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Single-Electron Box and the Helicity Modulus of an Inverse SquareXY Model
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We calculate the average number of electrons on a metallic single-electron box as a function of
the gate voltage for arbitrary values of the tunneling conductance. In the vicinity of the plateaus the
problem is equivalent to calculating the helicity modulus of a classical inverse sYaredel in one
dimension. By a combination of perturbation theory, a two-loop renormalization group calculation, and
a Monte Carlo simulation in the intermediate regime we provide a complete description of the smearing
of the Coulomb staircase at zero temperature with increasing conductance. [S0031-9007(97)03141-4]

PACS numbers: 73.23.Hk, 75.10.Hk

One of the most elementary devices which exhibits the), while we expect that(n)(n,) — n, even at zero
effect of Coulomb blockade [1,2] is the so called single-temperature ifg > 1. In the following we will give a
electron box, first realized by Lafargs al. [3]. It con-  quantitative description of the behavior 6f) (n,) near
sists of a small metallic island which is connected to arthe plateaus at, = 0 (mod 1) for arbitrary values dd.
outside lead by a tunnel junction and is coupled capaci- We start from a tunneling Hamiltonian [4]
tively to a gate voltag®'. By elementary electrostatics the R U R
classical Coulomb energy for a given integer numbef H = 7(15 — n)? + Dtwele, + He + Hy  (3)
additional electrons on the box is [3] ab

U describing the Coulomb energy of the box and the transfer
E, = —(n — n,)? (1) of electrons between statésanda from the box (index
2 . b) to the lead (index:) and vice versa. The contribution
up to an irrelevant constant. Heté = Cj—cg is an effec- Hp is the Hamiltonian of noninteracting Fermions on

tive single electron charging energy amd= C,V /e the both sides of the junction which act as reservoirs. The
continuous polarization charge induced by the gate. ObCoulomb interaction is incorporated only by the classical
viously, on varyingn,, the actual integer value of is  capacitive energy, which is a good description for metallic
the one minimizingE,. As a resulty(n,) is a staircase Systems [1,2]. In the following we shall employ an

function with unit jumps at, = 5 (mod 1). The basic effective model for the thermodynamics of the box which
requirements for such a device to work are twofold: First/S obtained by integrating out the Fermionic degrees of
it is obvious that the temperatufe(we setkz = 1) has to freedom. Using a seponq order c_umulant expansion in
be much smaller than the relevant charging energy. Thif!€ transfer term, which is exact in the experimentally
point is easily taken into account by considering a therf€lévant limit of a large number of conductance channels,

mal distribution of the energieg, [3]. The thermal av- the reduced partition functio@ = Tr %{)ﬁm can be
erage(n) (n,) will then approach the simple straight line written as a path integral [4]

at T > U (note thatn is measured over a sufficiently &

long time interval, giving a continuoug) even though  Z(nx) = [ de

the number of additional electrons in the box is an inte- o 0 L)

ger at any given instant of time). Second, however, there % j Do expl—S[O] + inxf dx _]
is an intrinsic broadening of the staircase everat 0 0 ~L/2 dx
since the tunneling probability through the junction is nec- ()]

essarily finite. As a consequence, the number of electrongver a compact anaular variable coniugate to the
in the box is not strictly conserved and the variable . P 9 Jug

exhibits quantum fluctuations, which are neglected in i{ﬂegern. Here x is a dimensionless coordinate of a

simple electrostatic description. A quantitative measur E sSi)(/;SatIetreanIet:]atlli‘neg;hL r:oaﬁ éje stheer:)e LTh_é :ct?:ntize iven
of these fluctuations is provided by the average tunnelin y P PP ) 9

probability at the Fermi energyr which determines the y(-L/2=x=L/2)

dimensionless tunneling conductance [4] s[o] = 1 ] dx< do )2
h 2 dx
21412 — !
g = mtl;, ProxPread = o - ) SirP (AW =ow)
4e°Ri v 2 f [dxdx’—( =) )
Here ¢ is the transfer matrix element [see (3)] apd 7T (x = x')

are the densities of states at. Obviously the perfect The long range part of the interaction has already been
staircase atT’ = 0 is realized only in the limitg —  written in the form appropriate foE — <. Introducing
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a two component unit spifi(x) = [cos(6(x)),sin(6(x))]  we obtain
at any point of the line, the actio§[#] is just the B )
classical energy of aXY model with an inverse square x(g) =cig + cog” + - (10)

interaction proportional to the conductange The first \h e = 4 and ¢y =~ —0.052. For the coefficient,
— .052.

