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Scaling and Nucleation in Models of Earthquake Faults
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We present an analysis of a slider block model of an earthquake fault which indicates the presence of
metastable states ending in spinodals. We identify four parameters whose values determine the size and
statistical distribution of the “earthquake” events. For values of these parameters consistent with real
faults we obtain scaling of events associated not with critical point fluctuations but with the presence of
nucleation events. [S0031-9007(97)03140-2]

PACS numbers: 91.30.Px, 05.20.-y, 05.70.Fh

Since Gutenberg and Richter [1] (GR) noticed that thet exceeds a prescribed failure threshetfl. If so it is
energy released in earthquakes obeys a scaling law reaoved a distance prescribed by a “jump rule” specified
searchers have tried to explain the origin of that scalbelow. The process of moving blocks if their stress
ing. To study the statistical aspects of earthquake evenexceedss! continues until all blocks haver; < of.
Burridge and Knopoff [2] (BK) proposed a slider block Then the plate is again moved a distari¢d: and the
model amenable to numerical and analytic investigatiorentire process repeats. Measurements are generally made
that hopefully contained the essential physics of faultsof clusters of failed sites where a cluster is defined as
The dynamics of this model has been the subject of corfailed sites connected by springs to each other. The
siderable interest, initially among seismologists [3—6] andnotion of thejth block is defined by the equations
more recently in the condensed matter community [7—10]. oi(t) — af
Although cluster scaling is obtainable from the BK model U;(t + 1) = U;(t) + [T’}(@(%(l) —of)
there has been no clear connection between the scaling
and any underlying critical phenomena. In addition the + ;) (1)
clusters observed in the BK model exhibit a compactand
structure rather than the fractal morphology associated
with critical fluctuations. Moreover, earthquake phenom- oi(t) = D T;U;(t) + KLVY. O —1). (2
ena are considerably more complicated than scaling plots Y n
alone indicate. In addition to scaling there are faults thatiere U;(¢) is the position of thejth block at timet, o}
show only quasicontinuous motion (creep) and evidencé the residual stress to which the block is set after it
that at least some earthquakes are nucleation events [1{ils (o7 and o; will be taken to be constants in this
In order to gain deeper understanding of the range of phe¥ork) K = K, + >, ;.; T;; and®(x) = 0 if x = 0 and
nomena obtainable from the BK model we have investiis equal to one ifc > 0. The stress Green functidfi,
gated a cellular automaton version introduced by Rundlés taken to be that of a linear elastic medium [13], i.e.,
et al.[5,6] (RJIB) with the modification that we concen- Tij ~ 1/li — jI* with both an infrared and ultraviolet
trate on systems with long range interactions. Our mairfutoff andn;(#) is a random noise with an amplitude set
results are as follows: (a) The model has two criticalPy @ parameteg.
points at which the cluster scaling is associated with “ther- Multiplying both sides of Eq. (1) by’;;, summing over
mal” critical phenomena. (b) There is, under the proper, and using Eg. (2) we have
conditions, a metastable, ordered, high stress state and a 1 R
stable, disordered, lower stress state, both of which cafil = 1) = @i(t) = = ZTij[Uf(t) -]
be described by an equilibrium theory [12]. (c) Nucle- /
ation events occur which are similar to those discussed in X O(o;() = o) + KoLV + mj(0),
Ref. [11]. 3)

