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Tilting Instability and Other Anomalies in the Flux Lattice in Some Magnetic Superconductors
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The flux-line lattice in the compound ErMB,C, which has a tendency to ferromagnetic order in
the a-b plane, is studied with the external magnetic field direction close ta-thgis. We show the
existence of an instability, where the direction of flux lines spontaneously tilts away from that of the
applied field as a prelude to the onset of ferromagnetic order and the predicted spontaneous vortex
phase. This tilting instability is accompanied by a decreasing longitudinal correlation length of the flux
lattice, as observed. [S0031-9007(97)03101-3]

PACS numbers: 74.20.De, 74.25.Ha

Recently, it was discovered that the flux-line lattice ofmagnetic responses of EA#,C using the same GL func-
the anisotropic magnetic superconductor EBNIC has tional (1). We shall assume that the magnetizatibties
very unusual properties. In small angle neutron scatteringnly on thea-b plane and shall consider the applied mag-
experlments it was observed that, for applied magneti@etic field making small anglé, with the ¢ axis. The
field H at an angled, ~ 1.6° away from thec axis, in-plane anisotropy of the magnetic component is not in-
the average direction of the flux-line lattice is rotatedcluded in the GL functional (1) but shall be considered
away from the angle of the applied field towards thé  later to understand the square vortex lattice structure.
plane. The angld 6 between the two increases rapidly at The competition between magnetism and superconduc-
low temperature [1]. The FWHM of the rocking curve tivity appears in Eq. (1) as a Meissner effect of the super-
o» Which measures the longitudinal correlation lengthconducting component towards the internal magnetic field
&, of vortex lines along their length is also found to produced by the magnetic componeht= 47M. For
increase sharply at low temperature, with qualitativelysystems with superconducting transition temperatyre
similar temperature dependence as the angld1]. higher than the magnetic transition temperatilifg the

It is also observed that ErbB,C has a tendency to magnetic transition is suppressed. However, the system
develop weak ferromagnetic order at low temperaturesnay go through a second order phase transition to a spi-
T =23K [2,3]. Such a transition cannot occur with ral phase or a first order transition to a spontaneous vor-
a uniform superconductive state preserved [4—-8]. In aex phase at a slightly lower temperatdte< T,, [5—-8].
previous paper [5] we have suggested that a spontaneowge shall concentrate on the temperature redion T,
vortex phase occurs in this material in the ferromagnetién this paper and shall study changes in the magnetic re-
state. The magnetic properties of the material can bgponse of the system &— Ty(,. In this temperature
described by the Ginsburg-Landau (GL) free energyange,M is small and we can neglect tig* term in the

functional [5], GL functional. The qualitative behavior of the system at
3 [1 5 ., R this temperature range can be most easily understood by
F= ] d {Eal‘l’l + —b|¢,/1| o considering the London limit, wher¢ = const, and ne-
re > B . glecting theIVMI2 term inF [4].
X ’ <V - zh—A>¢ +8— + EalMlz Writing B = B, + B.,, where B, and B,, are the
o

magnetic field along the direction and on the-b plane,

respectively, we obtain, after m|n|m|2|r@ with respect

to M andA M = Bab/a andA = AV X B’ where
1) B’ = B,, andBl, = (1 — 47 /a)Buy. PuttmgM andA
back intoF, we obtain

1 - . . .
+ Bl + 5y2|VM|2 _B- M},

whereB = V X Z, Mis magnetization, angs is the su-
perconducting order parameter. The magnetic component . fdg {_2 N L[Bz <1 B 4—7T>l§2

M is found to be strongly anisotropic in Ef¥,C, where 2b 8

magnetizationM resides essentially only along the in— .

plane easy axis in (100) and (010) directions [2]. + A5(V ¥ B/)Z}}, (2)
have shown that the unusual in-plane magnetic response

of the compound can be explained using the GL funcwhere A§ = mc2/87762|1//|2 is the London penetration
tional (1) [4]. In this paper we shall study the out-of-planedepth for the “pure” superconducting componernt. is
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a decreasing function of temperature, and the magnetierms are negative and represent the lowering in energy
transition (in the absence of a superconducting compofrom the magnetic component when the magnetic field is
nent) occurs ak(7,,) = 4. Notice that, for the mag- inthea-b plane [4]. A similar analysis can also be made
netic field in thea-b plane, the presence of a magneticwhen the|VM|? term is included in the GL functional.
component reduces the overall cost in magnetic energwe find that the qualitative behavior of the vortex solution
of the pure superconductor by a facldr— 47 /a) and  is not modified, except that the divergence in' as
also reduces the London penetration depth fragnto 7 — T, is removed once th¢vj\71|2 term is included.
A= 1 —dm/a)i [4] In particular, the London penetration depth saturates at
To study the magnetic response, we first consider @ value of orden ~ (Ao&,)/2 asT — T, for transition
single vortex line solution in the London limit using to the spiral state [4], wher&,, ~ y2/« is the coherence
Eg. (2). We shall assume that the vortex line is located inength of the magnetic component.
the a-c plane and makes a small anglg with the ¢ axis. In the limit H ~ H,.;, where the density of vortices is
Minimizing the free energy, we obtain low and interaction between vortices can be neglected, we
BV XV X B) + B = idy8(y)8(x — ztand,), (3) may studyd, as a function of the angle of applied field
to thec axis, 6, using Eqgs. (5a) and (5b). Consider the