tgrn;, \Wwhich arises from the classical charging energy,e have evaluated a remaining definite integral numeri-
7 V7, is then identical with the spin wave approximation cally. The result (10) is identical with a previous calcu-
to a short range interaction. Finally, the external charggstion by Grabert [6], who has used direct perturbation
n, acts like a purely imaginary external torque on thetheory to fourth order in in the original Fermionic
XY model. Since [d¢ = 2mm determines an integer Hamiltonian (3). The agreement to ordgt which we
winding numbern € Z which is a topological invariant haye verified to eight digits, confirms that the inverse
for each configuratiord(x), the external charge appears squarexY model employed here is a correct representation
as a pure boundary term. Defining the free energy pefor the reduced thermodynamics of the original model.

length by f(n,) = —InZ(n,)/L the average number of  Renormalization group (RNG)-To obtain the exact
electrons in the box can be expressed as behavior of the helicity modulus at large valuesgofwe
. af (ny) use the RNG. Indeed the limgt > 1 has previously been
Ay =ny — ———. 6)  treated by approximate instanton calculations [7,8]. How-

on . . .
* ever, they give different results for the pre-exponential

The fact thatn, arises only as a phase factet”"  factor of the effective charging energy which is essen-
shows thaZ(n, + 1) = Z(n,) quite generally. Thus, all tially the inverse of the helicity modulus. Here we will
quantities are periodic im, with period 1 which allows show that a definitive solution of this problem may be

one to restrict the discussion to the interva% < n, = obtained by a two-loop RNG, which uniquely determines
1. In the following we confine ourselves to the zeroboth the exponent and thedependence of the prefactor
temperature (i.e., thermodynamic) lindit— c and to the of the correlation lengtl§ in the limit g > 1. Indeed the

vicinity of n, = 0. Takingin, = m, to be a real torque helicity modulus is directly proportional to the correlation

for the moment, a finite value @f, will induce a nonzero length. To see this we define

average gradient of the phase 2mm
o do m, pm =2wZ(n, = 0)’1f Doexp—S[0]} (11)
lim — dx — = —, (7) 0
L—» L dx [ 0%

as the probability for a given winding numbes. It
which is linear inm, in the limitm, — 0. The associated IS then straightforward to show that the inverse helicity

torsional rigidity y is then precisely identical with the modulus

helicity modulus as defined by Fishet al. [5]. It may (27m)?)
be obtained frony(n,) via y = Jim_ (12)
L _ 0 f(n)

, (8) measures the normalized variance of the winding number
=0 with respect to the probability distribution (11). At>
which is a measure for the sensitivity to a change in thd a given value of(m?) requires a system size which
boundary conditions. Using (6) the slope of the Coulombs larger by a factor of(g) than that atg of order 1

staircase neat, = 0 is related to the helicity modulus by whereé(1) ~ O(1). Therefore, by applying (12) we have
8() v(g) ~ £(g). In order to determing(g), we use the

= =1-9yL (9) fact thatd = 1 is the lower critical dimension of the
0ny ln,=0 inverse squarXY model [9,10]. Since the kinetic energy

In the trivial limiting caseg = 0 this describes the term in (5) is irrelevant ag > 1 and Tefr = 7°/g is
expected resuly®© = 0, i.e., perfect plateaus. Indeed if the effective temperature of our classi¢&f model, we

g = 0, the helicity modulus is equal to one, being just themay perform ai = 1 + e expansion around an ordered
coefficient in front of the%(%)z term [5]. In order to State ate > 0, which is effectively a low temperature

describe the behavior at finiie we apply three different €xpansion. Itis convenient to generalize XiespinS(x)

