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Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains
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We study the superconductivity in small grains in the regime when the quantum level spacing
is comparable to the gap. As d¢ is increased, the system crosses over from superconducting to
normal state. This crossover is studied by calculating the dependence of the ground state energy of
a grain on the parity of the number of electrons. The states with odd numbers of particles carry an
additional energyAp, which shows nonmonotonic dependence&n Our predictions can be tested
experimentally by studying the parity-induced alternation of Coulomb blockade peak spacings in grains
of different sizes. [S0031-9007(97)03091-3]

PACS numbers: 74.20.Fg, 73.23.Hk, 74.80.B;j

The standard BCS theory [1] gives a good descriptiorthat the corrections to the mean-field results which are
of the phenomenon of superconductivity in large samplessmall in large grainsde < A, become important in the
However, it was noticed by Anderson [2] in 1959 thatopposite limit,6e > A.
as the size of a superconductor becomes smaller, and theThe superconducting gap studied in Refs. [5,6] is
guantum level spacing in the sampde approaches the not well defined in the presence of quantum fluctuations.
superconducting gap, the BCS theory fails. The in- Therefore, we must first identify aobservablephysical
terest in superconductivity in sualitrasmall grains was quantity which characterizes the superconducting proper-
renewed by recent experiments by Ralph, Black, andies of small grains. The most convenient such quantity
Tinkham [3,4], who fabricated and studied nanometerfor our purposes is the ground state energy of the grain
scale aluminum grains. In qualitative agreement with theEy as a function of the number of electrons More
prediction [2], they demonstrated [4] the existence of theprecisely, we study the so-callgdrity effectin ultrasmall
superconducting gap in relatively large grains, with es-grains, which is described quantitatively by parameter
timated level spacinge = 0.02 and 0.08 meV smaller _ 1
than the superconducting gdp~ 0.31 meV, whereas no Ap = B = 3 (Ba + Earea). (1)
signs of superconductivity were observed [3] in smallerin the ground state of a large superconducting grain with
grains,de = 0.7 meV. These experiments raise a theo-an odd number of electrons, one electron is unpaired
retical question about the nature of the crossover from siand carries an additional energy, = A. This result
perconducting to normal state in ultrasmall particles withis well known in nuclear physics and was recently
level spacingse ~ A. discussed in connection with superconducting grains in

This problem was addressed in two recent theoreticaRefs. [7,8]. The parity effect was demonstrated experi-
papers. von Delftet al.[5] explored the BCS gap mentally in Refs. [9,10], where the Coulomb blockade
equation in a finite-size system with equidistant discret®henomenon [11] in a superconducting grain was studied.
energy levels and found that, as the level spacing i1 such an experiment the intervals between Coulomb
increased, the superconducting gap of the grain vanishédockade peaks in which the grain charge is odd shrink
at a certain critical value of e, which is of orderA and by an amount proportional tap.
depends on the parity of the total number of electrons We describe the grain by the following Hamiltonian:
in the grain. Smith and Ambegaokar [6] extended the R n P
treatment of Ref. [5] to take into account Wigner-Dyson H = Z Eklkg ko — gz A1) A\ Ake't - (2)
fluctuations of the energy levels in the grain. ker feke

It is worth noting that the theories [5,6] treat the su-Herek is an integer numbering the single-particle energy
perconductivity in small grains within the self-consistentlevels ¢;, the average level spacing;+; — &) = Se,
mean-field approximation for the superconducting ordeoperatora;, annihilates an electron in statewith spin
parameter. Although this approximation works well for o, and g is the interaction constant. In Eq. (2) we
large systems, one should expect the quantum fluctuatiormssume zero magnetic field, so that the electron states
of the order parameter to grow when the level spadag can be chosen to be invariant under the time reversal
reaches\. In this paper we present a theory of supercontransformation [2]. We include in Eg. (2) only the matrix
ductivity in ultrasmall grains which includes the effects of elements of the interaction Hamiltonian responsible for
guantum fluctuations of the order parameter. We showhe superconductivity; the contributions of the other terms
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are negligible in the weak coupling regimg/de <« 1, fluctuations of the order parameter which persist even
we consider. Finally, we did not include in Eq. (2) the when its mean-field value studied in Refs. [5,6] vanishes.
charging energy responsible for the Coulomb blockade, ashe physics of the fluctuations of the order parameter
its contribution to the ground state energy is trivial. is hidden in the renormalization procedure leading to
In the absence of interactiong, = 0, the parity pa- Eq. (4). Below, we present a different technique, which
rameterAp can be easily calculated. Indeed, the groundexplicitly shows the role of the fluctuations. It will allow
state energyy is found by summing upV lowest single-  us to rigorously derive Eq. (5) and to study the fluctuation
particle energy levels. This results By +; = Ey + corrections in the case of large graidg, < A.
er+1 and Ey4o = Ey + 2g;41. Substituting this into A convenient way to treat the fluctuations of the order
Eq. (1), we find that, without the interactions, = 0. parameter is by using a path integral technique [13]. This
For weak interactions, one can start with the first-ordemapproach gives an exact expression for the grand partition
perturbation theory ig. In this approximation an electron function of a superconductor:
in statek interacts only with an electron with the opposite A — uN
spin in the same orbital state Thus when the “odd” Z(u,T) = Tr ex;(— T)
(21 + 1)st electron is added to the grain, it is the only
electron in the staté + 1 and does not contribute to the (6)
interaction energyd £z +1 = §Ey. Thenext(2! + 2)nd  Herey is the chemical potential; is the temperature, and
electron goes to the same orbital state and interacts with ify js the operator of the number of electrons in the grain.
8Ez+2 = 8Ey+1 — g. From Eq. (1) we now find At T — 0 the dominating term inZ(w,T) corresponds
Ap =%, atg—0. (3) to the ground state of the grain with a certain number of

