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LiV,04: A Heavy Fermion Transition Metal Oxide
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A crossover with decreasing temperatufefrom localized moment magnetism to heavy Fermi
liquid behavior is reported for the metallic compouhdV,04 with the fcc normal-spinel structure.
At T = 1 K, the electronic heat capacity coefficiept~ 0.42 J/mol K? is exceptionally large for a
transition metal compound, the Wilson ratiel.7, and the Korringa ratic=0.7. Our sample with the
lowest level of paramagnetic defects showed no static magnetic order above 0.02 K. Superconductivity
was not observed above 0.01 K. [S0031-9007(97)03196-7]

PACS numbers: 71.27.+a, 75.20.Hr, 75.40.Cx, 76.60.—k

The current interest in highly correlated electron sys+torted octahedral coordination by A.iV,04 manifestly
tems has been sparked by several discoveries: These iexhibits strong electron correlations (local moment mag-
clude f-electron intermetallics with heavy Fermi liquid netism). The magnetic susceptibilify(7) (4.2—308 K)
(FL) ground states [heavy fermion (HF) compounds] [1]was found to be the sum of B-independent termy, =
or non-FL ground states [2], and high-cuprate super- 0.4 X 10~% cm?®/mol and a Curie-Weiss ternd@ /(T —
conductors. The above HF-electron compounds (e.g., 6) due to local V magnetic moments [5]. The Curie
CeAl;, UPt3) have enormous electronic heat capacityconstantC is consistent with & ** spin § = 1/2 with
coefficientsy(T) = C(T)/T ~ 1 J/mol K?, whereC(T) ¢ factor 2.23. The negative Weiss temperatute=
is the electronic heat capacity, from which quasiparticle—63 K indicates antiferromagnetic (AF) V spin inter-
effective masses of several hundred times the free eleactions. However, no evidence for magnetic ordering
tron mass have been inferred. In this Letter, we reporabove 4.2 K was found. The local moment behavior
the discovery of HF behavior in the transition metal ox-contrasts strongly with the relativel§-independent Pauli
ide LiV,04. To our knowledge, this is the first report paramagnetism and superconductivify, =< 13.7 K) of
of a d-electron material exhibiting HF behavior char- isostructuralLiTi,O4 [6]. Band structure calculations
acteristic of those of the heaviest-magslectron sys- for LiTi»O4 yield a f,, conduction bandwidthW ~
tems. In such systems a high and narrowl0 meV) 2 eV [7]. Photoemission measurements bav,0, re-
peak occurs at lowrl' in the quasiparticle density of vealed strongly correlated electron behavior with a V
states”D near the Fermi energ¥r, a many-body ef- intra-atomic Coulomb repulsion parame®@r~ 2 eV ~
fect [1]. The largeD (Er) is reflected in a large, nearly W [8]. The nature of the ground state is unknown up
T-independent magnetic spin susceptibiljy™ andy  to now.
compared with the respective predictions of conventional We carried out crystallography, electrical resistivity
band structure calculations [1]. The normalized ratio ofmagnetizationM, heat capacityC,, 'Li nuclear mag-
these two quantities, the Wilson ratiyy, is on the order netic resonance NMR and positive-muon spin relaxation
of unity as in conventional metals (FLs), wheRgy =  (uSR) measurements ohiV,04. We report a crossover
m2kixP" /3u%y, kg is the Boltzmann’'s constant, and with decreasingl’ from the local moment behavior to
up is the Bohr magneton. However, at highBr the heavy FL behavior. We find an enormoygl K) =
D(E) peak height decreases strongly [1], on the scal®.42 J/mol K2, much larger than those of other metallic
of a low characteristic temperaturel—-100 K. This re- transition metal compounds, e.§;—.Sc,Mn; (<0.2 J/
sults in a corresponding strong decreaseyiwith 7, as  mol K2 [9]) and V,_,03 (<0.07 J/mol K? [10]). The
we observe forlLiV,04 above~4 K, but which is not magnitudes and” dependences of and y and theT
observed for conventional metals or, to our knowledgedependence op [3] for LiV,04 are remarkably simi-
reported for any metallic oxide in whicl is enhanced lar to those of the HFf-electron superconductddPt;
by proximity to a metal-insulator phase boundary. (T, = 0.54 K) [1,11,12]. We infer that paramagnetic de-

