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Algebraic Decay of Velocity Fluctuations in a Confined Fluid
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Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that,
at long times, the velocity correlation function decays witmegativealgebraic tail. The exponent
depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail
by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a
moving particle becomes diffusive. [S0031-9007(97)03163-3]

PACS numbers: 82.70.Dd, 05.40.+j, 66.20.+d, 83.20.Jp

In 1872, as part of his kinetic theory of gases, Boltz-contained between two plates. Here we show that, to
mann [1] introduced the “molecular chaos hypothesis”—our surprise, on a hydrodynamic time scale a long-time
the assumption that successive collisions experienced bytail is recovered. What is more, this long-time tail has a
fluid particle are uncorrelated. For a quantitative descripdifferent physical origin—and sign—than the tail found
tion of molecular motion in fluids it is convenient to use in an unbounded fluid.
the velocity correlation function (v.c.f.). Thev.c.f., which  First, we describe the results of the computer simula-
we denote byC,(7), is the average of the initial veloc- tions. We used a lattice Boltzmann model to describe
ity of a particle multiplied with its velocity at a later time the fluid. The state of the fluid is specified by the av-
t, Co(t) = (vo(0)v,(1)). The molecular chaos hypothe- erage number of particles(c,r,r), with velocity ¢, at
sis implies that the velocity correlation function decayseach lattice sitar. The time evolution of the distribu-
exponentially. tion functions is described by the discretized analog of the

It therefore came as a surprise when, in 1970, AldeBoltzmann equation [4]. This involves propagation and
and Wainwright [2] reported that it did not. They found collision. Collisions are specified such that the time evo-
that in a hard sphere fluid the velocity correlation functionlution of the hydrodynamic fields satisfies the linearized
decays algebraically with a power that depended orMNavier-Stokes equations for an isothermal, compressible
the dimensionalityd of the system. They explained fluid [4]. The boundary conditions at the (stationary) con-
their observation of this “long-time tail” in terms of fining walls could be varied between stick and slip. In all
hydrodynamics. This predicts that the momentum of acases, stick boundary conditions were imposed on the in-
particle decays by two mechanisms. First, emission of @erface between the colloidal particle and fluid. The equa-
sound wave: a fraction of the initial momentum is carriedtions of motion were integrated using the self-consistent
away rapidly by a propagating sound mode. This modenethod described in Ref. [5]. We calculated the velocity
does not contribute to the long-time tail. The remainingcorrelation function by giving an initial velocity, (0), to
fraction of the momentum is transported away diffusively.a colloidal particle in an otherwise quiescent lattice Boltz-
The diffusive transport of momentum is responsible for aitmann fluid. There are no spontaneous fluctuations in the
algebraic long-time tail of the forrd, (r) ~ 1~4/2. Fora system. However, correlating, (0) with the subsequent
colloidal particle of typical size (one micron), suspendedvelocity v,(¢) is, according to Onsager’s regression hy-
in water, sound propagation only influences the shortpothesis, equivalent to calculating the v.c.f. in a “real”
time decay of the v.c.f. (times less than a nanosecondjluctuating system. Our units are such that the mass of
The time scale for the long-time tail is controlled by the lattice-gas particle, the lattice spacing, and the time
the kinematic viscosity of the fluid and is on the orderstep are all unlty, the kinematic viscosity of the fluid
of microseconds. Where we subsequently refer to “longvas equal tOg, the densityp was 24, and the speed of
times,” we mean thisiydrodynamidong time. The time soundc¢ was 1/4/2. The mass of the object was set to
it takes a colloidal particle to significantly move is still correspond to neutral buoyancy. In all cases the v.c.f. was
longer ~1073 s). only calculated for times less than the time it takes for a

In this Letter we consider the dynamics of a colloidal sound wave to cross the system, so there are no finite-size
particle suspended in a fluid confined by rigid walls. effects to consider.

Because of the friction exerted by the walls, one would The first geometry we considered was a cylindrical
expect that the long-time hydrodynamic tail will be losttube. In Fig. 1 we show the v.c.f., calculated in a
and the v.c.f. will decay exponentially. This was indeeddirection along the axis of the tube, for a colloidal
the conclusion reached by Bocquet and Barrat [3], inparticle located at the center. We have expressed time in
their theoretical analysis of a particle suspended in a fluidimensionless units; = tv/r?, wherer is the particle
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0.04 behavior of the v.c.f. of an effectively one dimensional
] system, namely, exponential decay parallel to the tube
axis. For athree dimensional fluid between parallel plates
the v.c.f. decays ag/r in the same limit. From this we

IS

=C (t)/C(0)

S oozt 10 1 concluded that the existence of velocity gradients close

E} i i to the walls, induced by the boundary conditions, are

D essential for the negative long-time tail.