wheren, = siné,,n, = 0, andn, = cosf,. D, is the Gibb’s energy functional
r H

magnetic flux quantum. The equation can be furthe .
simplified by using the vector identity x V x B = G=F — [d3r B-H
V(V - B') — V2B’ and the Maxwell equatio¥ - B = 0. 4
For small angled,,, after some algebra and transforming
to momentum space, we obtain to orcdb(lﬁ,%),

whereH is the applied field and the total magnetic fidld
is obtained by minimizings with respect taB. For small

B.(5) (1 = 0;/2)Pob(g; + 0u4.) angled, andé,, Gibb's energy per unit volume is
z 22 22,2 ’
1+ )t()q + Gv)t qx g _ i (1 + 02) _ % 1 — (011 B Ha)z (6)
B (a) _ 0, Pod(q; + 0uqx) \% (ON €0 a1 47 2 ’
* 1+ A2g? N . i
) q2 (4)  Minimizing G with respect t,,, we obtain
. 477/\() quxq)()a(qZ + qux) 0
a (1 +2¢%) (1 + A5¢>) 6, = ’ ,
1 +2a1(H.1/H
B.G) = — A7 Ay 004xqyP00(g: + 004.) : (e /1)
' a 1+ 220+ A3¢d) and )
The various terms in Eq. (4) can be understood as H.(0,) = Hcl<1 + &> + 0(6Y),
follows: In the absence of the magnetic comporient— (I + 2ay)

=), only B.(¢) and the first term irB, (¢) are nonzero and \yhere f7 | = 47re,/®, is the lower critical field when
represent the magnetic field of a vortex line tilted awayina external field is along the axis (6, = 0). Notice
a :

from the ¢ axis on thea-c pla}ne with small angl@,. In 4 6, > 0, whena; < 0. This may occur when/¢&
the presence of the magnetic component orutiteplane, s small enough, i.e., when the superconductor is not

the magnetic response becomes anisotropic, leading 1013 strongly type-Il and when the system is close to the
difference in the penetration depthdéranda-b directions magnetic instability point’ — T
5

(A0 and A, respectively) and a distortion of the vortex  The ahove analysis can be easily extended to the
core, where a small net magnetization in thelirection intermediate density regimél ~ several H.,, where

is induced. As a result, a small magnetic dipolar field isy,o density of vortices is of orde@w)\%)‘lc ,and the
induced in thes-5 plane which is represented t#; and magnetic field B is already more or less uniform in

;[ir:fe sec((:);? éirrgo(r)fxgtezhis?:ergySOf(tzr;eai'Q% Volrr;[et);] ethe superconductor. This is the regime of experimental
Iimite(ll " dm/a) <<p1 we obtag?n tg 6rder92 ' interests [1]. The magnetic fiel# in this case can be

calculated using Eq. (3), except that the right hand side

€1 = eo(l + ai0;), (58)  of the equation is replaced Py Yz 8(y — ¥,)8(x —
where X, — ztand,), whereﬁn are the positions of the vortices
7/ A2 M\ 4ma? in the vortex lattice. FoIIowing procedure; 'similar to
ar~ —|\z —2){ln—) — —=., (5b) above (see also Ref. [9] for details), we obtain in the small
alé ¢ @A 0, limit
where¢ is the superconductor coherence length and- ! ’2
(D2 /47 A3) In(Ao/€) is the vortex line energy whef, = G _ B—<1 _Am 05) + BH“<In(H”2/B)>[1 + a16%]
0. The first term ina; comes from the induced magnetic ¥V 87 a 47\ In(Ao/§)
moment in the vortex core and from the corresponding BH (6, — 604)?
dipolar field. This term is positive; the other correction Co4r ) ’ ™
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whereH,., ~ ®,/(27&?) is the upper critical field. Ne- a magnetic transition where spontaneous magnetization
glecting logarithmic corrections, we obtain, after minimiz- along thea or b directions appears in the system at a low
ing G with respect toB and¢,, B~ H — H.; + Bof>  enough temperature, leading to a magnetic-field-assisted
and spontaneous vortex phase [4], where the vortex lattice tilts
9, spontaneously from the axis below critical temperature,
0, ~ (Sa)

_ 7 He cdm 4
(1 ) + ( + 2611) Tsv - Tm m cl

(1 + 2a1).
where B, ~ (47 /a)(1 — 27 /a)H for H > H., and

the angle-dependent magnetizatigiid,) is
B—H By,

v

M(8,) =

- Hcl

Herea' = da/dT. Direct observation of this transition
using neutron scattering or magnetic imaging techniques
is suggested.

