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Interacting Pulses in Three-Component Reaction-Diffusion Systems
on Two-Dimensional Domains

C.P. Schenk, M. Or-Guil, M. Bode, and H.-G. Purwins

Institut fir Angewandte Physik, Westf dlische Wilhelms-Universitat Minster,Correns$tD248149 Minster, Germany
(Received 21 November 1996; revised manuscript received 5 March) 1997

We present a three-component reaction-diffusion system capable to support an arbitrary number of
interacting traveling pulses in two spatial dimensions. Whereas a global coupling added to a two-
component system is able to stabilize a single pulse, a fast and strongly diffusive third component can
be used to stabilize multipulse solutions. We study two-pulse scattering including extinction and present
a pulse generation process leading to a coherently propagating array. [S0031-9007(97)03097-4]

PACS numbers: 82.20.Mj, 47.35.+i, 82.20.Wt

Nonlinear reaction-diffusion (RD) systems are wellfinite domains. There is also an intermediate range of in-
suited to model a wide range of physical [1-3], chemi-hibitor diffusion where the type of interaction oscillates
cal [4,5], and biological [6—8] pattern formation between attractive and repulsive according to the distance
processes. In particular, stationary localized strucbetween neighboring fronts [13] permitting more compli-
tures (single and multispot patterns) have been obtained icated patterns and, in addition, multifront structures on
one- and two-dimensional systems in accordance with nunfinite domains, closely related to the well-studied Tur-
merous experimental results. Recent observations in an d@ag patterns [15].
gas discharge between two glass plates [1] established theConcerning time dependent behavior, pulses in one spa-
long-time existence of an almost arbitrary number oftial dimension as well as stripes, spirals, or scroll waves
moving spots limited only by the size of the system.in higher-dimensional spaces have been treated succes-
Repulsion, annihilation, and generation of these spots hdslly in the frame of two-component approaches [4,16,17].
been observed. Since moving localized solutions whiciThere is, however, still a lack of suitable models concern-
remain stable could not be obtained in the framework oing fully localized pulses in two- or higher-dimensional
two-component activator-inhibitor models, we proposesystems. Earlier attempts to treat these traveling spots
a set of three RD equations capable to describe thedwmve been made by various groups on the basis of two-
phenomena at least in a qualitative manner. Our modelomponent RD systems with additional global feedback
system is simple enough to motivate the design of furthef18—20]. Whereas single pulses are easily produced, it
experimental setups for the study of traveling spots in tweseems that two-pulse solutions, analogous to the case of
dimensions. In order to motivate the construction of aone-component systems, are always unstable as far as nu-
three-component model for the description of travelingmerical results suggest. In this Letter we propose a three-
spots, we start with a short review of the localized struccomponent RD system to remove this deficiency.
tures that have been found using one- and two-dimensional To understand our approach it is essential to have in
RD models with one and two components, respectively. mind the nature of the stability problem arising in the

Simple front propagation is well described by one-two-pulse case. To this end we start with an (unstable)
component RD systems [9—12]. The interaction betweesingle pulse in the following two-component system:
two such fronts is attractive [13], destabilizing any mul-
tifront solution, as well as closed front lines in two up = Dyuge + uyy) + fw) —v + k1, (18)
dimensions. This restriction can be overcome by intro- T, = Dy(vy + vy) fu— v, (1b)
ducing a global inhibitory feedback which has proved to ’
be able to change the character of front-front interaction#n these equations andv are scalar variables on a two-
to a repulsive type and thus to stabilize a single localizedlimensional domainQ) = [0, L] X [0, L] with periodic
pattern. Nevertheless, multispot solutions are still unstaboundary conditions. Indices x, andy denote deriva-
ble in such a model since an antisymmetrical evolution otives with respect to time and space coordinates, fdnd
two localized spots is not affected by a global term, andjs a cubic-like function. The nonlinearity is chosen to
therefore, cannot be suppressed. Instead, one of the spdis f(x) = Au — u®, and we user > 1. For numeri-
grows, while the other one shrinks and vanishes [14]cal simulations we used the Crank-Nicolson scheme on
It is well known that for one-dimensional and stationarya grid with spatial discretizatiohx and time stepAr.
two-dimensional problems the remedy lies in a distributedrigure 1 shows the typical evolution of such an unstable
second component with inhibiting dynamics. In the limit solution moving from the left to the right. The shape of
of strong inhibitor diffusion front interaction is repulsive the activator is outlined by the = 0-iso-line, while the
[13], permitting stable stationary multispot solutions ongray-scale image shows the distribution of the inhibitor
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change. Simulations show that for a sufficiently large
feedback the instability depicted in Fig. 1 is suppressed.
Thus a stable moving spot is generated, if no other

