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Lattice Model for Metal Ammonia Solutions
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We study metal ammonia solutions using a generalized Kimball-Falicov model. The lattice mod
contains a fluid-fluid interaction term and an electron-fluid interaction with a hard core and an attract
tail. We derive the phase diagram using a strong-coupling mean field theory based on the slave bo
approach to the Hubbard model. The attractive force favors the homogeneous phase and a regime w
electrons localize in cavities devoid of fluid particles over phase separation. The Gaussian fluctuat
suggest the existence of bicontinuous channels percolating through the system. Comparisons
experiments and computer simulations are presented. [S0031-9007(97)03061-5]

PACS numbers: 71.22.+i, 61.25.Mv, 71.10.Fd, 71.30.+h
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Metal ammonia solutions exhibit a metal-insulator tra
sition (MIT) and a variety of thermodynamic phases [1–
At low temperature, the system segregates into metal-
and metal-poor phases [4]. At low metal concentrati
the excess electrons are solvated in cavities surrounde
ammonia molecules [1,5]. They absorb light in the visib
range, which gives the solution its characteristic blue co
These localized electrons contribute minimally to elec
cal conductivity. As the metal concentration increases,
electrical conductivity sharply increases by several ord
of magnitude within a small concentration range [1–
Using computer simulations, Deng, Martyna, and Klein
have recently found that well-localized electron-contain
cavities give way to bicontinuous percolating channels t
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support extended electronic states as the metal concent
tion increases. The crossover occurs at metal concentr
tions which are consistent with experimental data for the
MIT. This strongly suggests that structural changes ac
company the MIT.

Our model is a modified Kimball-Falicov model [7] in
the strong-coupling limit. Excess electrons and ammoni
molecules are represented as fermions and lattice g
particles (“blockers”), respectively. They interact through
a hard-core repulsion and an attractive tail that mimick
the dipole- and screened charges-induced interaction
The metal counterions provide a neutralizing backgroun
[6], and electron-electron repulsion is neglected. In the
strong-coupling form [8], the partition function isZ ­R
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sc̄ist , cistd are Grassmann (fermionic) fields for sitei,
spin s, and Euclidean time indext, ni ­ 0, 1 describes
the blocker occupancy of sitei, and li and ji are
generating fields.yij and wij . 0 are fermion-blocker
and blocker-blocker attractive forces, respectively.me

and mb are the chemical potentials, andb ­ h̄ ­ 1.
We apply the constraint that blockers and fermio
cannot simultaneously occupy the same site. This
site exclusion and the attractive interactionyij compete
with each other. The model can be thought of as
quantum analog of a classical lattice model [9] th
features short-ranged, competing forces and describes
lamella and bicontinuous microemulsion phases of o
water-surfactant mixtures [10]. The physics of the tw
problems is very similar. yij herein plays the role of
surfactant molecules, tying together the dissimilar ferm
and blocker phases to form cavities and bicontinuo
structures [6].
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The exclusion constraint is difficult to implement in
practice except in special cases [11]. In this work, w
remove the constraint by introducing auxillary fermions a
a modified chemical potentials1 2 adme on ni ­ 1 sites.
The action is augmented by

Saux ­ 2
X
is

ni

( Z
t

c̄ist

∑
s1 2 adme 2

≠

≠t
2 li

∏
3 cist 2 Li

æ
, (2)

where Li ­ lnf1 1 emes12ad2li g and a is arbitrary.
When ni ­ 1, sc̄ist , cistd describe auxillary fermions
that do not exhibit hopping, whose free energy contr
bution Li per spin has been subtracted out in Eq. (2
sSo 1 Sauxd now has 2N unconstrained fermionic and
N blocker degrees of freedom which can be decouple
using the Hubbard-Stratonovich transform [12,13]. W
© 1997 The American Physical Society 3721
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introduce scalar fieldshfi , sij governed by the action

S0 ­
X
ij

fiu
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At low fermion density, the diagonal term inuij ­
t
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2amedij 1 yij dominates and makes this matrix positiv
definite and invertible. Next we apply the transform
tions si ! si 1