LiV,0, is metallic [3] with the fcc normal-spinel fects seen iny(T) can strongly influence the€,(T) and
structure [4], containing equivalent V ions in slightly dis- spin dynamics oLiV,0,4 below 1 K.
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Polycrystallinel.iV,0, samples were made using tech- Contrary to previous reports [5], we find that(T)
niques in [6] and were single phase or very nearly so byoecomes nearly independent &f below ~30 K, with
x-ray and neutron diffraction. Neutron diffraction mea-a shallow broad maximum at=16 K (Fig. 1 inset).
surements were carried out at the Intense Pulsed Netrield-cooled and zero-field-coolédd(H = 10 G, T) data
tron Source at Argonne National Laboratoryd(H,T)  above 2 K showed no evidence for spin-glass ordering. A
data @ = applied magnetic field) were obtained with Curie-like Cin, /T upturn iny(7) is seen in Fig. 1 below
SQUID and Faraday magnetometers at Ames and La5 K, found to be sample dependen¥ (H = 55 kG)
Jolla, andC,(H,T) data using heat-pulse calorimetersisotherms above 15 K were linear, but at 2 K exhibited
at Ames and La Jolla.’Li NMR measurements were negative curvature which increased with increasing,
done at 17 and 135 MHz with a pulse Fourier trans-in various samples, indicating that this curvature and the
form spectrometer; the recovery of the nuclear magne€urie term arise from paramagnetic impurities/defects.
tization, measured by the echo signal after a saturatinhe M(H,T) data yielded the impuritySi,, = 2 and
radio frequency pulse sequence, was exponentigbR  gin, = 2, with concentrations 0.03, 0.35, 0.15, 0.08, and
time spectra in zero and longitudindl were obtained 0.70 mol% in samples 1-5, respectively. The intrinsic
at TRIUMF. x(T) for LiV,04 inferred by subtracting the impurity

X-ray and neutron diffraction data on thrdeaV,0,  contributions in samples 1 and 4 is shown in the inset
samples revealed no distortion from the spinel structuref Fig. 1, wherey(0.4-2 K) = 0.0100(2) cm?/mol.

(space groupFd3m) between 295 and 9 K. Rietveld The ’Li K(T) (Fig. 1) scales approximately linearly
refinements of the neutron data for sample 5 vyieldedvith y(7T) as found above 30 K in [15,16].1/T(T)
the lattice and oxygen parametess = 8.23932(3) A,  (Fig. 2) shows an unusual maximum (at 30-50 K), also

x = 0.26125(2) at 295 K, anday = 8.22694(3) A, x =  seen in?’Al 1/T\(T) for the HF compoundCeAls
0.26109(2) at 12 K. p(T) measurements down to 0.01 K [17] with y ~ 1.6 J/mol K? [1], evidently reflecting the
showed no evidence for superconductivity. crossover from FL (lowr') to local moment (highT) be-

x(T) data from 2 to 400 K are shown fdtiV,04  haviors. Fromthe Fig. 2inselt/T, =~ (2.4 sec”' K™ T.
sample 1 in Fig. 1. Above~50 K, Curie-Weiss-like From Fig. 1, K(T) is nearly constan{=0.17%) below
behavior is seen as previously reported. We assumed th@d K.  Thus, the Korringa ratiok7,T/S.i, where
XT) = xo + i (T), where y,"(T) was the hightr ~ SLi = 1.74 X 1079 sec K, is constant=0.7) below 4 K.
series expansion to sixth order /T of the S = 1/2  These lowf observations are consistent with expectations
nearest-neighbor AF Heisenberg model for the V sublatticéor a FL. Our 1.6—-4.2 K value ofLi 1/T)T in LiV,0,
of the spinel structure [13]. The fit parameters dependet$ a factor of~6000 greater than that il.iTi>O4 [18],
on the T region of the fits as previously found assum-implying an enhancement of the dressed density of states
ing 2" (T) = C/(T — 6) [14]. Our fit for the range D(E_F) by a factor\_/6000 ~ _80. However, comparison
50-400 K (solid curve in Fig. 1) yieldegy = 0.57 X of this ratio of 80 with the ratie-20 of the y(1 K)_ values _
10~ cm3/mol, g =2.19, and 6 = —40 K, simi- for the two compounds (below) suggests a difference in

the’Li hyperfine coupling constants.

Cp(T) data up to 80 K forLiV,04 are shown in
Fig. 3(a). Also shown are data for the isostructural non-
magnetic insulatoi_i4/;Tis;304 obtained to estimate the

lar to values cited above.
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FIG.1. y = M/H (H =10%kG) vs T for LiV,0, sample % 50 100 150 200 250 300
1 (e) and’Li K(T) for sample 2 [{J, right-hand scale). The T (K)

solid curve is a theoretical fit to/(7) for T > 50 K. The

dashed curve and filled squares (inset) denote the intrp&i¢ FIG.2. "Li 1/T, vs T for LiV,0, samples 1 (filled
of LiV,0, inferred fromM(H,T) data for samples 1 and 4, triangles), 2(e), and 4(o). The lowestT data are shown in
respectively (see text). the inset, along with proportional fits.
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v(T = 1.2-5 K) for LiV,04 was fitted by the predic-
tion for the S = 1/2 Kondo model(Ry = 2) [1], yield-
ing a Kondo temperatur&x = 27.5 K [solid curves in
Figs. 3(a) inset and 3(b)]. This single-parameter fit ex-
trapolated to highef also describes well th&C,(T) data
up to~30 K, including the magnitude and temperature of
the broad maximum near 16 K [Fig. 3(a) inset]. A 1-
10 K fit of y(T) by the FL predictiony(T) = y(0) +
8 T?In(T/Ty) [1] is shown by the short-dashed curve
in Fig. 3(b), for which y(0) = 428 mJ/molK?, § =
1.6 mJ/mol K*, andT, = 25 K, parameters remarkably
similar to those oUPt; [11]. y(T) is also consistent with
theory [20] for a three-dimensional AF-coupled quantum-
disordered FL. A 1-10 K fit by the theory [long-dashed
curve in Fig. 3(b)] gave parameters [208] = 3, vy =
810 mJ/mol K?, r = 0.78, andl'™* = 9.7 K.

