np d 1 s21dnp23y2Js1y2d s121y2npds
jsjnp

np dg, s , 0 ,
(6)
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and parameternp is determined by the even critical inde
m ­ 0, 2, 4, etc., of the matrix model,

np ­ m 1
3
2 . (7)

Note that the critical indexm is completely determined
by the type of singularity of the Dyson’s density of state
near the soft edge [14]:nDs´d ~ s1 2 ´2yD2

N dm11y2.
Equations (5)–(7) together with Eqs. (22) and (2

below are the main results of the paper. Although w
concentrate our attention on the problem of eigenva
correlations near the soft edge, the treatment we pres
here is quite general being relevant to an arbitra
spectrum range.

Within the orthogonal polynomial technique the two
point kernelKN s´, ´0d determining then-point correlation
function Rn for eigenvalue spectrum of large random
matrices,Rns´1, . . . , ´nd ­ detfKN s´i , ´jdgi,j­1···n, can be
written through the fictitious “wave functions”cns´d as

KN s´, ´0d ­ cN
cN s´0dcN21s´d 2 cN s´dcN21s´0d

´0 2 ´
. (8)

Here cN is the recurrence coefficient entering the thre
term recurrence equation

´Pn21 ­ cnPn 1 cn21Pn22 (9)

for polynomialsPn orthogonal on the entire real axis,Z
das´dPns´dPms´d ­ dnm , (10)

and the wave functioncns´d ­ Pns´d exph2V s´dj. The
measuredas´d ­ exph22V s´djd´ is completely deter-
mined by symmetric confinement potential

V s´d ­
pX

k­1

dk

2k
´2k (11)

with dp . 0. The signs of the restdk ’s can be arbitrary
but they should lead to an eigenvalue density suppor
on a single connected intervals2DN , 1DNd.

To study the eigenvalue correlations in the random
matrix ensemble with confinement potential Eq. (11) w
s
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note that a three-term recurrence equation for orthogo
polynomialsPns´d can be mapped onto a second-ord
differential equation for these orthogonal polynomia
and/or corresponding wave functionscns´d. This was
already observed for the first time by Shohat in 19
[17]. Considerably later Shohat’s idea was developed
Bonan and Clark [18]. The simple and elegant meth
proposed in Refs. [17,18] turns out to be a very gene
and powerful one for the analysis of spectral propert
possessed by large random matrices.

To map Eq. (9) onto a second-order differential equ
tion for cn, we note the following identity:

dPn

d´
­ Ans´dPn21 2 Bns´dPn , (12)

where the functionsAns´d and Bns´d can be found from
considerations below. SincedPnyd´ is a polynomial of
the degreen 2 1, it can be represented [19] throug
the Fourier expansion in terms of the kernelQnst, ´d ­Pn21

k­0 PkstdPks´d as follows:

dPn

d´
­

Z
dastd

dPn

dt
Qnst, ´d . (13)

Integrating by parts we obtain that

dPn

d´
­ 2

Z
dastdQnst, ´d

µ
dV
dt

2
dV
d´

∂
Pnstd . (14)

Now, making use of the Christoffel-Darboux theore
[19], we conclude that unknown functionsAn and Bn in
Eq. (12) are

Ans´d ­ 2cn

Z
dastd

V 0std 2 V 0s´d
t 2 ´

P2
nstd , (15)

Bns´d ­ 2cn

Z
dastd

V 0std 2 V 0s´d
t 2 ´

PnstdPn21std .
(16)

At first glance representations Eqs. (15) and (16) a
rather useless because they involve the same orthog
polynomials which enter Eq. (12). Nevertheless the
3807
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expressions do allow us to get the functionsAn and
Bn in closed forms directly related to the confineme
potential and to the end point of eigenvalue spectru
Restricting our following considerations to large indic
n ­ N ¿ 1, we reduce Eq. (9) to the asymptotic form
´PN ­ cN sPN11 1 PN21d, whence

´lPN ­
lX

j­0

µ
l

j

∂
cl

NPN12j2l, l $ 0 . (17)

SubstitutingV s´d given by Eq. (11) into Eq. (15) yields

AN s´d ­ 2cN

pX
k­1

2k21X
l­1

dk´l21
Z

dastdP2
N stdt2k2l21.

(18)

Then, taking into account Eq. (17) as well as the orthog
nality of Pn, we arrive at the expression forAN s´d defined
for arbitrary ´,

AN s´d ­
pnDs´dp

1 2 ´2yD2
N

, (19)

where

nDs´d ­
2

p2
P

Z DN

0

tdt
t2 2 ´2

dV
dt

vuut1 2 ´2yD2
N

1 2 t2yD2
N

(20)
is the Dyson’s density continued onto the entire re
axis, so that ´ can lie both inside and outside of a
eigenvalue support. The spectrum end pointDN ­ 2cN

is the positive root of the integral equation

N ­
2
p

Z DN

0

dV
dt

tdtq
D2

N 2 t2
, (21)

following from normalization of Dyson’s density.
Combining Eqs. (12) and (19), and using asympto

identity BN ­ ´AN yDN 2 dVyd´, which is a conse-
quence of Eqs. (15) and (16), it is a straightforward s
to obtain the following remarkable asymptotic differenti
equation:

c 00
N 2

"
d

d´
ln

√
pnDs´dq

1 2 ´2yD2
N

!#
c 0

N 1 p2n2
Ds´dcN ­ 0 ,

(22)

which together with relationship

c 0
N ­

pnDs´dq
1 2 ´2yD2

N

µ
cN21 2

´

DN
cN

∂
(23)

provides a general basis for the study of eigenva
correlations in anarbitrary spectral range.