P
js

R
t uijc̄jstcjst and fi ! fi 1P

j uijnj, whereupon anyni coupled to Grassmann field

can be replaced by2
P
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The translation-invariant saddle point obtains by inte
grating oversc̄ , cd and ni , and minimizing with respect
to fi ; f̄, si ; s̄, anda. The Helmholtz free energy
per site,f̄, then becomes

f̄ ­ 2
Z

k
lns1 2 rkd 1 lns1 2 rbd 2 ss̄ 2 worby2drb ,

s̄ ­ 22uor̄e 1 4s1 2 rbd kel 1 4suo 1 amedr̄erb ,

f̄ ­ 2uorb , and r̄e ­ f1 1 e2s12adme g21. (5)

Here rk ­ h1 1 e2D̄k 2me1f̄1suo1amedr2
b j21, r̄e ­

R
k rk

is the apparent fermion density,rb is the blocker den-
sity, kel denotes the average kinetic energy,D̄k equals
s1 2 rbd2 times the energy of plane waves with wav
vector k, uo ­

P
j uij, and wo ­

P
j wij. f̄ is propor-

tional to the pressure. The mean field theory has the f
lowing features: (a) For purely fermion-blocker exclusio
interactions, it is exact in thet ! 0 limit. (b) The real
-
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single-spin fermion density isre ­ 2s1y2d≠f̄y≠me ­
s1 2 rbdr̄e [14]. Therefore rb 1 re # 1, and the
exclusion constraint is satisfied on the average.
The hopping matrix element is renormalized b
t̄ ! s1 2 rbd2t. Qualitatively similar features are
found in the slave boson approach to the Hubbard mo
[15,16]. A finite on-site interaction version of thi
method and a Gibbs-Bogoliubov variational derivation
Eq. (5) are given in Ref. [17]. The mean field theory
solved at constant pressure, temperature, and chem
composition xb ­ rbysrb 1 2red. The coexistence
curves are found by graphically matching two solutio
that have identical chemical potentials.

Gaussian fluctuations are computed by transform
the various fields to their Fourier space representati
integrating outhc̄, cj and hnij, expanding the resulting
free energy to second order indf̂k, dŝk, ĵk, l̂k, and
linear combinations thereof, and integrating outdf̂k and
dŝk : " #
2fs2d ­ 2 s1y2d
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whereDk ­ M
ff
k Mss

k 2 jM
fs
k j2, Ak is the two compo-

nent vectorfMfl
k l̂k 1 M

fj
k ĵk , Mss

k sĵk 2 2r̄el̂kdg, and
Mss

k (for example) is ≠2 ln Zy≠jŝkj2 ­ rbs1 2 rbd.
The structure factors obtain by functionally differentia
ing s2f s2dd with respect tol̂k andĵk .

The localized fermions of the cavity regime cannot
described by the extended fermion formalism. Instead,
assume the system is a superlattice made up of iden
rectangular cells of volumeVa. Fluctuations in cell size
and shape are neglected. Each cell contains either fe
ons or blockers but not both. The fermion-containing ce
are the cavities, and no fermion hopping between cell
permitted. The discrete fermion and blocker states wit
each cell are enumerated, andyij and wij between dif-
ferent cells are treated to mean field order. The ferm
levels are further constrained so that their energies do
exceed themobility edgeestimated via Eq. (5) [17]. This
constraint does not affect the phase diagrams significan
The Gibbs free energy per molecule is optimized with
spect to the discreteVa, and compared to that of phas
-
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segregation and/or the extended fermion phase to det
mine the stable thermodynamic phase.

In the classicalt ! 0 limit, Va ­ 1 lattice site is
optimal, and the localized and extended fermion theorie
are identical. When two-phase coexistence is stabl
Va ! `, and the localized and extended fermion phas
free energies agree with each other. Hence the tw
theories agree in the high and low temperature limits.