The RJB model also has a two dimensional array ofvhere 7!(r) = 2 Tijmi(r). With n5;(r) =0, nearest
blocks connected by springs with spring constakits  neighbor springdg = 4), and V ~ 0 this model gives
Each block is also connected to a loader plate, whiclthe same qualitative results, with respect to the statistical
moves at a velocity, by a spring with constark;,. The  distribution of “earthquakes” as the BK model which is
system is initialized by random positioning of the blocksalso ag = 4 model in two dimensions [5,6,10].
and the plate is moved a distanté\ 7T, whereAr = 1. Deviating slightly from the original BK idea we take
The stresso; of each block is checked to ascertain if ¢ > 1, which is dictated by the long range nature
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of T;;. That is, we adopt a model with each block scales. To do this we average over the blocks within a
directly connected to many other blocks via springscourse-grained cell centerediataking the volume of the
with constantsKc. The importance ofy > 1 that the cell to beg, and over a course-grained time The left
g — o limit generates mean-field (MF) behavior [14,15] hand side of Eg. (3) retains the same form, but the variable
which can be qualitatively different [16,17] than that o;(¢) is replaced byr; (7). Additional considerations arise
of the ¢ = 4 model. In particular, critical exponents in coarse graining the right hand side. First we expand
will differ. the Fourier transform of;; (assumed to be analytic due
We are interested only in phenomena on length scalet® the cutoffs) in a power series in the transform variable
larger than the range of interactigh/>. With thisinmind  |k| = k and truncate the series/gt Inverting the Fourier
we develop a coarse-grained [18] description ofghe 1 transform we obtain
BK-RJB model that retains the physics on these Ien?th

ZTijU'j(l)@(O'j(f) - U'JF) ~ _C]KCZAijO'j(t)@(U'j(t) — of) — KLoi()0®(oi(t) — "), (4)
J J

where—K; andgK¢ are the zeroth and second momentsbetween the actual position of the blocks and the position
of T;;, respectivelyg is the number of blocks that a single at which the force from the loader spring would be zero.
block is connected to by springs, amd; is the matrix = These values approach each other within a coarse-graining
(discrete) representation of the Laplacian. Note that théime asq increases [19] indicating that the loader plate
sum preceding the Laplacian is not over nearest neighborsprings account for almost all the stress on a block as

but over coarse-grained blocks whose length scale is set. Standard MF arguments [20] indicate that the fluctua-
by ¢'/2. tions in the stress from the mean value go to zerg d¢>.

The second step in the coarse-graining procedure is to Since the blocks are weakly interacting in the MF
do a partial sum in Eq. (3) over those blocks in a volumdimit, we expect, from the central limit theorem, that
of sizegq, centered at block, that fail in a coarse-grained within the coarse-grained volume of size on a time
time interval. To perform this step we note that in the MFscale short compared to the coarse-grained time, the stress
(g — =) limit the time averaged stress on a block fromdistribution of the blocks will equilibrate to a Gaussian
the connector springs (with spring constdft) will be-  centered abouf(x, 7), wherex labels the coarse-grained
come extremely small. This is expected from symmetryvolume andr is the coarse-grained time scale. The patrtial
but to confirm this point we measured the mean stress osum in Eg. (3) can now be done using the Gaussian
the blocks and compared it #5, times the mean distanc? distribution; i.e.,

=300 ~ M0G0 ~ of) ~ (0" ~ H)% | do ext—po - 7P}, (5)
J g

where the prime on the sum denotes the sum ovetreat in this Letter. Large [21B results in a narrow
the blocks that fail inside the coarse-grained volume inGaussian (see Fig. 1) so that replaciog by infinity

a coarse-grained time unit. The parametsy, which  causes negligible error in the normalization.

specifies the number of failed blocks in a coarse-grained We define N(&(x, 7)) to be the number of ways
time, remains to be determined. We have assumed théte stressqo(x,7) can be distributed among the
blocks fail at most once after a plate update, which carblocks in the coarse-grained volume. Using the idea [22]
be shown [19] to be true in the — « limit for V <  that the log of a probability distribution is proportional
(o — o®)/K. The factor,/B //7 is an approximation to the potential of a generalized force we include a
to the normalization fol3 > 1, the range of8 we will | term [19]

85, 7)) _  SIN@GE7) _ B! In[ﬁ(z,r) - UR}

So(x, 1) So(x, 1) of — oR or —o(x,7)

