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Novel Universal Correlations in Invariant Random-Matrix Models
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We show that eigenvalue correlations in unitary-invariant ensembles of large random matrices satisfy
novel universal laws that only depend on a multicriticality of the bulk density of states near the soft
edge of the spectrum. Our consideration is based on the previously unknown observation that the
genuine density of states and thepoint correlation function are completely determined by the Dyson’s
density analytically continued onto the entire real axis. [S0031-9007(97)03184-0]

PACS numbers: 05.45.+b, 02.10.Sp, 05.40.+j

Random matrices have been introduced in a physicaly, N > 1. The symmetry paramete is equal to
context since the works by Wigner [1] and Dyson [2]. the number of independent elements of the nondiagonal
Initially proposed as an effective phenomenological modekntries of matrixH. In the following we restrict our
for description of the higher excitations in nuclei [3], consideration to the unitary invariant(AJ), matrix model
the invariant ensembles of large random matrices foungvith 8 = 2.
numerous applications in very diverse fields of physics Nowadays it is widely believed that(¥) invariant en-
such as two-dimensional quantum gravity [4], quantumsembles of large random matrices with rather strong level
chromodynamics [5], quantum chaos [6], and mesoscopiconfinement may exhibithree different types of locally
physics [7]. Apparently, this ubiquity owes its origin to universal eigenlevel correlations which are characterized
the very idea of the construction of the invariant one-by the appropriately scaled two-point kernels.
matrix model [8], which only reflects the fundamental (i) Bulk scaling limitis associated with a spectrum
symmetry (orthogonal, unitary, or symplectic) of therange where the confinement potential is well behaved,
underlying physical system/phenomenon but discards itand density of levels can approximately be taken as a
(irrelevant) microscopic details. Since the symmetryconstant. It has been proven in Refs. [9-11] that for
constraints follow from first principles, even a rather cruderather strong confinement potentials [12] the two-point
matrix model allows identification of universal featureskernel follows theuniversal sine law
which persist for a variety of systems with the same ) ,
symmetry. This circumstance emphasizes the importance Kouik (s, ) = M 2)
of the study of universality intrinsic to random matrices. m(s — s')

The simplest invariant random-matrix model is defined

by the probability density Here the scaling variableis measured in the units of the

mean level spacing: = ¢/Ay.

P[H] = 1 exp{—BTrV[H]} (1) (i) Origin scaling limit deals with that part of the
Zy spectrum where the confinement potential displays a
of the entriesH;; of the N X N random matrixH, logarithmic singularity:V(e) — V(e) — aIn|el. In the

where the functiorV’[H] referred to as the “confinement vicinity of the singularity e = 0, the two-point kernel
potential” must ensure existence of the partition functiT)rsatisfies thainiversal Bessel layi 3],

Ja Ja- ") = Jae Ja !
Koria (5, ) = TS v1/2(ms)a—1/2(ms") 1/2(7s) +1/2(7TS)_ 3)
2 s — s
Here s is scaled by the level spacing near the origan,nels follow theAiry law
s = g/AN(0). Ai()AI'(s)) — Ai(sHAI
(iii) Soft-edge scaling limitelevant to the tail of eigen- Kani(s,s') = WA = ADAT) -y

—
value support where crossover occurs from a nonzero § 8

density of states to a vanishing one [14], has been only inHere s « N23(¢/Dy — 1) with Dy being the end point
vestigated for Gaussian unitary ensemble [15], and quitef the spectrum. Whereas universality in the spectrum
recently for UN) invariant ensembles of large random bulk and near its origin has rigorously been proven for
matrices associated with quartic and sextic confinemerd wide class of strong symmetric confinement potentials,
potentials [16]. It has been found that in the soft-edgehe supposed universality of the Airy kernel has not been
scaling limit, for all these ensembles the two-point ker-proven.
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Our aim here is to demonstrate that the problem othe method of orthogonal polynomials [8]. This allows
eigenvalue correlations in the random-matrix ensemblegs to prove that the Airy correlations, Eq. (4), being
with nonsingular confinement potentials can be treated imniversal for a wide class of matrix models Eq. (1), are
a unified way by means of the new universal secondindeed a particular case of more general novel universal
order differential equation for the wave functions of correlations which are represented by the scaleti
fictitious noninteracting fermions naturally appearing |inmulticritical two-point kernel