instability is present.
Q ! The instability of the pulse, however, shows up again
as soon as there is more than one pulse in the system.

The reason is that an antisymmetrical combination of the
localized single-pulse modes is not recognized by the
integral feedback. Hence, this combination destabilizes
the two-pulse solution, at least if the pulses are separated
far enough. Numerical simulations with two pulses show
that one pulse vanishes, while the other one grows.
After the first pulse has disappeared, the other one
often remains stable, but is about two times as big as
U at the beginning. This is due to the global feedback

which approximately acts as to keep the excited area of
high activator concentration constant. Since this kind
of destabilization usually is rather slow, it is possible
to examine interactions between these structures before
l 1 they collapse. Depending on the time scaleof the
inhibitor and on its diffusion-length, head-on collisions
that resulted in 180or 90° scattering have been observed
[18,20]. 180 and 90 scattering of two spots was also
observed in a two-component model for the evolution of
E ) current density distributions in @-n-p-n diode [22].
In this case Neumann boundary conditions impose a
symmetry on the system in such a way that antiphase
modes, which can lead to the extinction of one spot,
are suppressed. Thus an arbitrary number of consecutive
) ) ) collisions can take place.
FIG. 1. The typical evolution of a pulse in a two-component gy approach to solve the stability problem is to replace
RD system in the absence of a global inhibitory couplingy, global coupling by a second inhibitor, which has to be

usually follows one of the two pathways to the left or . . .
to the right. ParametersD, = 103, D, = 1.25 x 1073,  fast and strongly diffusive. Thus we arrive at the three-

k1 = —0775, 7 =25 A=2, L=23, Ax =0.026, and component system
Ar = 0.035.

ur = Dy(uyy + uyy) + f(u) —v — k3w + k1, (3a)
with high concentratio_ns ino_licat_ed by d«_e\rk grey. Eitherwt = Dy(Uay + vyy) *u — v, (3b)
the spot shrinks and is extinguished (right) or it grows
to a banana shape and tends to form a spiral (left); ofW: = Dw(War + wyy) + u — w. (3c)

a small periodic boundary domain a traveling stripe may

also result. Of course, it is possible to have more unstabl is simple to prove that in the limi# — 0 and D,, —
modes, but this situation seems to be closest to the stabte the third component reproduces the global feedback.
pulse we are heading for. To control the evolution of theSystems of this type are capable of supporting localized
unstable mode, it has been suggested to introduce a glob&oving structures. Figure 2 visualizes the distributions
feedback, which controls the total amount of the spegies 4, v, andw of a pulse after moving through the domain
in the system. Such a feedback is well known from vari-from the left to the right many times. In (a) and (b)
ous experimental setups [21] and can easily be introducelfle activator is plotted as an iso-lingx,y) = 0, and

by replacingx; in Eq. (1a) by the fieldsv and w are displayed as gray-scale images,
respectively. The different behavior of the two inhibitors
K = eV 1 f d 2 can easily be described: Because of its slow time scale,
1 = K| K2 udw . (2) Ly e ESL : .
| 7, the first inhibitor is located behind the activator, thus