— / ot —
B! <£>1 2] do In(U—UR)exp{—,B[a - (7} (6)
o OF 4

of —oRfR\ 7w R

I
to the coarse-grained force. The addition of this en-scales of interest [23]. Equation (6) follows from the as-
tropy term follows from the standard coarse-grainingsumption of local equilibrium [19].
assumption that the system equilibrates within the coarse- Combining Egs. (3)—(6) and taking the continuum limit
grained volume on a time scale short compared to the timim time and space
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do(x, 1)
ot

2 _ F _ R
— Ky + () + KL SR T e Bt — (e ) erflyBlos — 7 )

B! oc(x,7) — ok B 12 ror o — oR .
C oF = 0'R|:|n<0'F - F(fc,T)) - (@) fg‘R do In(m>exp{—ﬁ[(r - o, T)]z}i|’ ()

where erfz) is the error function angj(x, 7) is the coarse-grained noise. This is the coarse-grained equation for the RJB
model. A detailed examination of its solutions will be presented in Ref. [19]. Here we will examine the properties of
the time independent spatially homogeneous solutions. Setting the noise and derivatives to zero, Eq. (7) becomes

K. (of

_ R
b f){erf[\/ﬁ(a‘” - 7)) — erf[i{/B(oy — )]}

- _ /2 g
+ C [In(g — UR) - <£> do In(U_—UR>eX|:[—,8((r - F)z]:| =K V. (8)

of — oR oF — O T oR OF — O

To determineo, we note that the blocks can be treated For B>1 and of =0, erf[(/Bof/2]~1 and
as noninteractingvithin the interaction rangdor ¢ —  erf[/B (0o — o /2)] is approximately a step function
«, This follows from the observation that if every block equal to minus one fory < o /2 and one foroy >
interacts with every other block then there is no spatiab’ /2. Thereforegg ~ o /2 for o /K >V > 0. For
scale for fluctuations and the interactions can be absorbed > V., = o /K, the upper bound of a single failure
into an effective or mean field. For the purposes ofper block per plate update is no longer valid. As will be
calculating MF “thermodynamics” we can assume thatdiscussed in detail in Ref.[19] large events with multiple
every block interacts with all the others in the system [24]failures per block occur fov > V.. Solutions for other
Since the solution of Eq. (8) is the space and time averagealues of 8 and o® will also be discussed in Ref. [19].
of &(x, 7) we must haver = (of + o®)/2 (see Fig. 1). However, small values of the noise are implicit in MF
With this replacement, Eq. (8) can be solved ér For  theories [20], where noise amplitudes are scaled by?.
o = (of + o®)/2the entropy termin Eq. (6) equals zero  Clearly with this value ofop,& = o /2 is a solution
and oy is the solution of to Eq. (8). Moreover, if we consider Eq. (8), witi, V
(oF — oF) oF — ok brought to the left hand side, as the derivative of a
—— [erf(ﬁ —> potential ® (&), it is straightforward to show thafr =
2K 2 or/2 is a minimum of® (o) consistent with Ref. [12].
_ erf{\/ﬁ((r _ofF t UR)“ v There is, however, another solution of Eq. (8) with =
0 2 ) o’ /2. InFig. 2 we plot (schematically) the left hand side
(9)  of Eq. (8) with o® = 0andoy = of/2. The horizontal
straight line isVK;. The solutions of Eq. (8) are the
intersections of the two curves. As can be seen from
N e L A — m— T Fig. 2 there is a high stress low entropy solution in
addition to the one at- = o /2 for V., >V > V./2.
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time averaged stress

FIG. 1. The number of blocks with time averaged stress
per block for the RJB model. The system was run with -1-—-"+-—-—t—uw L L 1 . I
V ~0, cf =50, o8 =0, K =995, K; = 1, and random 0 10 20 - 30 40 0
initial conditions. The data were collected over 10000 plate

updates in a system with56 X 256 blocks during which 84% FIG. 2. Schematic plot of (& ), the left hand side of Eq. (8),
of the blocks failed. for B = 10.
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