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Scaling and Nucleation in Models of Earthquake Faults
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We present an analysis of a slider block model of an earthquake fault which indicates the presence of
metastable states ending in spinodals. We identify four parameters whose values determine the size and
statistical distribution of the “earthquake” events. For values of these parameters consistent with real
faults we obtain scaling of events associated not with critical point fluctuations but with the presence of
nucleation events. [S0031-9007(97)03140-2]

PACS numbers: 91.30.Px, 05.20.–y, 05.70.Fh
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Since Gutenberg and Richter [1] (GR) noticed that th
energy released in earthquakes obeys a scaling law
searchers have tried to explain the origin of that sca
ing. To study the statistical aspects of earthquake eve
Burridge and Knopoff [2] (BK) proposed a slider block
model amenable to numerical and analytic investigati
that hopefully contained the essential physics of faul
The dynamics of this model has been the subject of co
siderable interest, initially among seismologists [3–6] an
more recently in the condensed matter community [7–1
Although cluster scaling is obtainable from the BK mode
there has been no clear connection between the sca
and any underlying critical phenomena. In addition th
clusters observed in the BK model exhibit a compa
structure rather than the fractal morphology associat
with critical fluctuations. Moreover, earthquake phenom
ena are considerably more complicated than scaling pl
alone indicate. In addition to scaling there are faults th
show only quasicontinuous motion (creep) and eviden
that at least some earthquakes are nucleation events [
In order to gain deeper understanding of the range of ph
nomena obtainable from the BK model we have inves
gated a cellular automaton version introduced by Rund
et al. [5,6] (RJB) with the modification that we concen
trate on systems with long range interactions. Our ma
results are as follows: (a) The model has two critic
points at which the cluster scaling is associated with “the
mal” critical phenomena. (b) There is, under the prop
conditions, a metastable, ordered, high stress state an
stable, disordered, lower stress state, both of which c
be described by an equilibrium theory [12]. (c) Nucle
ation events occur which are similar to those discussed
Ref. [11].

The RJB model also has a two dimensional array
blocks connected by springs with spring constantsKC.
Each block is also connected to a loader plate, whi
moves at a velocityV , by a spring with constantKL. The
system is initialized by random positioning of the block
and the plate is moved a distanceVDT , whereDt ­ 1.
The stresssi of each block is checked to ascertain
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it exceeds a prescribed failure thresholds
F
i . If so it is

moved a distance prescribed by a “jump rule” specifie
below. The process of moving blocks if their stres
exceedss

F
i continues until all blocks havesi , s

F
i .

Then the plate is again moved a distanceVDt and the
entire process repeats. Measurements are generally m
of clusters of failed sites where a cluster is defined a
failed sites connected by springs to each other. Th
motion of thejth block is defined by the equations

Ujst 1 1d ­ Ujstd 1

"
sjstd 2 s

R
j

K

#
Qssssjstd 2 sF

j ddd

1 hjstd (1)

and

sistd ­
X

j

TijUjstd 1 KLV
X
n

Qsn 2 td . (2)

HereUjstd is the position of thejth block at timet, s
R
j

is the residual stress to which the block is set after
fails (sR

j and s
F
j will be taken to be constants in this

work) K ­ KL 1
P

j,ifij Tij andQsxd ­ 0 if x # 0 and
is equal to one ifx . 0. The stress Green functionTij

is taken to be that of a linear elastic medium [13], i.e
Tij , 1yji 2 jj3 with both an infrared and ultraviolet
cutoff andhistd is a random noise with an amplitude se
by a parameterb.

Multiplying both sides of Eq. (1) byTij , summing over
j, and using Eq. (2) we have

sist 1 1d 2 sistd ­
1
K

X
j

Tijfsjstd 2 sRg

3 Qssssjstd 2 sF ddd 1 KLV 1 h0
istd ,
(3)

where h
0
istd ­

P
j Tijhjstd. With hjstd ­ 0, nearest

neighbor springssq ­ 4d, and V , 0 this model gives
the same qualitative results, with respect to the statistic
distribution of “earthquakes” as the BK model which is
also aq ­ 4 model in two dimensions [5,6,10].

Deviating slightly from the original BK idea we take
q ¿ 1, which is dictated by the long range nature
© 1997 The American Physical Society 3793
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of Tij. That is, we adopt a model with each bloc
directly connected to many other blocks via spring
with constantsKC . The importance ofq ¿ 1 that the
q ! ` limit generates mean-field (MF) behavior [14,15
which can be qualitatively different [16,17] than tha
of the q ­ 4 model. In particular, critical exponents
will differ.