5 10° 5 by In order to clarify the origin of such algebraic tails, we
T considered the long-time decay of a velocity perturbation

0.00 in an initially quiescent fluid. For simplicity, we discuss
the two-dimensional case with an initial perturbation
v(r,0) = (vod(r),0). The evolution of this disturbance

is determined by the usual hydrodynamic equations,
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FIG. 1. Normalized velocity correlation functia®, (7)/C,(0)
of a colloidal particle with radiug = 2.5 in a cylindrical tube v )
with radiusR = 4.5 (drawn line). The dashed line denotes a — +aVp —vViv — ¢VVW - v =0, (2)
line with C,(7) ~ —1/7%2. The reduced time is defined by ot
T=1v/r. where v(r,7) and p(r,r) are the disturbance velocity

and density field, respectivelyp, is the equilibrium
radius. For an incompressible fluid this is the onlydensity, v the shear viscosity¢ the bulk viscosity,
relevant parameter. However, if compressibility effectsand o = ¢2/p,, with ¢ the velocity of sound [for a
are important, one should also consider the ratigry, three dimensional fluid,¢ in Eq. (2) is replaced by
which is the time it takes transverse momentum to diffuse&& + »/3]. Although stick boundary conditions should be
a particle radius divided by the time it takes sound tosupplemented to Egs. (1) and (2), we will introduce them
travel the same distance. In the simulation this ratidn an effective way. In fact, we assume that at long times
is 10.6 (for a colloidal particle in water the ratio is the transverse component of the velocity field has almost
of order1000, whereas for olive oil it is10). The relaxed ¢,v, > d,v,), and we keep the dependence
most noticeable feature of the v.c.f. is that it become®f v, (note that for slip, this last requirement is no longer
negative. In the absence of the tube, the v.c.f. is positiveecessary). The solution of this problem reads, in Fourier
at all times. We do not see an exponential decay—space,
as the inset shows the asymptotic decay is algebraic .
with the form C,(r) ~ —1/13/2. We observed no such Uy (ky, ky, w) = R mz)vo 3 5 (3)
effect for the component of the v.c.f. perpendicular to —w? T iolky + vky) + kg

the tube axis. In this case the decay was exponentialyith ' = » + &, the sound wave damping coefficient.
To examine the effect of dimensionality, we studied agegcause of the anisotropy induced by thelependence
two-dimensional system, consisting of a disk in a fluidof the x component of the velocity, this equation shows
confined between two walls. Again the same qualitativenat purely diffusive modes can be excited in the tube if
behavior was found; the v.c.f. becomes negative anqczkf < (Tk2 + vk2)2, implying that, for a fixed value
decays algebraically. The asymptotic decay has the forrgs ;. there will always be &* such that wherk, < k
C(r) ~ —1/*2. This is the same as the result we only diffusive modes show up. In general, due to the
obtained for the tube in three dimensions. To examingact that there exists a minimuky (because of the finite
the effect of the confining geometry, we studied a threeyigth of the tube), there will always exist a fraction of the
dimensional fluid contained between two plates. In thiSyodes that are overdamped and will behave diffusively.

case we still observed a negative long-time tail for thein the hydrodynamic regimek( — 0) the modes in the
v.c.f, parallel to the plates, but now with an exponentsystem are

—2 instead of—3/2. This suggests that the exponent of

2
the long-time tail depends on the number of dimensions w) ~ ivk? + i<F - C_2>k£ + O(KY, 4
which are not geometrically confined]*, rather than ’ vk
on the actual spatial dimension. In order to shed more ko, .
light on the mechanism underlying this behavior, we wy ~ims ket O (k). (5)
y

repeated the calculation for the two walls, but changed

the boundary conditions at the walls. The algebraic decayhe modew,; induces a perturbation which decays expo-
persists as long as the walls exert friction. Only fornentially with time because of the minimum value igf
pure slip boundary conditions do we recover the usuaHowever, in the limitk, — 0 the w, mode gives rise to a
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diffusive perturbation. The prefactor multiplying can 40.0
be interpreted as an effective diffusion coefficient which
characterizes the diffusion of density perturbations, which
scales as 300 |- 1
2R2
Dt~ £, (6)