Low-T y(T) data and the above theoretical fits for
LiV,0, sample 3 are shown in Fig. 3(c). The data exhibit
a plateau withy = 0.42 J/mol K? from ~1.3-0.8 K and
an upturn at lowerl. The y(T) data in Fig. 3(c) for
sample 5, which contains a higher level of magnetic

NE defects (above), increase monotonically dowr=ta5 K,
‘\E’ where the data appear to exhibit a maximum with value
2 ~0.6 J/mol K%>. Below ~2 K, y(T, H = 20 kG) for
E sample 5 in Fig. 3(c) is suppressed relativey{(d@’, H =
o~ 400 0). The H = 0 results indicate that the presence of

05

1.0 15
)

25

magnetic defects increas€g(T), especially at lowr.
Zero-field (ZF) uSR spectra for sample 1 exhibit a
single-exponential decay ekp:/T) (after correction for

FIG.3. (@ C, vs T for LiV,0, sample 2 (e) and f . .
Liy/3Tis;304 (f). Inset: electronic contributioldC,(T) for effects dye to nuc[ear Q|polar fields)t/7; at 29 mK.m
sample 2e). The solid curve is a 1-5 K fit by Kondo theory. ZF and in longitudinal fieldLF = 50 G show little dif-

ference (see Fig. 4 inset), indicating that the depolariza-
tion is due mostly to fluctuating dynamic local fields.
The average fluctuation rate at 20 mK, obtained from
ihe LF dependence, i3’ ~ v, X 150 G ~ 12 us™',
wherey,, is the positive muoriu™) gyromagnetic ratio.
The instantaneous random local fielf}. inferred from
1/Ty ~ (y,H,)*/visthenH, ~ 30 G. ThisH, is about
50 times smaller thait/, ~ 1.5 kG which we observed
lattice contribution. After multiplying theT scale of in the AF state of isostructur&nV,0,, suggesting that
Cp(T) for LissTis;304 by 0.941 to take into account H, in LiV,04 sample 1 is due to dilute (% level) para-
the different masses dfis/3Tis;304 and LiV,04 and  magnetic impurities. The/T,(T) in Fig. 4 indicates a
subtracting this corrected lattice contribution from theslowing down of impurity spin fluctuations with decreas-
data for LiV,0q, the inferred electronic heat capacity ing T, yet we found no signature of static spin freezing in
AC,(T) for LiV,04 was obtained (inset)AC,(7T) shows sample 1 down to 20 mK. In contrast, tA&'-u SR spec-

a broad peak near 16 K, and a distinct additional contritra in sample 3 (with a larger Curie term jn) showed
bution above~25 K, also seen inLiTi,O4 [19]. Fig- two-component relaxation belo® ~ 0.8 K, with a fast
ure 3(b) showsy(T) = AC,(T)/T below 30 K, where a 2/3 component and slow/B component, characteristic of
strong increase with decreasifigs observed. We obtain static spin freezing. This behavior correlates with the
y(1 K) = 0.42 J/mol K?, about twenty times larger than anomaly af” ~ 0.8 K observed for sample 3 in Fig. 3(c).
in LiTi,04 [19]. Using x*"(1 K) = 0.01 cm?®/mol,  Unfortunately,1/T; for u* due to itinerant HF quasipar-
the Wilson ratioRy (1 K) = 1.7. These low? results in- ticles, as inferred from NMR in Fig. 2, is not clearly vis-
dicate heavy FL behavior [1]. In this interpretation, theible in Fig. 4, overshadowed by the depolarization due to
nearly T independenty(T) and K(T) for T < 30 K in  fluctuating/freezing local fields. However, this is not sur-
Fig. 1 is a reflection of the disappearance of the V locaprising in view of the unobservably smdlfT; for u™* in
moments. the HF compound®Pt; [21] andUBe 3.

(b) AC,(T)/T = y(T) for sample 3 below 30 Ko) (the data
for samples 2 and 3 are nearly identical). (7" = 2.5 K)
data for sample 3 from Amese[from (b)] and La Jolla(e),
and for sample 5 af = 0 and20 kG from La Jolla (squares).
The curves in (b) and (c) are fits to the Ames data for sampl
3 above 1.2 K by theories for Fermi liquids (see text).
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