We are interested only in phenomena on length sca
larger than the range of interactionq1y2. With this in mind
we develop a coarse-grained [18] description of theq ¿ 1
BK-RJB model that retains the physics on these leng
v

t
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scales. To do this we average over the blocks within
course-grained cell centered ati, taking the volume of the
cell to beq, and over a course-grained timet. The left
hand side of Eq. (3) retains the same form, but the varia
sistd is replaced bysistd. Additional considerations arise
in coarse graining the right hand side. First we expa
the Fourier transform ofTij (assumed to be analytic due
to the cutoffs) in a power series in the transform variab
j $kj ­ k and truncate the series atk2. Inverting the Fourier
transform we obtain
X
j

TijsjstdQssssjstd 2 sF
j ddd , 2qKC

X
j

DijsjstdQssssjstd 2 sF ddd 2 KLsistdQssssistd 2 sF ddd , (4)
t
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where2KL andqKC are the zeroth and second momen
of Tij, respectively,q is the number of blocks that a single
block is connected to by springs, andDij is the matrix
(discrete) representation of the Laplacian. Note that t
sum preceding the Laplacian is not over nearest neighbo
but over coarse-grained blocks whose length scale is
by q1y2.

The second step in the coarse-graining procedure is
do a partial sum in Eq. (3) over those blocks in a volum
of sizeq, centered at blocki, that fail in a coarse-grained
time interval. To perform this step we note that in the M
sq ! `d limit the time averaged stress on a block from
the connector springs (with spring constantKC) will be-
come extremely small. This is expected from symmet
but to confirm this point we measured the mean stress
the blocks and compared it toKL times the mean distance
a

n

s

e
rs,
set

to
e

y
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between the actual position of the blocks and the posit
at which the force from the loader spring would be zer
These values approach each other within a coarse-grain
time asq increases [19] indicating that the loader pla
springs account for almost all the stress on a block asq !
`. Standard MF arguments [20] indicate that the fluctu
tions in the stress from the mean value go to zero asq21y2.

Since the blocks are weakly interacting in the M
limit, we expect, from the central limit theorem, tha
within the coarse-grained volume of sizeq, on a time
scale short compared to the coarse-grained time, the st
distribution of the blocks will equilibrate to a Gaussia
centered aboutss $x, td, where $x labels the coarse-grained
volume andt is the coarse-grained time scale. The part
sum in Eq. (3) can now be done using the Gauss
distribution; i.e.,
1
q

X
j

0
fsjstd 2 sRgQssssjstd 2 sF

j ddd , ssF 2 sRd
p

b
p

p

Z sF

sR
ds exph2bfs 2 ss $x, tdg2j , (5)
22]
l
a

where the prime on the sum denotes the sum o
the blocks that fail inside the coarse-grained volume
a coarse-grained time unit. The parameters0, which
specifies the number of failed blocks in a coarse-grain
time, remains to be determined. We have assumed
blocks fail at most once after a plate update, which c
be shown [19] to be true in theq ! ` limit for V ,

ssF 2 sRdyK. The factor
p

b y
p

p is an approximation
to the normalization forb ¿ 1, the range ofb we will
er
in

ed
hat
n

treat in this Letter. Large [21]b results in a narrow
Gaussian (see Fig. 1) so that replacingsF by infinity
causes negligible error in the normalization.

We define Nsss ss $x, tdddd to be the number of ways
the stressqss $x, td can be distributed among theq
blocks in the coarse-grained volume. Using the idea [
that the log of a probability distribution is proportiona
to the potential of a generalized force we include
term [19]
dSsssss $x, tdddd
dss $x, td

­ 2
d ln Nsssss $x, tdddd

dss $x, td
­

b21

sF 2 sR
ln

"
ss $x, td 2 sR

sF 2 ss $x, td

#

2
b21

sF 2 sR

µ
b

p

∂1y2 Z sF

sR
ds ln

√
s 2 sR

sF 2 s

!
exph2bfs 2 ss $x, tdg2j (6)
s-

it
to the coarse-grained force. The addition of this e
tropy term follows from the standard coarse-grainin
assumption that the system equilibrates within the coars
grained volume on a time scale short compared to the tim
-
g
e-
e

scales of interest [23]. Equation (6) follows from the a
sumption of local equilibrium [19].

Combining Eqs. (3)–(6) and taking the continuum lim
in time and space
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RJB
ties of

es
≠ss $x, td
≠t

­ KLV 1 hs $x, td 1
sqKC,2 2 KLd

K
ssF 2 sRd

2
serfh2

p
bfsF 2 ss $x, tdgj 2 erfh

p
bfs0 2 ss $x, tdgjddd

2
b21

sF 2 sR

"
ln

√
ss $x, td 2 sR

sF 2 ss $x, td

!
2

µ
b

spd

∂1y2 Z sF

sR
ds ln

√
s 2 sR

sF 2 s

!
exph2bfs 2 ss $x, tdg2j

#
, (7)

where erfszd is the error function andhs $x, td is the coarse-grained noise. This is the coarse-grained equation for the
model. A detailed examination of its solutions will be presented in Ref. [19]. Here we will examine the proper
the time independent spatially homogeneous solutions. Setting the noise and derivatives to zero, Eq. (7) becom