7’
. . . electrons:
One should note that the result (3) is not quite satisfac-

tory even in the weak coupling cagg¢des < 1. Indeed, Z(p, T — 0) = ¢ W7, -

the low-energy properties of a superconductor'are usually Q(u) = min{Exy — uN}. (7)

completely described by the gap The interaction con- N

stantg is related to the gap in a way which depends on Thus we can find the ground state enefyy by studying

a particular microscopic model, so the result (3) cannot b#he grand partition function (6).

directly compared with experiments. One problem with this method of calculatingy is
This problem can be resolved by considering correcthat, because of the parity effect (1) withp, > 0, the

tions of higher orders ing, which are known [12] to odd charge states do not contributeZfu, 7 — 0). To

give rise to logarithmic renormalizations @f. In the find Ey; .+ let us consider the effect of interactions on the

leading-logarithm approximation the renormalized inter-unperturbed ground state df + 1 electrons. Since the

\ t
N = Zakaakg.
ko

action constant is found [12] as statel + 1 is filled with one electron, the interaction term
g in the Hamiltonian (2) can neither create nor destroy a
g = ﬁ. (4)  pairinthis state. Thug,+; can be found as
—_— 2 n —_— ~
oo P Ey+1 = g141 + Eop, (8)

Here D, is the high-energy cutoff of our model, which has
the physical meaning of Debye frequency, dnd< D

is the low-energy cutoff. At zero temperatu®,~ Se.
Taking into account the relation between the gap i
a large grainA and microscopic interaction constant
A ~ Dye%¢/¢ we find with logarithmic accuracg =
8e/In(8e/A). Finally, substituting the renormalized in-
teraction constant into Eg. (3), we get

where E,; is the ground state energy of a grain with
21 electrons for the system (2) with state= 1 + 1
rexcluded.

The idea of the path integral approach [13] is to
replace the formulation (2) of the problem in terms of
electronic operatorsy, by an equivalent formulation
in terms of the superconducting order parameiér).

The latter is introduced as an auxiliary field for a
Ap = 5858, A < Se. (5) Hubbard-Stratonovich transformation splitting the quartic
2In§ interaction term in Eq. (2) into quadratic pair creation and
annihilation operators. Then the trace over the fermionic
variables can be calculated, and one finds

Unlike the first-order result (3)Ap is now expressed in
terms of experimentally observable parametkrand § e
rather than the model-dependent interaction congtant _ 2 —S[A]

It is instructive to compare Eq. (5) with the results Z(p.T) = f D A(r)e ’ ©)
of Refs. [5,6]. In a very small grain withe > A, the | here the actiors[A] is defined as
mean-field gap studied in Refs. [5,6] vanishes, and no T
parity effect is expected. However, our result (5) predictsg[a] = — Z[T”n Gl - Q} + 1 ] |A(7)|2dT .
that in small grains the parity effect $trongerthan in the % T g Jo
large ones. This behavior is due to the strong quantum (20)
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= — i ! i sgn
Here &, = g — u, and the inverse Green'’s function 5& = — § ; &k sgn§k/ . (16)
Gl (r, ") = |:— 4 _ Evat — A(r)ot — A*(T)O'} 3 2 =i
dr We can now compare the result (15) with the definition
X &(r — 7'), (11) (7) of Q(u) and find
whereo™ = ¢* * i¢?, ando*>* are the standard Pauli
matrices. G ! satisfies antiperiodic boundary conditions: 50 (u) = %. 6&ksgnéy . (17)

Gil(r+ 17 = =G, (7).
Unlike in the case of large superconductors [13], the One can easily see that fef < p < g;4; this correc-
order parameten in Egs. (9)—(11) does not depend on tion does not depend on. According to (7) suchb()
the coordinates, and thus the contributions of differenshould be interpreted as the correctidh,; to the ground
statesk in the action (10) decouple. This results from thestate energy oR! electrons present in the grain in this
simplified form of the interaction term in the Hamiltonian range ofw. We then use the rule (8) to fin®lEy; ;. To
(2). The space fluctuations df are negligible for grains do this we exclude the state= / + 1 from the sums in
smaller than the coherence length of the superconductoEgs. (16) and (17), and calculadé),. The result forAp
this condition is well satisfied in ultrasmall grains. On coincides with Eq. (5).
the other hand, the time fluctuations Afaccounted for We now turn to the case of stronger interactions,
in Egs. (9)-(11) lead to the corrections to the mean-fieldA > 6. A good starting point in this regime is the
BCS theory and are studied below. standard BCS theory [1], which corresponds to a mean-
First, we consider the regime of weak interactions,field approximation for the order parameter in the path
A <« Se. Inthis case, thé-dependent terms can be con- integral approach [13]. Substituting a time-independent