_ GLIG )2 — GGG (slv) (52

(m)
KSZLI:I(S?S/) o B (5)
N N
where the functiorG is expressed through the Bessel functions as
() - o]
G(s|v™) = sin + (-1
(1r") = 5= | sil 37 ) + =D
5(1/2)(’}*71/2)[1(—1/2)(1—1/2V*)(S,,T) - Lay2a-17205)] ) s >0, ©6)
s UDL 1y (B5) + (=17 32000y 112 ()] s <0,
and parameter® is determined by the even critical index note that a three-term recurrence equation for orthogonal
m = 0, 2, 4, etc., of the matrix model, polynomials P,,(¢) can be mapped onto a second-order
V= m + % @) differential equation for these orthogonal polynomials

o ) ) and/or corresponding wave functions,(¢). This was
Note that the critical index: is completely determined already observed for the first time by Shohat in 1930
by the type of singularity of the Dyson’s c2lensity of states[17]. Considerably later Shohat's idea was developed by
near the soft edge [14}p(e) = (1 — &2/Dy)" /2. Bonan and Clark [18]. The simple and elegant method
Equations (5)—(7) together with Egs. (22) and (23)proposed in Refs. [17,18] turns out to be a very general
below are the main results of the paper. Although weand powerful one for the analysis of spectral properties
concentrate our attention on the problem of eigenvalugossessed by large random matrices.
correlations near the soft edge, the treatment we presentTo map Eq. (9) onto a second-order differential equa-

here is quite general being relevant to an arbitrartion for 4,, we note the following identity:
spectrum range.

Within the orthogonal polynomial technique the two- Py _ A, (€)P,—1 — B,(g)P,, (12)
point kernelKy (e, &’) determining the:-point correlation de
function R, for eigenvalue spectrum of large random where the functionsi,(s) and B, (¢) can be found from
matrices,R, (&1, ..., €,) = de{Ky(e;, €;)]i j=1..., AN be  considerations below. Sina#P,/de is a polynomial of
written through the fictitious “wave functionsl, (¢) as the degreen — 1, it can be represented [19] through

v (N n—1(e) — Yy (e)pn—_1(&) the Fourier expansion in terms of the keri@(z, ) =

Kn(e, &) = ey rl o SN =2 @) >0 Pi(t)Py(e) as follows:
Here cy is the recurrence coefficient entering the three- dpP, _ [ da(t)dﬁQn(t, e). (13)
term recurrence equation de dt

eP,_1 = cyPy + ch—1Pyr—2 (9) Integrating by parts we obtain that
, . . P, d
for polynomialsP,, orthogonal on the entire real axis, dp, _ 2] da(N0, (1. 8)<d_V _ —V>P,,(t). (14)
de dt de
]da(s)P"(S)Pm(s) = Oum> (19) " Now, making use of the Christoffel-Darboux theorem

and the wave function, (¢) = P,(¢) exp{—V(¢e)}. The I[El9], iNZe conclude that unknown functioms, and B,, in
measureda(e) = exp(—2V(e)}de is completely deter- q. (12) are

. . . . / _ /
mined by symmetric confmpement potential A () = 2¢, /’ da(t)V (1) — V'(e) P2,  (15)

Vie) = 3 Lo (11) e
= 2k

Be) = 26, [ dat ™= p oy, 0
with d, > 0. The signs of the rest;’s can be arbitrary me cn “ t— ¢ ) En =1l
but they should lead to an eigenvalue density supported (16)
on a single connected intervat Dy, +Dy). At first glance representations Egs. (15) and (16) are
To study the eigenvalue correlations in the random+ather useless because they involve the same orthogonal
matrix ensemble with confinement potential Eq. (11) wepolynomials which enter Eq. (12). Nevertheless these
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expressions do allow us to get the functioAs and point correlation function, everywherée also note that
B, in closed forms directly related to the confinementEq. (22) can be derived in a different way for monotonic
potential and to the end point of eigenvalue spectrumconfinement potentials increasing at least as fastjat
Restricting our following considerations to large indicesinfinity. This suggests that differential equation Eq. (22)
n = N > 1, we reduce Eq. (9) to the asymptotic form should hold generally and not only for confinement

ePy = cy(Py+1 + Py—1), Whence potentials having the polynomial form Eq. (11).
A Up to this point our derivation was quite general
e'Py = Z( .)C;AVPNH,-—A, A=0. (17)  without any respect to the soft edge of eigenvalue support.
j=orJ We now focus our attention on the eigenvalue correlations