KL

K
ssF 2 sRd

2
herff

p
b ssF 2 s dg 2 erff

p
bss0 2 sdgj

1
b21

sF 2 sR

"
ln

√
s 2 sR

sF 2 s

!
2

√
b

p

!1y2 Z sF

sR
ds ln

√
s 2 sR

sF 2 s

!
expf2bss 2 sd2g

#
­ KLV . (8)
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To determines0 we note that the blocks can be treate
as noninteractingwithin the interaction rangefor q !
`. This follows from the observation that if every block
interacts with every other block then there is no spat
scale for fluctuations and the interactions can be absorb
into an effective or mean field. For the purposes
calculating MF “thermodynamics” we can assume th
every block interacts with all the others in the system [24
Since the solution of Eq. (8) is the space and time avera
of ss $x, td we must haves ­ ssF 1 sRdy2 (see Fig. 1).
With this replacement, Eq. (8) can be solved fors0. For
s ­ ssF 1 sRdy2 the entropy term in Eq. (6) equals zer
ands0 is the solution of

ssF 2 sRd
2K

(
erf

µp
b

sF 2 sR

2

∂
2 erf

"p
b

√
s0 2

sF 1 sR

2

!#)
­ V .

(9)

FIG. 1. The number of blocks with time averaged stresss
per block for the RJB model. The system was run wit
V , 0, sF ­ 50, sR ­ 0, K ­ 9.95, KL ­ 1, and random
initial conditions. The data were collected over 10 000 pla
updates in a system with256 3 256 blocks during which 84%
of the blocks failed.
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For b ¿ 1 and sR ­ 0, erff
p

b sFy2g , 1 and
erf f

p
b ss0 2 sFy2dg is approximately a step function

equal to minus one fors0 , sFy2 and one fors0 .

sFy2. Therefore,s0 , sFy2 for sFyK . V . 0. For
V . Vc ­ sFyK, the upper bound of a single failure
per block per plate update is no longer valid. As will b
discussed in detail in Ref. [19] large events with multip
failures per block occur forV . Vc. Solutions for other
values ofb and sR will also be discussed in Ref. [19]
However, small values of the noise are implicit in M
theories [20], where noise amplitudes are scaled byq21y2.

Clearly with this value ofs0, s ­ sFy2 is a solution
to Eq. (8). Moreover, if we consider Eq. (8), withKLV
brought to the left hand side, as the derivative of
potential Fs s d, it is straightforward to show thats ­
sFy2 is a minimum ofFs s d consistent with Ref. [12].
There is, however, another solution of Eq. (8) withs0 ­
sFy2. In Fig. 2 we plot (schematically) the left hand sid
of Eq. (8) withsR ­ 0 ands0 ­ sFy2. The horizontal
straight line isVKL. The solutions of Eq. (8) are the
intersections of the two curves. As can be seen fro
Fig. 2 there is a high stress low entropy solution
addition to the one ats ­ sFy2 for Vc . V . Vcy2.

FIG. 2. Schematic plot offs s d, the left hand side of Eq. (8),
for b ­ 10.
3795
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It can also be shown that this solution is a minimum o
Fs s d. In addition, the low stress solution is the globa
minimum for V , Vcy2 1 Ss s dysF , whereas the high
stress solution is the global minimum for larger velocitie
The high stress solution corresponds to periodic events
which a significant fraction of the blocks fail once after
plate update. The stress is replaced in a sequence of p
updates in which they are few failed blocks.

The cluster scaling exponent,sssncssd , s2tt ­ 3y2ddd
can be obtained from the theory by considering the fr
quency of nucleation. Sinceq ¿ 1 spinodal nucleation
is the dominant event [17,24]. The nucleation ratenc is
given by [25,26]

nc ,
fqsDV d3y22dy4gdy2

qsDV d2dy4
expf2qbsDV d3y22dy4g . (10)

HereDV ­ V 2 Vc. To convert this function ofDV
to a function of cluster sizeS requires hyperscaling which
is imposed by usingq as an auxiliary scaling field to keep
qsDV d3y22dy4 fixed [24]. Using Eq. (10) and the fact tha
the sizeS of the critical droplet in spinodal nucleation
scales [25] asS , qsDV d1y22dy4 we obtain, independent
of dimension,nc , S23y2 in agreement with our data
[19]. The fact that the GR scaling comes from th
nucleation droplets rather than the assumption of critic
phenomena explains why the earthquakes have a comp
rather than a fractal morphology.

In conclusion, we have presented the first explic
coarse-grained theoretical analysis of slider block mod
incorporating the long range stresses indicated by elas
ity theory. The phenomenology of these long range mo
els is often quite different from that of their short rang
counterparts [12,16,17,20,27]. This analysis has resul
in the identification of scaling with nucleation near the M
spinodal rather than with critical point fluctuations. In ad
dition this analysis forms a bridge between slider bloc
models and somewhat more phenomenological continu
models of earthquake faults [28]. It is also interestin
to note that large events which are different in charac
from small events were found in a numerical analysis
the BK model [29]. Our analysis provides a predictio
for the scaling exponent of these events which has be
confirmed in the RJB model. A similar statistical analy
sis of the large event statistics in the BK model wou
prove most interesting.
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