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Interacting Pulses in Three-Component Reaction-Diffusion Systems
on Two-Dimensional Domains

C. P. Schenk, M. Or-Guil, M. Bode, and H.-G. Purwins
Institut für Angewandte Physik, Westf älische Wilhelms-Universität Münster,Corrensstr. 2y4, D-48149 Münster, Germany

(Received 21 November 1996; revised manuscript received 5 March 1997)

We present a three-component reaction-diffusion system capable to support an arbitrary number of
interacting traveling pulses in two spatial dimensions. Whereas a global coupling added to a two-
component system is able to stabilize a single pulse, a fast and strongly diffusive third component can
be used to stabilize multipulse solutions. We study two-pulse scattering including extinction and present
a pulse generation process leading to a coherently propagating array. [S0031-9007(97)03097-4]

PACS numbers: 82.20.Mj, 47.35.+ i, 82.20.Wt
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Nonlinear reaction-diffusion (RD) systems are we
suited to model a wide range of physical [1–3], chem
cal [4,5], and biological [6–8] pattern formation
processes. In particular, stationary localized stru
tures (single and multispot patterns) have been obtaine
one- and two-dimensional systems in accordance with
merous experimental results. Recent observations in an
gas discharge between two glass plates [1] established
long-time existence of an almost arbitrary number
moving spots limited only by the size of the system
Repulsion, annihilation, and generation of these spots
been observed. Since moving localized solutions whi
remain stable could not be obtained in the framework
two-component activator-inhibitor models, we propos
a set of three RD equations capable to describe th
phenomena at least in a qualitative manner. Our mo
system is simple enough to motivate the design of furth
experimental setups for the study of traveling spots in tw
dimensions. In order to motivate the construction of
three-component model for the description of travelin
spots, we start with a short review of the localized stru
tures that have been found using one- and two-dimensio
RD models with one and two components, respectively

Simple front propagation is well described by one
component RD systems [9–12]. The interaction betwe
two such fronts is attractive [13], destabilizing any mu
tifront solution, as well as closed front lines in two
dimensions. This restriction can be overcome by intr
ducing a global inhibitory feedback which has proved
be able to change the character of front-front interactio
to a repulsive type and thus to stabilize a single localiz
pattern. Nevertheless, multispot solutions are still uns
ble in such a model since an antisymmetrical evolution
two localized spots is not affected by a global term, an
therefore, cannot be suppressed. Instead, one of the s
grows, while the other one shrinks and vanishes [1
It is well known that for one-dimensional and stationa
two-dimensional problems the remedy lies in a distribut
second component with inhibiting dynamics. In the lim
of strong inhibitor diffusion front interaction is repulsive
[13], permitting stable stationary multispot solutions o
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finite domains. There is also an intermediate range of
hibitor diffusion where the type of interaction oscillate
between attractive and repulsive according to the dista
between neighboring fronts [13] permitting more comp
cated patterns and, in addition, multifront structures
infinite domains, closely related to the well-studied Tu
ing patterns [15].

Concerning time dependent behavior, pulses in one s
tial dimension as well as stripes, spirals, or scroll wav
in higher-dimensional spaces have been treated suc
fully in the frame of two-component approaches [4,16,17
There is, however, still a lack of suitable models concer
ing fully localized pulses in two- or higher-dimensiona
systems. Earlier attempts to treat these traveling sp
have been made by various groups on the basis of tw
component RD systems with additional global feedba
[18–20]. Whereas single pulses are easily produced
seems that two-pulse solutions, analogous to the case
one-component systems, are always unstable as far as
merical results suggest. In this Letter we propose a thr
component RD system to remove this deficiency.

To understand our approach it is essential to have
mind the nature of the stability problem arising in th
two-pulse case. To this end we start with an (unstab
single pulse in the following two-component system:

ut  Dusuxx 1 uyyd 1 fsud 2 y 1 k1 , (1a)

tyt  Dysyxx 1 yyyd 1 u 2 y . (1b)

In these equationsu andy are scalar variables on a two
dimensional domainV  f0, Lg 3 f0, Lg with periodic
boundary conditions. Indicest, x, and y denote deriva-
tives with respect to time and space coordinates, andfsud
is a cubic-like function. The nonlinearity is chosen t
be fsud  lu 2 u3, and we uset ¿ 1. For numeri-
cal simulations we used the Crank-Nicolson scheme
a grid with spatial discretizationDx and time stepDt .
Figure 1 shows the typical evolution of such an unstab
solution moving from the left to the right. The shape o
the activator is outlined by theu  0-iso-line, while the
gray-scale image shows the distribution of the inhibitory,
© 1997 The American Physical Society 3781
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FIG. 1. The typical evolution of a pulse in a two-componen
RD system in the absence of a global inhibitory couplin
usually follows one of the two pathways to the left o
to the right. Parameters:Du  1023, Dy  1.25 3 1023,
k1  20.775, t  25, l  2, L  2.3, Dx  0.026, and
Dt  0.035.

