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Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains
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We study the superconductivity in small grains in the regime when the quantum level spacingd´

is comparable to the gapD. As d´ is increased, the system crosses over from superconducting to
normal state. This crossover is studied by calculating the dependence of the ground state energy o
a grain on the parity of the number of electrons. The states with odd numbers of particles carry an
additional energyDP , which shows nonmonotonic dependence ond´. Our predictions can be tested
experimentally by studying the parity-induced alternation of Coulomb blockade peak spacings in grains
of different sizes. [S0031-9007(97)03091-3]
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The standard BCS theory [1] gives a good descriptio
of the phenomenon of superconductivity in large sample
However, it was noticed by Anderson [2] in 1959 tha
as the size of a superconductor becomes smaller, and
quantum level spacing in the sampled´ approaches the
superconducting gapD, the BCS theory fails. The in-
terest in superconductivity in suchultrasmall grains was
renewed by recent experiments by Ralph, Black, an
Tinkham [3,4], who fabricated and studied nanomete
scale aluminum grains. In qualitative agreement with th
prediction [2], they demonstrated [4] the existence of th
superconducting gap in relatively large grains, with e
timated level spacingsd´ ø 0.02 and 0.08 meV smaller
than the superconducting gapD ø 0.31 meV, whereas no
signs of superconductivity were observed [3] in smalle
grains,d´ ø 0.7 meV. These experiments raise a theo
retical question about the nature of the crossover from s
perconducting to normal state in ultrasmall particles wit
level spacingsd´ , D.

This problem was addressed in two recent theoretic
papers. von Delftet al. [5] explored the BCS gap
equation in a finite-size system with equidistant discre
energy levels and found that, as the level spacing
increased, the superconducting gap of the grain vanish
at a certain critical value ofd´, which is of orderD and
depends on the parity of the total number of electron
in the grain. Smith and Ambegaokar [6] extended th
treatment of Ref. [5] to take into account Wigner-Dyso
fluctuations of the energy levels in the grain.

It is worth noting that the theories [5,6] treat the su
perconductivity in small grains within the self-consisten
mean-field approximation for the superconducting ord
parameter. Although this approximation works well fo
large systems, one should expect the quantum fluctuatio
of the order parameter to grow when the level spacingd´

reachesD. In this paper we present a theory of superco
ductivity in ultrasmall grains which includes the effects o
quantum fluctuations of the order parameter. We sho
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that the corrections to the mean-field results which a
small in large grains,d´ ø D, become important in the
opposite limit,d´ ¿ D.

The superconducting gapD studied in Refs. [5,6] is
not well defined in the presence of quantum fluctuation
Therefore, we must first identify anobservablephysical
quantity which characterizes the superconducting prope
ties of small grains. The most convenient such quanti
for our purposes is the ground state energy of the gra
EN as a function of the number of electronsN. More
precisely, we study the so-calledparity effectin ultrasmall
grains, which is described quantitatively by parameter

DP ­ E2l11 2
1
2 sE2l 1 E2l12d . (1)

In the ground state of a large superconducting grain wi
an odd number of electrons, one electron is unpaire
and carries an additional energyDP ­ D. This result
is well known in nuclear physics and was recently
discussed in connection with superconducting grains
Refs. [7,8]. The parity effect was demonstrated exper
mentally in Refs. [9,10], where the Coulomb blockade
phenomenon [11] in a superconducting grain was studie
In such an experiment the intervals between Coulom
blockade peaks in which the grain charge is odd shrin
by an amount proportional toDP.

We describe the grain by the following Hamiltonian:

Ĥ ­
X
ks

´ka
y
ksaks 2 g

X
kk0

a
y
k"a

y
k#ak0 #ak0" . (2)

Herek is an integer numbering the single-particle energ
levels ´k , the average level spacingk´k11 2 ´kl ­ d´,
operatoraks annihilates an electron in statek with spin
s, and g is the interaction constant. In Eq. (2) we
assume zero magnetic field, so that the electron sta
can be chosen to be invariant under the time revers
transformation [2]. We include in Eq. (2) only the matrix
elements of the interaction Hamiltonian responsible fo
the superconductivity; the contributions of the other term
© 1997 The American Physical Society 3749
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are negligible in the weak coupling regime,gyd´ ø 1,
we consider. Finally, we did not include in Eq. (2) the
charging energy responsible for the Coulomb blockade,
its contribution to the ground state energy is trivial.