SubstitutingV () given by Eq. (11) into Eq. (15) yields near the soft edge = Dy. It is known [14] that by
p 2k—1 tuning coefficientsd; which enterV, one can obtain
Ay(e) =2ex D > dkaA‘lfda(t)P,zv(t)r”“’“l_ a bulk (Dyson’s) density of states which possesses a
k=1 A=l (18)  singularity of the type

m+1/2
Then, taking into account Eq. (17) as well as the orthogo- vp(e) = <1 - 8_i> / ’RN<i>, (24)
nality of P,,, we arrive at the expression fdy, (¢) defined Dy Dy
for arbitrary e, with m = 0, 2, 4, etc., andRy being a well-behaved
mvp(e) function with R (1) # 0. [Odd indicesm are inconsis-
A(e) = JT = &2/D%’ (19 tent with our choice that the leading coefficietyt, en-
tering confinement potentidl (¢), be positive in order to
where keep a convergence of integral for partition functigy
vp(e) — 2 ?fDN tdt  dV |1 — e?/Dy in Eg. (1).] Such annth multicriticality can be achieved
2 o 2 —¢&r dt \1 - 2/D} by many means, and the corresponding plethora of multi-
(20) critical potentialsV ™ is given by the equation
is the Dyson’s density continued onto the entire real M - g)ij L(l — i)mﬂ/z
axis, so thate can lie both inside and outside of an de -Dy €& — 1 D;zv
eigenvalue support. The spectrum end pdnt = 2cy ¢
is the positive root of the integral equation X RN<D_N>- (25)
Dy
N = zf d—thit, (21)  So-called minimal multicritical potentials which corre-
™ Jo dt D3 — 12 spond toR y = const can be found in Refs. [4,14].

Below we intend to demonstrate that as long as

foIIowing from normalization of Dyson’s de_nsity. . multicriticality of order m is reached, the eigenvalue
. Co_mblnlng_ Egs. (12) and (19), and using asymptoticeqrelations in the vicinity of the soft edge become
identity By = eAy/Dy — dV/de, which is a conse- universal, and are independent of the particular potential
quence of Egs. (15) and (16), it is a straightforward steppnsen  The ordem of the multicriticality is the only

to obtf':un.the following remarkable asymptotic differential parameter which governs spectral correlations in the soft-
equation: edge scaling limit.

" {i In( 7vp(e) )}ﬁfv + 7202 (e)gy = 0 Le_t us move the spectrum origin to its end polny,
de | — &2/D making the replacemenlt , e
| S e
. . . . e = Dl 2\ #DyRy (1) - @9
which together with relationship i ) . )
7vp(e) . that defines the;nfgh soft/—edge scaling limitprovided
W, = #(w = — ) (23) s <[DyRy()]V" o« NV 1t is straightforward to
N J1 = e2/D3%, N Dy " show from Egs. (22) and (23) that the functign (s) =

. ) ) yn(e; — Dy) obeys the differential equation
provides a general basis for the study of eigenvalue

. . . R (v* —3/2) 4 . A
correlgtlons in ararbitrary spectral range. _ . 11(s) — ' =3/2) Pl (s) — 2 Vign(s) = 0,
An interesting property of these equations is that they s @27)
do not contain the confinement potential explicitly, but
only involve the Dyson’s density,, and spectrum end and that the following relation takes place:

point Dy. Moreover, it turns out that thé&nowledge » 2 1/2v*
of Dyson’s density(that coincides with the real density — Jiy_i(s) = dn(s) + (—1)”*‘3/2<7>

of states only in the spectrum bulky sufficient to 7Dy Ry(1)
determine the genuine density of states, as well asithe X s(S/Z)”’*&,’V(s). (28)
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The solution to Eq. (27) which decreasessat> +o  tonic confinement potential, the functiaghcoincides with
(that is, at far tails of the density of states) is given (up tothe Airy function,G(slg) = Ai(s), and the Airy correla-
an arbitrary factoriy) by the functionG(s|v*), Eq. (6). tions, Eq. (4), are recovered.

The factorAy can be found by fitting [16] the density of |t follows from Egs. (5) and (27) that the density of
statesKy &y, €5), EQ. (8), to the bulk density of states, states in the same scaling limit

Eq. (24), near the soft edge providddx s < N'/"". )
Then, making use of Egs. (6), (8), and (28), we easily ), _(d o) 3/2-v N2 —1/2
obtain that in themth soft-edge scaling limit, Eq. (26), Vroft(s) = dsG(S|V )) s [Glslv)]s

the two-point kernel (30)

(m) P deg
Ksori(s,s) = lim Ky(es. ) ds (29 is also universal. The large} behavior of»"; can be
is determined by Eq. (5). In the particular caserof= 0  deduced from the known asymptotic expansions of the
that is inherent in random-matrix ensembles with moqoBesseI functions,

v —1 -1 v'—1/2 N
e L M
(m) (s) = T 45|

Vsoft exp(—2s”"/v*) co(m /4v*)
47 sin(z/4v*) + (—1)»"~3/2°

(31)

§ — +o©,
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