with high concentrations indicated by dark grey. Eithe
the spot shrinks and is extinguished (right) or it grow
to a banana shape and tends to form a spiral (left);
a small periodic boundary domain a traveling stripe ma
also result. Of course, it is possible to have more unstab
modes, but this situation seems to be closest to the sta
pulse we are heading for. To control the evolution of th
unstable mode, it has been suggested to introduce a glo
feedback, which controls the total amount of the speciesu
in the system. Such a feedback is well known from var
ous experimental setups [21] and can easily be introduc
by replacingk1 in Eq. (1a) by

k1  knew
1 2 k2

1
jVj

Z
V

udv . (2)

Starting with an unstable pulse from system (1) th
parameterk2 is increased. Ifknew

1 is adjusted together
with k2 such thatk1 remains fixed, the pulse is still a
solution of the equations, but its stability properties ca
3782
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change. Simulations show that for a sufficiently large
feedback the instability depicted in Fig. 1 is suppresse
Thus a stable moving spot is generated, if no othe
instability is present.

The instability of the pulse, however, shows up agai
as soon as there is more than one pulse in the syste
The reason is that an antisymmetrical combination of th
localized single-pulse modes is not recognized by th
integral feedback. Hence, this combination destabilize
the two-pulse solution, at least if the pulses are separat
far enough. Numerical simulations with two pulses show
that one pulse vanishes, while the other one grow
After the first pulse has disappeared, the other on
often remains stable, but is about two times as big a
at the beginning. This is due to the global feedbac
which approximately acts as to keep the excited area
high activator concentration constant. Since this kin
of destabilization usually is rather slow, it is possible
to examine interactions between these structures befo
they collapse. Depending on the time scalet of the
inhibitor and on its diffusion-length, head-on collisions
that resulted in 180± or 90± scattering have been observed
[18,20]. 180± and 90± scattering of two spots was also
observed in a two-component model for the evolution o
current density distributions in ap-n-p-n diode [22] .
In this case Neumann boundary conditions impose
symmetry on the system in such a way that antiphas
modes, which can lead to the extinction of one spo
are suppressed. Thus an arbitrary number of consecut
collisions can take place.

Our approach to solve the stability problem is to replac
the global coupling by a second inhibitor, which has to b
fast and strongly diffusive. Thus we arrive at the three
component system

ut  Dusuxx 1 uyyd 1 fsud 2 y 2 k3w 1 k1 , (3a)

tyt  Dysyxx 1 yyyd 1 u 2 y , (3b)

uwt  Dwswxx 1 wyyd 1 u 2 w . (3c)

It is simple to prove that in the limitu ! 0 and Dw !
` the third component reproduces the global feedbac
Systems of this type are capable of supporting localize
moving structures. Figure 2 visualizes the distribution
u, y, andw of a pulse after moving through the domain
from the left to the right many times. In (a) and (b)
the activator is plotted as an iso-lineusx, yd  0, and
the fieldsy and w are displayed as gray-scale images
respectively. The different behavior of the two inhibitors
can easily be described: Because of its slow time sca
t, the first inhibitor is located behind the activator, thus
reflecting the direction of motion. This can also be
observed in (c), where a cut fory  0.5 is plotted. The
second inhibitor surrounds the activator, because it is fa
and strongly diffusing. Its task is to inhibit a further
extension of the pulse perpendicular to the direction o
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FIG. 2. Typical shape of a traveling three-component spo
Compared to theu  0-iso-line, the distributions of the two
inhibitors are shown. (a) The slow componenty forms the long
tail expected for propagating pulses. (b) The fast compone
w almost reproduces the shape of the activator distributio
smeared out, however, and strongly flattened as can be s
on the central cut (c) corresponding to the dashed lines in
and (b). Parameters are as in Fig. 1, except fork1  26.92,
k3  8.5, t  48, Dw  0.064, u  1, andL  1.

motion. We tried to makeDw as small as possible to
reduce numerical effort. It turned out that for given value
Du, Dy (Fig. 1), Dw ø 0.064 is near to the lower bound
for the existence of traveling pulses. This explains th
nearly circular shape of the activator distribution. Fo
Dw ¿ 0.064 the distribution gets more similar to that of
a typical stable spot in the two-component system wi
global coupling.