In the absence of interactions,g ­ 0, the parity pa-
rameterDP can be easily calculated. Indeed, the groun
state energyEN is found by summing upN lowest single-
particle energy levels. This results inE2l11 ­ E2l 1

´l11 and E2l12 ­ E2l 1 2´l11. Substituting this into
Eq. (1), we find that, without the interactions,DP ­ 0.

For weak interactions, one can start with the first-ord
perturbation theory ing. In this approximation an electron
in statek interacts only with an electron with the opposite
spin in the same orbital statek. Thus when the “odd”
s2l 1 1dst electron is added to the grain, it is the onl
electron in the statel 1 1 and does not contribute to the
interaction energy,dE2l11 ­ dE2l. The next,s2l 1 2dnd
electron goes to the same orbital state and interacts with
dE2l12 ­ dE2l11 2 g. From Eq. (1) we now find

DP ­
g
2 , at g ! 0 . (3)

One should note that the result (3) is not quite satisfa
tory even in the weak coupling casegyd´ ø 1. Indeed,
the low-energy properties of a superconductor are usua
completely described by the gapD. The interaction con-
stantg is related to the gapD in a way which depends on
a particular microscopic model, so the result (3) cannot
directly compared with experiments.

This problem can be resolved by considering corre
tions of higher orders ing, which are known [12] to
give rise to logarithmic renormalizations ofg. In the
leading-logarithm approximation the renormalized inte
action constant is found [12] as

g̃ ­
g

1 2
g

d´ ln D0

D

. (4)

HereD0 is the high-energy cutoff of our model, which ha
the physical meaning of Debye frequency, andD ø D0
is the low-energy cutoff. At zero temperature,D , d´.
Taking into account the relation between the gap
a large grainD and microscopic interaction constan
D , D0e2d´yg, we find with logarithmic accuracỹg ­
d´y lnsd´yDd. Finally, substituting the renormalized in-
teraction constant into Eq. (3), we get

DP ­
d´

2 ln d´

D

, D ø d´ . (5)

Unlike the first-order result (3),DP is now expressed in
terms of experimentally observable parametersD andd´

rather than the model-dependent interaction constantg.
It is instructive to compare Eq. (5) with the result

of Refs. [5,6]. In a very small grain withd´ ¿ D, the
mean-field gap studied in Refs. [5,6] vanishes, and
parity effect is expected. However, our result (5) predic
that in small grains the parity effect isstrongerthan in the
large ones. This behavior is due to the strong quantu
3750
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fluctuations of the order parameter which persist ev
when its mean-field value studied in Refs. [5,6] vanishe
The physics of the fluctuations of the order paramet
is hidden in the renormalization procedure leading
Eq. (4). Below, we present a different technique, whic
explicitly shows the role of the fluctuations. It will allow
us to rigorously derive Eq. (5) and to study the fluctuatio
corrections in the case of large grains,d´ ø D.

A convenient way to treat the fluctuations of the orde
parameter is by using a path integral technique [13]. Th
approach gives an exact expression for the grand partit
function of a superconductor:

Zsm, T d ­ Tr exp

µ
2

Ĥ 2 mN̂
T

∂
, N̂ ­

X
ks

a
y
ksaks .

(6)

Herem is the chemical potential,T is the temperature, and
N̂ is the operator of the number of electrons in the gra
At T ! 0 the dominating term inZsm, T d corresponds
to the ground state of the grain with a certain number
electrons:

Zsm, T ! 0d ­ e2VsmdyT ,

Vsmd ­ min
N

hEN 2 mNj .
(7)

Thus we can find the ground state energyEN by studying
the grand partition function (6).

One problem with this method of calculatingEN is
that, because of the parity effect (1) withDP . 0, the
odd charge states do not contribute toZsm, T ! 0d. To
find E2l11 let us consider the effect of interactions on th
unperturbed ground state of2l 1 1 electrons. Since the
statel 1 1 is filled with one electron, the interaction term
in the Hamiltonian (2) can neither create nor destroy
pair in this state. ThusE2l11 can be found as

E2l11 ­ ´l11 1 Ẽ2l , (8)

where Ẽ2l is the ground state energy of a grain wit
2l electrons for the system (2) with statek ­ l 1 1
excluded.

The idea of the path integral approach [13] is t
replace the formulation (2) of the problem in terms o
electronic operatorsaks by an equivalent formulation
in terms of the superconducting order parameterDstd.
The latter is introduced as an auxiliary field for
Hubbard-Stratonovich transformation splitting the quart
interaction term in Eq. (2) into quadratic pair creation an
annihilation operators. Then the trace over the fermion
variables can be calculated, and one finds

Zsm, T d ­
Z

D2Dstde2SfDg, (9)

where the actionSfDg is defined as

SfDg ­ 2
X
k

∑
Tr ln Ĝ21

k 2
jk

T

∏
1

1
g

Z 1yT

0
jDstdj2dt .