@ reflecting the direction of motion. This can also be

Starting with an unstable pulse from system (1) theobserved in (c), where a cut for= 0.5 is plotted. The
parameterk; is increased. If«]" is adjusted together second inhibitor surrounds the activator, because it is fast
with k, such thatx; remains fixed, the pulse is still a and strongly diffusing. Its task is to inhibit a further
solution of the equations, but its stability properties canextension of the pulse perpendicular to the direction of
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FIG. 2. Typical shape of a traveling three-component spot. 0.8 : : ;
Compared to the: = 0-iso-line, the distributions of the two 0.5 1.4 X 2.3
inhibitors are shown. (a) The slow componenforms the long . .

tail expected for propagating pulses. (b) The fast componen't_"G- 3. Collision of two traveling spots. The spots approach
w almost reproduces the shape of the activator distribution€ach other with antiparallel initial velocities. Depending on
smeared out, however, and strongly flattened as can be seéif Offsetd, either the direction of propagation is changed
on the central cut (c) corresponding to the dashed lines in (azr the pulses annihilate each other. The positions of pulse-

and (b). Parameters are as in Fig. 1, exceptdfpre= —6.92 nnihilation are marked by stars. Scattering angles are pre-
Ky = 85, 7 =148, D, = 0064 0 = 1, andL = 1. ' sented in the inset as they dependdn Parameters are as in

Fig. 2 except fol. = 2.6, Ax = 0.018, andAr = 0.014.

motion. We tried to makeD,, as small as possible to
reduce numerical effort. It turned out that for given valuesThis result differs from other simulations obtained in
D,, D, (Fig. 1), D,, = 0.064 is near to the lower bound two-component systems with global coupling. In these
for the existence of traveling pulses. This explains thesystems the integral feedback forces the reproduction of
nearly circular shape of the activator distribution. Foractivator as soon as the spots vanish and new pulses
D,, > 0.064 the distribution gets more similar to that of emerge from remaining perturbations. This is not possible
a typical stable spot in the two-component system withfor this set of parameters sind®,, is rather low and
global coupling. thus w cannot simply be interpreted as global coupling.
Since the equations are local, it is obvious that arlUsing the same parameters but different initial conditions,
arbitrary number of pulses can exist if the system isannihilation of only one pulse has been observed, too.
large enough. With these objects we have carried oufhough experimental scattering data are not yet available,
simulations of scattering processes. Some of the resultbe extinction of one of the spots is a typical experimental
are summarized in Fig. 3. In this case we changed thebservation, when two spots come close to each other.
collision parameterd, which describes the shift of the  The third component offers a large range of possibili-
spots perpendicular to their velocity, from zero to 0.33.ties. An example for a many-particle structure resulting
Choosingd = 0 corresponds to a head-on collision. Thefrom a pulse generation mechanism is shown in Fig. 4.
gray-scale image is the distribution affor + = 0 and  For this calculation parameter; was increased to 10.5.
d = 0.11. In dependence off two different cases can Thus it is very easy to excite the system, and in fact
be found: Ford < 0.08 = 0.02 the two pulses are new pulses are ignited in the refractory tail of an existing
annihilated, whereas for largef repulsion leads to a pulse. This process continues until the system is filled
deflection of the spots by an angle(d). The function  with moving spots. After some time, and due to mutual
d(d) is sketched in the inset of Fig. 3. The star marksrepulsion, these spots form a uniformly moving regular
the region of pulse extinction. In the remaining regionpattern, which is very similar to experimentally observed
the w distributions of the two objects overlap and lead tostructures [1]. Another interesting direction is to exam-
an increase of the second inhibitor in front of the spotsine moving spots for a higher diffusion-coefficieby, of
Thus the propagation of the activator toward the oppositéhe second inhibitor. During the time of pulse interac-
spot is slowed down and the pulses are deflected. tion the third component acts like a global coupling since
Annihilation of pulses is observed if the repulsion the spots are close together. Thus interesting features of
due to the inhibitor overlap is not strong enough andhe two-component case reappear in the progression of the
the activator distributions of the two objects merge.scattering process. During the collision the spots merge
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1.3 1.3 13 to an equivalent circuit diagram similar to the one used in

Refs. [3,11,13], which is closely related, e.g., to possible
semi-conductor and dc gas discharge experiments. Thus,
‘ ' ‘ . ‘ this field may now be entered successfully.
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