An interesting property of these equations is that th
do not contain the confinement potential explicitly, b
only involve the Dyson’s densitynD and spectrum end
point DN . Moreover, it turns out that theknowledge
of Dyson’s density(that coincides with the real densit
of states only in the spectrum bulk)is sufficient to
determine the genuine density of states, as well as then-
3808
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point correlation function, everywhere.We also note that
Eq. (22) can be derived in a different way for monoton
confinement potentials increasing at least as fast asj´j at
infinity. This suggests that differential equation Eq. (2
should hold generally and not only for confineme
potentials having the polynomial form Eq. (11).

Up to this point our derivation was quite gener
without any respect to the soft edge of eigenvalue supp
We now focus our attention on the eigenvalue correlatio
near the soft edgé ­ DN . It is known [14] that by
tuning coefficientsdk which enter V , one can obtain
a bulk (Dyson’s) density of states which possesses
singularity of the type

nDs´d ­

µ
1 2

´2

D2
N

∂m11y2

RN

µ
´

DN

∂
, (24)

with m ­ 0, 2, 4, etc., andRN being a well-behaved
function with RN s1d fi 0. [Odd indicesm are inconsis-
tent with our choice that the leading coefficientdp, en-
tering confinement potentialV s´d, be positive in order to
keep a convergence of integral for partition functionZN

in Eq. (1).] Such anmth multicriticality can be achieved
by many means, and the corresponding plethora of mu
critical potentialsV smd is given by the equation

dV smds´d
d´

­ P
Z 1DN

2DN

dt
´ 2 t

µ
1 2

t2

D2
N

∂m11y2

3 RN

µ
t

DN

∂
. (25)

So-called minimal multicritical potentials which corre
spond toRN ­ const can be found in Refs. [4,14].

Below we intend to demonstrate that as long
multicriticality of order m is reached, the eigenvalu
correlations in the vicinity of the soft edge becom
universal, and are independent of the particular poten
chosen. The orderm of the multicriticality is the only
parameter which governs spectral correlations in the s
edge scaling limit.

Let us move the spectrum origin to its end pointDN ,
making the replacement

´s ­ DN

∑
1 1

1
2

s

µ
2

pDNRN s1d

∂1ynp∏
, (26)

that defines themth soft-edge scaling limitprovided
s ø fDNRN s1dg1ynp

~ N1ynp

. It is straightforward to
show from Eqs. (22) and (23) that the functionĉN ssd ­
cN s´s 2 DN d obeys the differential equation

ĉ 00
N ssd 2

snp 2 3y2d
s

ĉ 0
N ssd 2 s2snp21dĉN ssd ­ 0 ,

(27)

and that the following relation takes place:

ĉN21ssd ­ ĉN ssd 1 s21dnp23y2

µ
2

pDNRN s1d

∂1y2np

3 ss3y2d2np

ĉ 0
N ssd . (28)
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The solution to Eq. (27) which decreases ats ! 1`

(that is, at far tails of the density of states) is given (up
an arbitrary factorlN ) by the functionGssjnpd, Eq. (6).
The factorlN can be found by fitting [16] the density o
statesKN s´s, ´sd, Eq. (8), to the bulk density of states
Eq. (24), near the soft edge provided1 ø s ø N1ynp

.
Then, making use of Eqs. (6), (8), and (28), we eas
obtain that in themth soft-edge scaling limit, Eq. (26)
the two-point kernel

K
smd
softss, s0d ­ lim

N!`
KN s´s, ´s0d

d´s

ds
(29)

is determined by Eq. (5). In the particular case ofm ­ 0
that is inherent in random-matrix ensembles with mon
e
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tonic confinement potential, the functionG coincides with
the Airy function,Gssj

3
2 d ­ Ai ssd, and the Airy correla-

tions, Eq. (4), are recovered.
It follows from Eqs. (5) and (27) that the density of

states in the same scaling limit

n
smd
softssd ­

µ
d
ds

Gssjnpd
∂2

s3y22np

2 fGssjnpdg2snp21y2

(30)

is also universal. The large-jsj behavior ofn
smd
soft can be

deduced from the known asymptotic expansions of th
Bessel functions,
n
smd
softssd ­

8>>><>>>:
jsjn

p21

p
1

s21dnp21y2

4pjsj
coss2jsjn

p

ynpd, s ! 2` ,

exps22snp ynpd
4ps

cos2spy4npd
sinspy4npd 1 s21dnp23y2

, s ! 1` .
(31)
c

e
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b

,

v.

.

d

n

Note that the leading order behavior ass ! 2` is
consistent with thejsjn

p21 singularity of the bulk density
of states, Eq. (24).

To conclude, in this Letter we presented a general fo
malism for a treatment of eigenlevel correlations in spe
tra of UsNd invariant ensembles of large random matric
with strong level confinement. An important ingredient o
our analysis is the second-order differential equation wh
connects the Dyson’s density with a fictitious “wave fun
tion” cN which is needed for calculations of eigenvalu
correlations within the framework of orthogonal polyno
mial technique. This consideration is relevant to an a
bitrary energy range. We have applied this formalism
examine the eigenlevel correlations near the end point
single spectrum support. It has been shown that in
soft-edge scaling limit there are novel universal eigenlev
correlations which only depend on the even multicritic
index of a matrix model. In a particular casem ­ 0, cor-
responding to monotonic confinement potentials, unive
sality of the Airy correlations is recovered.
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