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We present a quantitative evaluation of the predictions of mean-field theory for describing a
Bose-Einstein condensate in a magnetic trap by comparing directly with experimental observations.
We study the release energy from ballistic expansion and the cloud density profile as a function
of mean-field effects. Significant departure of the cloud shape from both the noninteracting
limit and the strongly repulsive limit is observed for our parameters, consistent with theoretical
prediction. [S0031-9007(97)03183-9]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

One reason the recent observations of Bose-EinsteiRermi approximation (neglecting the particle kinetic en-
condensation in alkali gases [1-3] have generated sergy) is not valid. The significance of our quantitative
much interest is the ability to provide accurate and de€omparisons between experiment and theory is that there
tailed theory in a quantum degenerate many body systenare effectively no fitting parameters. The few parameters
In these experiments, the average distance between thequired by the theory can easily be measured indepen-
particles is much larger than the characteristic length scaldently of the energy and shape studies performed here.
associated with elastic binary collisions. The gas is di- The numerical prediction of time-dependent phenom-
lute and well modeled at zero temperature by mean-fieléna in these systems using mean-field theory represents a
theory for a finite system of weakly interacting bosonssignificant computational problem. The experiments have
[4]. This has allowed direct microscopic calculations ofonly one axis of rotational symmetry and therefore two-
many experimental observables such as the frequencigimensional wave functions at least must be stored. The
of elementary excitations, the conditions required for vorproblem is made difficult by the mean-field nonlinearity,
tex formation, and the effect of finite number and sizethe singularity at the radial origin, and the requirement to
on the thermodynamics [5,6]. Application of the Gross-model the ballistic expansion where the multidimensional
Pitaevskii equations to this problem showed qualitativewave function grows to many times its original size. An
agreement with the spatial features of the experimentallgfficient method has been developed to solve this problem
observed condensate component [7]. As one would exaver a wide range of interaction strengths. The starting
pect, the noncondensate atoms showed a contrasting sgaint is the time-dependent Gross-Pitaevskii equation giv-
tial distribution consistent with the equipartition theoreming the evolution of the condensate wave functibfr, ¢)

[8]. In the case of superfluid helium, where the densityat the pointr = (x,y, z)

is much higher, fluctuations about the mean field even at o, 1) R _,
zero temperature make a similar microscopic description i = = >V Plr,t) + Vr)p(r, 1)
of the condensate more complicated. 5
In this Letter, we present measurements of the release + NUoly(r, )" (r. 1), 1)

energy of a Bose-Einstein condensate and the density digtherem is the mass of the atom. The confining potential
tribution after ballistic expansion and make direct com-in the experiment is harmoni®;(r) = %mwz(xz + y2 +
parison with theory. For our parameters, kinetic energyz?), wherew = 27 v is given in terms of the horizontal
effects in the condensate are important and the Thomasscillation frequency. The anisotropy parameter for our
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field geometry ise = 8 which is the ratio of the vertical The terms on the right hand side weighted By are

(z direction) and horizontal spring constants. The lastentral differencing, and those weighted by- 3; are

term in Eq. (1) is the mean field which is proportional to forward differencing. The parameted; is determined

the number of condensate atoiisthe scattering length  analytically by relating the left and right hand sides of

throughUy = 47 h?a/m, and the wave function density these equations for the series expansionegp, () =

which is normalizedf d*r|y(r,1)|*> = 1. >, en(O)p"t! nearp = 0. This procedure gives
Because of the vertical axis of rotational symmetry in

V(r), we use as coordinates only the heightind the B = j4j +3) @)
distance from the vertical axis = \/x2 + y2. We also @i+ 1)

scale lengths to the natural size of the harmonic oscillator

ground staté = ///(2mw) by introducing dimensionless which makes the approximation in Eg. (3) exact fior=
variablesp = r/l, { = z/I, anda = a/l. The wave 2 and is the optimal choice. Note thgl tends to unity
function is defined only fop positive and for this reason asj increases so that almost pure central differencing is
it is usually easiest to treat numerically if the calculatedused at large distances from the vertical axis. In contrast,
wave function is zero ap = 0. We therefore define forward differencing is used exclusively gt= 0. We

a computed wave functiow(p, Z,1) = VI zpy(p,{,1). have found this addition to usual ADI numerical methods

Using T = wt, the dimensionless form of Eq. (1) is to be stable and to allow large grid spacing with high
5 5 numerical accuracy and therefore rapid computation. Any
,'M = |:_a_ _ + 1o 1 numerical solution of a parabolic equation with cylindrical
aT a2 ap*  pap  p? symmetry may benefit from this approach.