sidered to be a small perturbatidh= Ac* + A*s~, A into the action (10), one finds
and one can formally expand the action (10) in power se- |
ries inV using Q) = Z(fk — €) + —|A% (18)
] . A S Y k &
Trin(Gy' = V) =TrinG, ! — —Tr(GoyV). (12
0 0 ,Zl J 0 (12) Heree;, = (£7 + |A»)'2, and the value ofA| must be

chosen in a way which minimize®. This means that|

The first-order term vanishes because matrixis off is determined from the usual BCS equation:

diagonal, so we study the quadratic in thecontribution
to the action. The calculations are more convenient to 11 (19)

perform in terms of the Fourier componenis, of the T 26k g’

order parameter, defined in the usual way: . o
In the continuous limite/A — 0, one can apply the rule

A(r) = TZAme‘i“’mT, W, =27Tm. (13) (8) and find that the exclusion of one state from the sum
m over k in Eqg. (18) results in the energies of odd charge
The calculation of the second-order contribution to thestates exceeding those of the even onedpy= A.

action (10) is straightforward and gives To find the corrections ta\p due to the finitee a
a(l w more careful treatment of the mean-field approximation

m 2 . . . .
08 = TZ ——Aul%, is required. One can easily see that not only a time-

(14) independentAq(7) = |A], but also any pathA(7) =
|AJe2™T7 with integer M is a minimum of the action
(10) which must be taken into account. It is convenient
to treat the patiA ,(7) in Eq. (11) by performing a gauge
transformation U = expimMT7o*%), which eliminates
the time dependence af,(7) and shifts the chemical
Spotent|al,u — u — [wMT [14]. Thus, instead o =

CZ(E _ gZ Sgnfk

The functional mtegral (9) is now easily evaluated by
integrating over the real and imaginary parts of eAgh
We normalize the result for the partition functi@nby its
value Z, for a noninteracting system, which correspond

0 = 0in Eq. (14), /T the partition function al’ — 0 is now
Z(u,T) 1 Z( _ —Q(u—imMT)/T
- - w,T)=>e
Zo(u, T) l_[ 1 — a(iow,) %
_ l—[ l—[ 26 —iwy _ I sinh(&;/T) = ¢ UWIT Y T WM
2§k —ilwy, Sinr'(ék/T). M
(15)  where Q(u) is given by Eg. (18). We have expanded

Hereé, are defined by — a(2§k) = 0. Assumingweak Q(u — iwMT) in Taylor series in7MT, and neglected
interactionsA < é¢g,we findé, = & + 6&;, where the terms vanishing aI’ — 0. It is now obvious that
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Z(u,T) = 0 unless the derivative d® is an even integer: the one in the argument of the logarithm is sensitive
Q') = —21 (20) to the Wigner-Dyson fluctuations af,. Thus the rela-
Ko : tive mesoscopic fluctuation of the result (5) is small,
Thus the mean-field approximation can be applied onlyyAp/Ap ~ 1/In(6e/A). It is also interesting to com-
for discrete values of chemical potentjab, correspond- pare the mesoscopic fluctuation of the gapriginating
ing to solutions with2! electrons. For the odd number of from the level fluctuations in Eq. (19) with the small cor-
electronsuy;+1 is found asu,; in a system with one state rections in Eq. (21). One can easily express [15] the cor-
k =1 + 1 at the Fermi level excluded. A > Se,0ne  rection toA in terms of the correction to the density of
always getsuy+; — uy = 8&/2. statesvy(¢) in Eq. (19). Then the mean-square fluctuation
To find Ap we substitute in Eq. (1) the ground state of the gap is found using the well-known results for the
energy asEy = Q(uy) + uyN. The contribution of correlatorr(£)v(£)), and we get/((6A)2) = g/ m+/2.
the second term ta\p is —8&/2. In evaluating the In conclusion, we have studied the parity effect (1) in
contribution of Q(uy) one has to take into account the the ground state energies of an ultrasmall superconducting
dependence ofuy on N and the suppression [7,8] of grain. Although the quantum fluctuations of the order
the self-consistent gap in Eq. (18)qs = A — d¢/2 for  parameter can be neglected for large grains, Eq. (21), they
odd N due to the exclusion of one statefrom the gap play a crucial role in small grains, Eq. (5). As the size
equation (19). Combining all the contributions, we getof the grain decreases, the parity effect first weakens,

the following mean-field result: Eq. (21), but then starts increasing, Eq. (5). Thus we
Se expect a minimum ofAp at a certain size of the grain
Ap = A — > Se < A. (21) suchthatbe ~ A.
It is interesting that a similar quantitxlp = —F, +
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