14

"o 200 _
whereR is half the width of the channel. The possibility Q

of exciting such overdamped sound modes has been
discussed in Ref. [6], where the hydrodynamics of a thin

fluid layer in contact with a solid substrate is modeled

as a 2D fluid with an extra dissipation force accounting

for the liquid-solid interaction. Recently, it has been 00 ‘ , ‘ ,
argued that sound waves in fluid membranes may also 0.0 20 4.0 6.0 8.0 10.0

be overdamped [7]. This suggests that the dynamics of in

particles embedded in such membranes will exhibit théFIG. 2. The effective diffusion coefficient of density per-

same features reported in this Letter. turbations D* as a function of1/v, where v is the di-

i ; ensionless kinematic viscosity. Results were obtained in a
The power law characterizing the decay of this Secom?v]vo-dimensional slit of half widttR = 4.5. The points denote

mode can be obtained by transforming back the velocity tge simulation results, and the line is a guide to the eye.
real space and time from Eq. (3). An asymptotic analysis
of this time decay leads to

modes are present in the system, this density dipole will
vog/2 + 0. @) decay diffusively,

e x exp(—x2/4D*1)
. . . . . . . p(x’ t) = s

This is in agreement with the simulations of the two JAm (D)3

dimensional system. An analogous analysis for the three- . i .
dimensional fluid between two plates shows that where x is the distance from the particle along the tube
and the density profile in the transverse direction is

vx(t) - =

(10)

v, () ~ — U_20 + 0@17?), (8) es;entjally flat. This leads to a mass f_qu aroqnd the origin
t which is proportional to the gradient in densit{0, t) ~
again in agreement with the simulation [8]. —d,p(0,1). The particle (or fluid element) which caused

The derivation considers a fluid element, but the resulthe initial dipole will now (at long times) be enslaved to
should not depend on the specific way the momentunthis mass flux, and the flow related to the flux will be the
has been introduced, it only depends on the amount ofelocity of the particle§(r) ~ —1/r3/2]. For the particle
momentum which is inserted. By changing the viscositydiffusing between two plates (in three dimensions), the
of the fluid, we have also verified that the tails scale withdiffusion of the density will be two dimensional, and,
the viscosity as predicted by Egs. (7) and (8). arguing along the same lines, we findr) ~ —1/¢2.

In order to investigate the diffusive decay of sound, pre-This shows that the long-time tail is driven by a pressure
dicted by Eqg. (6), we performed a simulation in which werelaxation mechanism. From here we argue that this result
actually measured this effective diffusion constant. To das general and that
this we increased the density of the fluid at a point in the 1
center of a two dimensional slit, and computed the sec- Ci(t) ~ — RETIR (12)
ond moment of the evolving spatial density distribution. _ o ! _ o
The diffusion coefficient was obtained by differentiation: The requirement for finding this behavior is that the
D* = %%<r2(t)>_ The diffusion coefficient is plotted in geometry overdamps spund modgs. The r_esult in Eq. (11)
Fig. 2, as a function of the kinematic viscosity. Changingd'ﬁers from the velocity correlation function found by

the channel width and the viscosity, we find Bocquet and Barrat [3], Wh_ere a simple mode-coupling
B, approach was used [10], which neglected the coupling of
_ R -4 1

, 9) velocity with sound at long times. We also note that the

3v 2 form of v.c.f. we observe is the same as that found in
which is in agreement with Eq. (6) (except for the factorsa purely diffusive system—the Lorentz gas [11]. The
of —1/4 [4] and 1/2 [9] which are, in fact, lattice physical origins of the two effects are, however, quite
artifacts). different.