1.5 ) 8aNale(p, {)|? The experimental procedure is to evaporatively cool to

+ 4 (p” + €l + p? an almost pure condensate in which we estimate that the
remaining noncondensate atoms represent less than 20%

X o(p,{), )

of the sample. We then allow the cloud to ballistically
where2n [ p~eo(p,O)?dp d¢ = 1is the normalization €xpand by suddenly removing the confining potential. In
condition one(p, ¢). order to model this, we first find the theoretical self-
We numerically evaluate Eq. (2) for the experimentalconsistent condensate wave function before expansion.
parameters using an alternating-direction implicit (ADI) The condensate density profile is dependent on the trap
method which is based on finite differencing in eachfrequency» which determines the spatial scale and
dimension to derive the derivatives [9]. Although im- the condensate numbe¥, measured from total optical
plementing this for the derivative term arising from the absorption of an imaging pulse. The scattering length
vertical kinetic energyd?/a{? is straightforward, it is a for spin-polarized®’Rb has recently been measured
nontrivial to treatp = 0 in the terms arising from the as 110ao (ao is the Bohr radius) and is accurate to
horizontal kinetic energyd?/ap?, 1/pd/dp, and1/p>.  approximately 9% [10]. The numerical method used
A number of the current Bose-Einstein condensation exto find the self-consistent condensate wave function is
periments have cylindrical geometry and are therefordo propagate a trial wave function (chosen carefully to
described by equations of this form, so that a procebe as close as possible to the solution) in imaginary
dure to treat carefully the region near the symmetry axigime by replacingi on the left hand side of Eq. (2) by
is important. Sampling the wave function at a grid of —1, and to renormalize the wave function at each time
points spaced\ apart defines a discretized wave func-step. This provides a minimization of the energy by
tion ¢;, = ¢(jA,sA) for integersj ands. The dif- steepest descents and converges rapidly to the ground
ficulty in calculating the radial kinetic energy is that State solution [6].
second-order central finite differencing for the horizon- We model the ballistic expansion by initializing
tal kinetic energy terms does not give a good numeri<(p,{) to the self-consistent wave function and evolving
cal approximation to the derivative for radial poiritslose  the Gross-Pitaevskii equation with the confining potential
to 0. In our approach, we numerically approximate theséerm removed. During the expansion, the energy com-
terms atp = jA and{ = sA by ponents are found by integrating each of the different
terms on the right hand side of Eq. (2) over the wave

de(p.d) _, ’3.901'“’5 — Pi-ls function volume. This gives the axial and radial kinetic
pop ! 2jA? energiesfE, andE,, respectively, the total kinetic energy
- B Pj+2s — Pjs Ex =E. + E, the confining potential energ¥,, and
(G + 1)A? A3) f[hte m(tea(r;-ﬂild !nt?racttlont_ elngrgEmE +Tr;5e YrolEume
2 , T , integrated chemical potential ig = E; int-
J 90(sz 0 B Pitls zgoé’s T it The time-invariant quantity corresponding tof:onservation
Ip A of energy during the expansion is the release energy and
+(1 - B8 Pj+2s ~ 2¢j+1s T Pjs . is given bye = E; + Eiy/2. _The typica_l va_riat_ion of
/ A2 the energy components during expansion is illustrated
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[o ]

in Fig. 1. Because of the repulsive mean field, the total
kinetic energyE; before expansions(< 0) is small and
most of the energy is contained in the mean field and
potential energy of the particles. At= 0, the harmonic
confining potential is removed anél, from then on is
zero. The chemical potentiagh decreases during the
expansion > 0) due to the reduction of the mean
field. One half of the initial mean-field energy., is
transferred into kinetic energy, at large expansion times
as illustrated by the time invariance of

In Fig. 2 we show four snapshot images of the nu-
merical density profile as it expands illustrating the self-
diffraction of the condensate wave function. The number
of condensate atoms and the frequency of the initial trap
are the same as for Fig. 1. The wave function is initially
confined more strongly in the direction than in thec di-  FiG. 1. Theory: Energy components during the expansion of a
rection due to the trap geometry and this translates to @000 atom condensate. The trap frequency was 56.25 Hz
spreading which is larger vertically than horizontally afterand was removed at = 0. Shown are the radiak,, axial
the confining potential is removed. The numerical modef:; and totalE; kinetic energies, the potential energy, the
must be able to treat a large change in the spatial scale B?Iease energy, and the chemical potential.
the wave function in both dimensions.

It is necessary to find the asymptotic kinetic energy of Taking into account that the camera observes the two-
expanding clouds in the experiment in order to comparglimensional integrated column density through the cloud,
the release energy with that predicted by this modelwe use the functional form consistent with the above two
This is done using the experimentally observed densitgonstraints
profile as a function of expansion time in the far field H\ A
regime. In this regime there is maximal correlaton F = 3 2
between the position of an atom and its momentum Heexl—3(1 = A/k)] A
p as constrained by the Schwartz inequality) (p?) =  where A = 1 — x2/(202) — z2/(202) parametrizes the
[r - p)*. In tr;e e;<panded cloud, the2 equality holds gjliptical contours. The c:Sonditiom% > k is satisfied
e i oo s S, he coud centr and. < « in he vings o te
The rate of ch’aI;ge of the varianoé = (%) can then bé distribution. The four fitting constants to be determined

Lo from the data are the maximum densify, the cloud
related to the kinetic energy width in the horizontal and vertical directions;, and
do (p? o, respectively, and the fractior of the maximum

1 2 1 5

—m(ZZ) = P+ Ev.