Y Ing

methods. to aO(n) spinS parametrized by [11]
Perturbation theory—While the nonlinearity of the
sir? in the action (5) makes an exact evaluation of the S(x) = <H(X), 1 - HZ(X)>- (13)
path integral impossible, we may expand the long range
contribution down to second order ig. Evaluating Here thell;(x),i =1,...,n — 1 are Goldstone modes

the resulting averageéexp(+if)) with the remaining whose expectation scales likdI?) ~ T.;;. We thus
Gaussian action, the free energy can be calculated up &xpand the long range part of the action in powerdlof
orderg?. After a straightforward but tedious calculation In Fourier space and with as an external magnetic field
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which serves to regularize the infrared divergencies, thealculation cannot be controlled in the thermodynamic

action takes the formd = 1)

lgl + H[ | —

= — I, II_, + —II°11

S [dq 2T ety T g4
1

Fgmare, | a

up to terms of ordefI®. Following the method of Amit
[11] we calculate theB function by field theoretic renor-

malization using dimensional regularization. In one-loop
order two diagrams contribute, only one of which diverge
as e — 0. Because of cancellations, the fourteen two—<s(x)s(0)>
loop diagrams reduce to three types of integrals yieldin

single and double poles ia. The two-point function at
zero external momentum is given by

H n—1
I‘(Z) H) = — - — — I1+e
0, H) T 2€
- D -2 30— 1)?
+ 1+25|:(n +
TH 4e 8¢e?
(15)

in two-loop order, wherd” = T.;/27? is a rescaled ef-

fective temperatureI'® can be made finite by introduc-

ing renormalized parameters [10]

t=xZ7'T, h=2‘H (16)
and fields
Mg =z, 19 =2r®. (17)
The renormalization constadtturns out to be
Z=1+2= 1r+[(" _21)2 + 1= 1i|t2+ o).
€ € 2€

(18)

This implies that under a reductioh — A exp(—1) of
the cutoff the parametey™! = 2T ate = 0 scales like
dg™! 1

|
-+ — +0(g7Y.
d 2g Tagp PO

(19)

By integrating this differential equation, we find that the

associated correlation length diverges like

£(g> 1) = c(g)g " exp2g) (20)
with a functionc(g) which is finite asg — . The ex-

limit. It is only the two-loop RNG which allows one
to determine the correct prefactor §f[12], although—

in contrast to the instanton results—it does not fix the
numerical constant. It should also be pointed out
that the finite correlation length (20) does not imply an
exponential decay dS(x)S(0)). Indeed it can be shown
[13] that this correlation function asymptotically decays
like 1/x% for all 0 < g < 7?/2 and—possibly—even
more slowly for larger values of. For our discussion

S'of the helicity modulus, however, the detailed behavior of

is irrelevant.
Monte Carlo simulatior—In order to bridge the gap

%etween the perturbative result (10) valid for small

and the asymptotic behavior (21) we have performed a
Monte Carlo simulation of the inverse squax¥ model

(5) including the short range interaction term for values of
g between 0.1 and 5. Following previous work [14,15]
we have sampled the winding number probabilitigs
defined in (11) using the standard Metropolis algorithm
with periodic boundary conditions on a discrete chain
with up to 2000 spins. We have checked carefully that
further increase in the system length does not change our
results for the helicity modulus. To estimate the statistical
error we have performed about 40 runs for each choice
of the parameterg and L. The calculations were done
with HP 700 workstations and a CRAY T90 and took
about one hour of CPU time per run. The numerical
data are shown in Fig. 1. Evidently the slope @f)
versusn, follows the perturbative result (10) closely up
to values aroundg = 1 and finally approachey = 1

08 | { e f

06 [~

> I s
- b

ponential behavior is typical for a system at its lower criti- 1 P’
cal dimensionality, and is also obtained in an instanton A /
approach [4,9]. However, the prefactor proportional to : )/

¢~ ! which is fixed by the coefficient of the two-loop con- o2 h
tribution in (19) and which implies that T 1

x(g> 1) =1 - cgexp—2g) (21) /
is quite different from theg? [7] or g3 [8] prediction of o 1 s T
the instanton calculation. In fact, a very similar situation g

arises in the closely related(n) nonlinear o model 5 1 Mc results for the zero temperature slopeof the
in two dimensions. Because of the scale invariance o€oulomb staircase at, = 0 as a function of the dimensionless

the action there are instantons of arbitrary size and theonductancg. The dashed line is the perturbative result (10).
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exponentially fast as predicted by (21). Assuming that thén fact the first order correction in (10) was used to
asymptotic behavior (21) is already valid fer> 3, the calibrate the slope at, = 0 to zero. To verify our
MC results allow one to determine the constant in (21)results one therefore needs measurements with different
giving ¢ = 80 from a two-point fit. One should note that and considerably larger values gft temperatures where
a prefactor of this magnitude has also been obtained fahe thermal broadening is negligible.
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