4m am We now consider the cas®, = 0 and study thermal
Notice howd, is enhanced by the magnetic componentfluctuations in positions of vortex lines along the
in this case. In particulag, is always larger thad, for  direction in the intermediate density regime. We consider
H > H_., and diverges at low temperatufe=< 7,,, in  the model free energ¥y for N vortex lines in a sample
contrast to the low density limit whe, may be smaller of thicknessL, defined by their trajectorigg;(z)] as they
than 6, and is larger only when sufficiently close to the traverse through a sample with an external magnetic field
magnetic instability. Physically, the instability indicatﬁs along thez axis,

ra$ [

dF; dr;(z) Lo,
P f allFi) - o (2 rilz) _ ’Z)d ¥ Z fo Vol (2)1dz

D) f Vi) — 7()Mdz ©)
l#]
I
whereVp[7(z)] is a random pinning potential for vortex o D5 <| Hc2>< H 1) (10b)
lines andV(r) ~ €9Ko(r/Ao) is the interaction potential 2 4a )} B H. ’
between vortex lines. In the following, we shall replace | .
Vi (7) by the average plnnlng potential Vp[7;(z)] ~ Notice thatd, /0, = (H/H.) (eo/€;1). Notice also that,

Ko(7) — R ) /2, WhereR are sites on the flux lattice. at low temperaturd” < T, €, is a decreasing function
We shall also expand the interaction potential around |t§)f vortex density. In particulare,; — 0 at the sponta-
minimum pointV(r) ~ eo(r/d)% whered ~ (@0/3)1/2 neous vortex phase transition temperatiire> T,. .
is the distance between the vortex lattice sites. Note t'll:]he therrlnogynargnc propetrrtllets th can btj obta|rt1)ed
that d7;(z)/dz ~ 6,(7;) in our analysis and the first two father easily by observing that the variabiecan be
terms in Eq. (9) come from terms proportional a3 in _treated as an imaginary fume and the model can be mapp_ed
the Gibb's energy (7). The tilt modulus, is chosen into a quantum mechanical problem of coupled harmonic
such that, when alb,(r;)’'s are equal, the energy is oscﬂl_ator; on a square'lattlce with — T [10.]' The
given by Eq. (7). &(r) can be extracted from the free Ha}mlltonlgn of our effective quantum mechanical system
energy G of a flux-line lattice configuration, where all Is in Fourier space,

- 7)) = 1 - -
but one of the flux lines have the angl (r;) = 0. H— Z (*) PL()P(—F)

The field configuration in this case can be calculated ~ ym(k

from an appropriate combination of Eqg. (4) and the field mk Do (E)2

configuration leading to Eq. (7) wit@ = 0. We shall + Z MXM(I;)XM(—I;), (11)
assume that the flux lines form a square lattice and retain i 2

only the nearest neighbor terms in the sun¥ j in R L
computinge,(r). The qualitative properties dfy do not  where X, (k) = N~'/2Y, e *Rip,,. p =29, and
depend sensitively on this approximation. We also ignorep (k) iTa/aXM(lz) is the canonical momentum

the ordinary contribution to the tilt moduli expressing the onjugate toX (k) The momentum dependent mass
effect of increased line length, as it is negligible comparecf (k) and frequencyn(k) are

to the effects we are interested in. We obtain .
m(k) = €1 + deny(k),

dar 47\ H
611"’60;4‘2611-‘1- 1——H
. + 458y (k
w(k) = 581_____g321£_2’
m(k)

| o2 ang

o cl

where we have neglected the logarithmic correction terms
ande;(r) = €,6(r — d), where
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where y(k) = sir?(k,d/2) + sirf(k,d/2). The thermo- wherer = |l — T/T,,| andAC is the specific heat jump
dynamic properties of the flux-line lattice can be obtainedacross the transition in mean-field theory. The size of
easily from (11). We obtain the critical regime is expected to be very small at the
intermediate density of vortices ~ Ay.
<X;L(7<» DX, (k, 7)) = S % o @®lz=| i In conclusion, the analysis of this paper and comparison
2m(k)w (k) with the results in Ref. [1] strengthen the conclusion
arrived at earlier that a spontaneous vortex phase is
and formed in ErNpB,C. Neutron scattering experiments or
1 T Td other imaging techniques below 2 K are urged in order to
(rh = — —— ~ > , look for this phase.
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Note that (r?) remains finite whene;; — 0 as long
as there is a finite pinning strength for the flux-line
lattice. The longitudinal correlation length measured in
the neutron scattering experimentis ~ w(k — 0)~! ~
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