2 m< ot > 8mo? reptp-m 2m k
5)

Consequently, a sequence of experimental measurements
of o at different expansion times is used to derive the
kinetic energy. Note that this is a general property where
no assumption about the cloud shape has been made.

Energy /hv

Time ¢ (ms)

> K,
< Kk,

PIw oIw

(6)

z (Lm)

We determiner of the experimentally observed density -49!
distribution by fitting a simple smooth functional form to
the data and finding the moments of this distribution ana- 40
Iytically. Our functional form is generated by imposing —~ 20
constraints based on the following properties: g

(1) We expect the density distribution at large distances 3 0
from the center to be well described by a Gaussian tail. o 20

(2) We also expect, in the case of strong interactions,
there to be a region in the center of the cloud where
the kinetic energy of the atoms can be neglected. In this
region the sum of the potential energy due to interactions x (ULm) x (Lm)
(proportional to the local density of atoms) and the ENergy g, 2. Theory: Contour images of the wave function density

due to the confining potential is required to be spatiallyat four times during the expansion of a 4000 atom condensate
uniform. from av = 56.25 Hz trap.

_4 : : : _ : - :
—910 -20 0 20 40 ﬂo -20 0 20 40
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FIG. 3. Comparison of the release energy as a function oflG. 4. Comparison of the cloud shape parameteas a
interaction strength from mean-field theory (solid line) andfunction of interaction strength for mean-field theory (solid line)
the experimental measuremen#.( Inset shows experimental and experimental data points)(

widths in the horizontal €) and vertical &) directions against

th -field dicti dashed and solid lines) for the data . . .
pO?nTg{al%fNVP/Ee;COI_(;gSH(Zl/zI ) good agreement with the experimental data points. The

scattering length in the condensate therefore appears to be
consistent with that measured in Ref. [10]. A deviation

density at which the Gaussian wings are_ connected tfom this value by more than approximately 20% would
the central region. Note that on the ellipde = « the  be inconsistent with our results.
gradient and values of the two parts to the functional form In Fig. 4 we compare the cloud shape parameter
are equal and the density Bx. We have found this between theory and experiment, again showing good
form to characterize well the density distribution expectedagreement. The inset shows the typical form of the
theoretically. Choosing optimally?, o, o,, andx to fitting function with the ellipse representing the boundary
fit this form to the numerically expanded wave function between inner and outer parts. At very small values of
illustrated in Fig. 2 gives a maximum deviation in densitythe interaction strengthg is close to unity and the cloud
of less than 3% over the two-dimensional surface. shape is approximately Gaussian. At large interactions,

In Fig. 3 we present a comparison of the experimentallyx is smaller and most of the cloud is well approximated
measured release energy[11] with the prediction of by the Thomas-Fermi or strongly repulsive limit. Even
Gross-Pitaevskii theory. The relative interaction strengttor the most strongly interacting clouds, it is necessary to
due to mean-field effects is characterized¥y/v. We include a significant component of the Gaussian wings.
use this as the dependent variable in order to combine We thank F. Dalfovo and S. Stringari for providing
measurements with different condensate numbers arttie results of calculations on the release energy [6]. We
trap frequencies into one graph. The inset shows théhank C. Wieman, E. Cornell, M. Levenson, and the
time-dependent behavior of the widths of the cloud inJILA BEC Collaboration for helpful discussions. M.L.C.
the horizontal and vertical directions used to determineacknowledges M. Tosi for fruitful discussions and the
experimentally one of the release energy points. EachNFM for financial support. This work was supported
pair of data points in the inset plot (a0 and ano at the by the National Institute for Science and Technology,
same expansion time) represents a separate measuremtirg National Science Foundation, and the Office of Naval
in which the function given in Eqg. (6) is fitted to the Research.
observed density profile and both. and o, determined.
A linear fit to the rate of change of the experimental
widths at large expansion times was made (not shown) *Quantum Physics Division, National Institute for Stan-
to determine the asymptotic kinetic energy using Eq. (5). ~dards and Technology. .
This procedure was repeated for each experimental data ﬁ\féma';eigé I;oll)(;lress: Scuola  Normale Superiore and
p0|_nt for the release energy_X. _The solid line in the. [1] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E.
main graph and both the solid line and the dashed line Wieman, and E. A. Cornell, Scien@89, 198 (1995).
in the inset are the predictions of the Gross-Pitaevskii 5] ¢ c. Bradley, C.A. Sackett, J.J. Tollett, and R. G. Hulet,
equation which does not contain any fitting parameters” * ppys Rev. Lett75 1687 (1995).
to the data set. Our theoretical calculation of the release[3] k.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van
energy is in agreement with the results reported in Ref. [6]  Druten, D. S. Durfee, D.M. Kurn, and W. Ketterle, Phys.
for the unexpanded trap. The theory lines show very  Rev. Lett.75, 3969 (1995).
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