(10)
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Herejk ­ ´k 2 m, and the inverse Green’s function

Ĝ21
k st, t 0d ­

∑
2

d
dt

2 jksz 2 Dstds1 2 Dpstds2

∏
3 dst 2 t0d , (11)

wheres6 ­ sx 6 isy , andsx,y,z are the standard Pauli
matrices. Ĝ21 satisfies antiperiodic boundary conditions
Ĝ21

k st 1 T21d ­ 2Ĝ21
k std.

Unlike in the case of large superconductors [13], th
order parameterD in Eqs. (9)–(11) does not depend on
the coordinates, and thus the contributions of differe
statesk in the action (10) decouple. This results from th
simplified form of the interaction term in the Hamiltonian
(2). The space fluctuations ofD are negligible for grains
smaller than the coherence length of the superconduct
this condition is well satisfied in ultrasmall grains. On
the other hand, the time fluctuations ofD accounted for
in Eqs. (9)–(11) lead to the corrections to the mean-fie
BCS theory and are studied below.

First, we consider the regime of weak interactions
D ø d´. In this case, theD-dependent terms can be con
sidered to be a small perturbation̂V ­ Ds1 1 Dps2,
and one can formally expand the action (10) in power s
ries in V̂ using

Tr lnsĜ21
0 2 V̂ d ­ Tr ln Ĝ21

0 2
X̀
j­1

1
j

TrsĜ0V̂ dj . (12)

The first-order term vanishes because matrixV̂ is off
diagonal, so we study the quadratic in theD contribution
to the action. The calculations are more convenient
perform in terms of the Fourier componentsDm of the
order parameter, defined in the usual way:

Dstd ­ T
X
m

Dme2ivmt , vm ­ 2pTm . (13)

The calculation of the second-order contribution to th
action (10) is straightforward and gives

dS ­ T
X
m

1 2 asivmd
g

jDmj2,

asEd ­ g
X

k

sgnjk

2jk 2 E
.

(14)

The functional integral (9) is now easily evaluated b
integrating over the real and imaginary parts of eachDm.
We normalize the result for the partition functionZ by its
value Z0 for a noninteracting system, which correspond
to a ­ 0 in Eq. (14),

Zsm, T d
Z0sm, T d

­
Y
m

1
1 2 asivmd

­
Y
m

Y
k

2jk 2 ivm

2j̃k 2 ivm
­

Y
k

sinhsjkyT d
sinhsj̃kyT d

.

(15)

Herej̃k are defined by1 2 as2j̃kd ­ 0. Assuming weak
interactions,D ø d´, we find j̃k ­ jk 1 djk, where
:

e

nt
e

or;

ld

,
-

e-

to
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djk ­ 2
g
2

sgnjk

1 2
g
2

P
k0fik

sgnjk0

jk0 2jk

. (16)

We can now compare the result (15) with the definitio
(7) of Vsmd and find

dVsmd ­
X

k

djk sgnjk . (17)

One can easily see that for´l , m , ´l11 this correc-
tion does not depend onm. According to (7) suchdV

should be interpreted as the correctiondE2l to the ground
state energy of2l electrons present in the grain in thi
range ofm. We then use the rule (8) to finddE2l11. To
do this we exclude the statek ­ l 1 1 from the sums in
Eqs. (16) and (17), and calculatedE0

2l . The result forDP

coincides with Eq. (5).
We now turn to the case of stronger interaction

D ¿ d´. A good starting point in this regime is the
standard BCS theory [1], which corresponds to a me
field approximation for the order parameter in the pa
integral approach [13]. Substituting a time-independe
D into the action (10), one finds

Vsmd ­
X

k

sjk 2 ekd 1
1
g

jDj2. (18)

Here ek ­ sj2
k 1 jDj2d1y2, and the value ofjDj must be

chosen in a way which minimizesV. This means thatjDj
is determined from the usual BCS equation:X

k

1
2ek

­
1
g

. (19)

In the continuous limitd´yD ! 0, one can apply the rule
(8) and find that the exclusion of one state from the su
over k in Eq. (18) results in the energies of odd char
states exceeding those of the even ones byDP ­ D.