This analysis allows us to give a more intuitive picture By integrating the v.c.f. we can calculate the diffusion
for the appearance of the negative algebraic decay. Thepefficient for a particle in a tube to see whether this
initial motion of the particle in the tube sets up a densitylong-time tail contributes to the diffusion coefficient. The
dipole in the fluid. If we consider that only overdampedresults are shown in Fig. 3, normalized by the diffusion

D*
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1.0 propriate volume fractiong, for which such condition is
\ satisfied is given in Ref. [14p < %% with ¢ the solute
N volume fraction in the pore.
AN In summary, our simulations show that the v.c.f. of a
A colloidal particle in a fluid confined by rigid walls can
N display a negative long-time tail. The mode-coupling
05 - N 1 analysis suggests that the mechanism driving the long-
\ time tail is the diffusive decay of density perturbations
N that would normally decay by sound propagation. The
N simulations support this. At long-times sound propagation
~~ plays no part for a particle in an unbounded fluid—in a
~ confined fluid it is the dominant effect.
00, 05 St o The work of the FOM Institute is part of the scientific
/R program of FOM and is supported by the Nederlandse
. I - . .. Organisatie voor Wetenschappelijk Onderzoek (NWO).
FIG. 3. Normalized diffusion coefficient of a particle with .
radiusr in the center of a cylindrical tube with ra[()jius The Computer time on the CRAY-C98256 at SARA was
points denote simulation results, and the line corresponds to th@ade available by the Stichting Nationale Computer Fa-
centerline approximation (Ref. [12]). ciliteiten (Foundation for National Computing Facilities).
I.P. acknowledges E.U. for its financial support [Contract
coefficient in the absence of the tuliy. Also plotted No. ERBFMBICT-950433], and the FOM-Institute for its
is the centerline approximation [12], calculated assumingospitality. We gratefully thank Patrick Warren for his
a purelyincompressiblefluid (neglecting sound effects). useful comments and Lyderic Bocquet, Matthieu Ernst,

The simulations lead to the same diffusion coefficientand Bela Mulder for critical readings of the manuscript.
as predicted by the theory for incompressible fluids. In

fact, this must be the case because the long-time tail

originates from the compressible modes. These modes

do not affect the integral of the v.c.f.—the contribution [1] L. Boltzmann, Wien. Ber66, 275 (1872).

from Eq. (3) vanishes in the limib — 0. The diffusion [2] B.J. Alder and T.E. Wainwright, Phys. Rev. A 18
coefficient is determined by the decay of transverse (1970).

velocity perturbations [3,13] which, in a confined system, [3] L. Bocquet and J.-L. Barrat, J. Phys. Condens. Mager
is exponential. So, while compressibility effects dominate 9297 (1996).

g : ; ; [4] A.J.C. Ladd, J. Fluid Mech271, 285 (1994).
g;;ulgig% t(lzrgeeﬁ(i:ic);gﬁtmlcs, they siill do not contribute to the [5] C.P. Lowe, D. Frenkel, and A.J. Masters, J. Chem. Phys.

. 103 1582 (1995).
. Expe_rlmentally,_ one can expect to observe the Iong—[e] S. Ramaswamy and G. F. Mazenko, Phys. Re26A1735
time tail most easily if all the modes are overdamped, that (1982).

is, whenk§ > kax. If we consider a colloidal particle [7] W. Cai and T.C. Lubenski, Phys. Rev. Left3, 1186

D/D,

of radiusr in a cylindrical tube of radiu® and lengthL, (1994).
this condition is satisfied if [8] M.H.J. Hagen, |. Pagonabarraga, C.P. Lowe, and
r\2 4 cr r D. Frenkel (to be published).
<—> > —— —. (12) [9] T. Naitoh, M.H. Ernst, M.A. van der Hoef, and
R T v L D. Frenkel, Phys. Rev. A4, 2484 (1991).
If we consider % _ 1074,% _ % for water ¢ = [10] M. H. Ernst, E.H. Hauge, and J. M. J. van Leeuwen, Phys.
1.5 X 10° cm/s, » = 1072 cn?/s) we obtain the restric- Rev. Lett.25, 1254 (1970).

. < 5% 105 s _ [11] M. H. Ernst and A. Weyland, Phys. LeGAA, 39 (1971).
tion thatr <5 107 cm, which is reasonable for col [12] P.M. Bungay and H. Brenner, Int. J. Multiph. Flaly 25

loidal particles. For a more viscous fluid, such as olive (1973)

. : . 3 . .
oil, the e;tlmate 'g_ <5_ X 1077 cm. H.ere W? ConSIQ- 13] L. Bocquet and J.-L. Barrat, Europhys. LeB1, 455
ered a single particle in a tube, but, if particle-particle (1995).

interactions within the pore are small compared With[14] H. Happel and H. BrennerLow Reynolds Number
particle-wall interactions, the analysis also holds for a sus-  Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ,
pension of colloidal particles. A rough estimate of the ap- 1965).

3788