Since the equations are local, it is obvious that a
arbitrary number of pulses can exist if the system
large enough. With these objects we have carried o
simulations of scattering processes. Some of the resu
are summarized in Fig. 3. In this case we changed t
collision parameterd, which describes the shift of the
spots perpendicular to their velocity, from zero to 0.33
Choosingd  0 corresponds to a head-on collision. Th
gray-scale image is the distribution ofu for t  0 and
d  0.11 . In dependence ofd two different cases can
be found: For d , 0.08 6 0.02 the two pulses are
annihilated, whereas for largerd repulsion leads to a
deflection of the spots by an angleFsdd. The function
Fsdd is sketched in the inset of Fig. 3. The star mark
the region of pulse extinction. In the remaining regio
the w distributions of the two objects overlap and lead t
an increase of the second inhibitor in front of the spot
Thus the propagation of the activator toward the oppos
spot is slowed down and the pulses are deflected.

Annihilation of pulses is observed if the repulsion
due to the inhibitor overlap is not strong enough an
the activator distributions of the two objects merge
t.
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FIG. 3. Collision of two traveling spots. The spots approac
each other with antiparallel initial velocities. Depending on
the offset d, either the direction of propagation is changed
or the pulses annihilate each other. The positions of puls
annihilation are marked by stars. Scattering angles are p
sented in the inset as they depend ond. Parameters are as in
Fig. 2 except forL  2.6, Dx  0.018, andDt  0.014.

This result differs from other simulations obtained in
two-component systems with global coupling. In thes
systems the integral feedback forces the reproduction
activator as soon as the spots vanish and new puls
emerge from remaining perturbations. This is not possib
for this set of parameters sinceDw is rather low and
thus w cannot simply be interpreted as global coupling
Using the same parameters but different initial condition
annihilation of only one pulse has been observed, to
Though experimental scattering data are not yet availab
the extinction of one of the spots is a typical experiment
observation, when two spots come close to each other.

The third component offers a large range of possibil
ties. An example for a many-particle structure resultin
from a pulse generation mechanism is shown in Fig. 4
For this calculation parameterk3 was increased to 10.5.
Thus it is very easy to excite the system, and in fa
new pulses are ignited in the refractory tail of an existin
pulse. This process continues until the system is fille
with moving spots. After some time, and due to mutua
repulsion, these spots form a uniformly moving regula
pattern, which is very similar to experimentally observe
structures [1]. Another interesting direction is to exam
ine moving spots for a higher diffusion-coefficientDw of
the second inhibitor. During the time of pulse interac
tion the third component acts like a global coupling sinc
the spots are close together. Thus interesting features
the two-component case reappear in the progression of
scattering process. During the collision the spots mer
3783
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FIG. 4. Generation of new pulses in the refractory tail of th
predecessor after increasingk3 to 10.5. After some time the
system is filled with moving spots, which, after some transien
oscillations, form a uniformly moving pattern. Parameters ar
like in Fig. 2 except thatL  1.3.

and divide up again. Apparently, by introducing a third
component to a two-dimensional system, there is a gre
variety of new structures to be investigated.

Concluding, we return to the gas discharge experime
[1]. In this setup the charge-carrier density in the discharg
gap can be considered as the activator since under the
fluence of the external field it may grow autocatalytically
The additional field, which is built up by these charges i
the course of separation, is of opposite orientation. Hen
it acts as an inhibitor, which is laterally spread due to the d
electric glas plates. Since electrons and ions have a diffe
ent mobility, there are at least two time scales involved i
the generation of the counterfield, justifying the use of tw
inhibitors. Of course, the real dynamics of the discharge
much more complex but we believe that our model offer
at least a useful first approach. After submitting our manu
script we became aware of related work recently publishe
by Zaikin [23]. In a relatively special three-componen
model, he numerically finds traveling spots and describe
their behavior though for a limited time of evolution and
without identifying a mechanism stabilizing the spot whe
moving. On the basis of his observations of spot-spot in
teractions and motivated by the relatively coarse simul
tion grid he applied, he gives an interpretation in terms o
information processing in living systems of cellular struc
ture. Whereas we consider this a rather speculative vie
we strongly support his suggestion to design suitable e
periments for the study of distinct traveling spots in two
dimensional systems and the numerous pattern formati
phenomena implied. The set of RD equations we propo
in this article is both simple and can directly be transforme
3784
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to an equivalent circuit diagram similar to the one used
Refs. [3,11,13], which is closely related, e.g., to possib
semi-conductor and dc gas discharge experiments. Th
this field may now be entered successfully.

We thank E. Ammelt and I. Müller for stimulating
discussions on their gas discharge experiments, t
Höchstleistungsrechenzentrum (HLRZ) for providing
CPU time on the paragon XPyS 10 computer at KFA,
Jülich, and the Deutsche Forschungsgemeinschaft
financial support.
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