To find the corrections toDP due to the finited´ a
more careful treatment of the mean-field approximati
is required. One can easily see that not only a tim
independentD0std ­ jDj, but also any pathDMstd ­
jDjei2pMTt with integer M is a minimum of the action
(10̌) which must be taken into account. It is convenie
to treat the pathDMstd in Eq. (11) by performing a gauge
transformation Û ­ expsipMTtsz d, which eliminates
the time dependence ofDMstd and shifts the chemical
potentialm ! m 2 ipMT [14]. Thus, instead ofZ ­
e2VyT , the partition function atT ! 0 is now

Zsm, Td ­
X
M

e2Vsm2ipMTdyT

­ e2VsmdyT
X
M

eipV0smdM ,

where Vsmd is given by Eq. (18). We have expande
Vsm 2 ipMTd in Taylor series inipMT , and neglected
the terms vanishing atT ! 0. It is now obvious that
3751
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Zsm, T d ­ 0 unless the derivative ofV is an even integer:

V0sm2ld ­ 22l . (20)

Thus the mean-field approximation can be applied o
for discrete values of chemical potentialm2l correspond-
ing to solutions with2l electrons. For the odd number o
electrons,m2l11 is found asm2l in a system with one state
k ­ l 1 1 at the Fermi level excluded. AtD ¿ d´, one
always getsmN11 2 mN ­ d´y2.

To find DP we substitute in Eq. (1) the ground sta
energy asEN ­ VsmN d 1 mN N. The contribution of
the second term toDP is 2d´y2. In evaluating the
contribution ofVsmN d one has to take into account th
dependence ofmN on N and the suppression [7,8] o
the self-consistent gap in Eq. (18)Dodd ­ D 2 d´y2 for
odd N due to the exclusion of one statek from the gap
equation (19). Combining all the contributions, we g
the following mean-field result:

DP ­ D 2
d´

2
, d´ ø D . (21)

It is interesting that a similar quantitỹDP ­ 2E2l 1

sE2l21 1 E2l11dy2 is unaffected by finite-level spacing
up to the terms linear ind´, i.e., D̃P ­ D. Thus, at
d´ ø D, we haveDP ­ Dodd andD̃P ­ Deven.

Although the resultDP ­ D can be obtained from
the mean-field theory, an evaluation of corrections to
due to the level spacing requires taking into account
effects of the fluctuations of the order parameter. One
find the contribution of the fluctuations by expanding t
action nearDstd ­ jDj using Eq. (12). The second-orde
correction to the action is [15,16]

dS ­ T
X
m

jdR
mg1y2

m 1 idI
mg21y2

m j2

3
X
k

vm

2eksvmgm 2 2ijkd
,

where dR,I
m are the Fourier components of the real a

imaginary parts of the fluctuationDstd 2 jDj, andgm ­
s1 1 4jDj2yv2

md1y2. Now we evaluate the path integra
(9) by integrating over alldR,I

m and find the contribution
of the fluctuations toVsmd,

dVsmd ­
Z `

2`

dv

2p

3 ln

É X
k

gjvj

2eks
p

v2 1 4jDj2 2 2ijkd

É
.

A comparison of the expressions fordV in the cases of
even and odd numbers of electrons shows that they c
cide up to the terms of orderd´. Thus the fluctuations of
the order parameter do not affect the result (21).

Finally, we discuss the mesoscopic fluctuations ofDP

given by our results (5) and (21). It is clear from
Eq. (16) that, unliked´ in the numerator of Eq. (5),
3752
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the one in the argument of the logarithm is sensitiv
to the Wigner-Dyson fluctuations ofjk. Thus the rela-
tive mesoscopic fluctuation of the result (5) is small
dDPyDP , 1y lnsd´yDd. It is also interesting to com-
pare the mesoscopic fluctuation of the gapD originating
from the level fluctuations in Eq. (19) with the small cor-
rections in Eq. (21). One can easily express [15] the co
rection toD in terms of the correction to the density of
statesnsjd in Eq. (19). Then the mean-square fluctuatio
of the gap is found using the well-known results for the
correlatorknsjdnsj0dl, and we get

p
ksdDd2l ­ d´yp

p
2.

In conclusion, we have studied the parity effect (1) in
the ground state energies of an ultrasmall superconducti
grain. Although the quantum fluctuations of the orde
parameter can be neglected for large grains, Eq. (21), th
play a crucial role in small grains, Eq. (5). As the size
of the grain decreases, the parity effect first weaken
Eq. (21), but then starts increasing, Eq. (5). Thus w
expect a minimum ofDP at a certain size of the grain
such thatd´ , D.
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