We consider the various interaction terms step by ste
to illustrate the minimal requirements of a model tha
reproduces the thermodynamic phases and correlati
functions. First we consider a purely excluded volum
interaction (yij ­ wij ­ 0), Fig. 1(a). At high tempera-
ture, the thermal de Broglie wavelength is small, an
fermions and blockers readily mix. At low temperature
fermions are highly degenerate, and phase segregation
energetically favored. The dotted line marks the onse
of instability in the mean field solution. Along this line,
Dk vanishes atk ­ 0 and the fluctuations diverge. The
critical point of phase coexistence and the turning point o
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FIG. 1. Mean field phase diagrams. (a)bP ­ 0.6, ex-
cluded volume interaction only; (b)bP ­ 0.6, with attractive
fermion-blocker tail; (c)bP ­ 0.65, with both fermion-blocker
and blocker-blocker attraction. Dashed line: boundary of th
cavity phase; dotted lines: onset of instability. In (b), the a
rows indicate the emergence of modulate phases ase increases.

the instability line do not coincide due to the introduction
of auxillary fermions. No cavity-dominated regime is
found in the absence of attractive interactions, and th
optimal cavity size isVa ! `. The structure factors
exhibit Ising-like behavior, peaking atk ­ 0 (Fig. 2).

Next we apply a square well potentialyij ­ e ­ 0.1
for i fi j, jri 2 rjjx,y,z # 1 [Fig. 1(b)]. The attractive
interaction favors the homogeneous phase over pha
separation. The lowxb branch of the instability line
marks the points whereDk first vanishes atfinite k. e .

0 also stabilizes cavities: Fermions can reside in cavitie
devoid of blockers, lowering the kinetic energy while
benefiting from the fermion-blocker attractive interactio
at the cavity boundary.e ­ 0.1 is insufficient to induce a
cavity-dominated regime. Further increasinge results in
the finitek-instabilities preempting the coexistence curv
[Fig. 1(b)]. This is the signature of modulated phase
which also occur in lattice models for oil-water-surfactan
mixtures [9,18] and Kimball-Falicov models with finite
on-site fermion-blocker interactions [19].

Metal ammonia solutions phase separate at low tem
peratures; they do not form modulated phases.
Fig. 1(c), we further apply a square well poten
tial between blockers,wij ­ v ­ 0.002 for i fi j,
jri 2 rjjx,y,z # 2, and increasee to 0.16. wij stabilizes
the two-phase region with respect to periodic phases
low temperature. A narrow strip dominated by cavitie
now appears at intermediate temperatures. These cavi
are occupied by one localized fermion of each spin. A
high temperature, extended states are more readily po
e
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FIG. 2. Structure factors. (a) Electron-electron; (b) electro
blocker; (c) blocker-blocker. “N” (dotted line): sample struc
ture factors for Fig. 1(a). “A”–“D” label structure factors a
points indicated in Fig. 1(c). The cross correlations are neg
tive. They axes have been shifted and rescaled. Inset: sm
k behavior ofĈbbskd at point A in Fig. 1(c) andxb ­ 0.8 in
Fig. 1(b), on an expanded scale. Arrow: peak position at 9
Li molar fraction (xb ­ 0.91) computed in Ref. [6].

lated than localized states, while phase segregation occ
at low temperature. Since different theories are used
the extended and localized fermions, we do not equ
their chemical potentials to establish phase coexistence

Figure 2 plots the structure factors at points A–
in Fig. 1(c). Ĉeeskd, Ĉbbskd, and Ĉebskd all exhibit
structures atkc ­ 1 to 1.8. By comparison, the all-
atom structure factor computed atxe ­ 1 2 xb ­ 0.09
in Ref. [6] peaks atsksNH3 dc ­ 1.4 [Fig. 2(c)], where
sNH3 is the ammonia Lennard-Jones diameter. This pe
arises from the bicontinuity, and characterizes the me
separation between the percolating channels [6]. O
structure factors, derived by assuming that the fermio
percolate through space, therefore strongly suggest
our model exhibits bicontinuity, with percolating channe
3–6 lattice sites apart.kc decreases with decreasingxe

and eventually vanishes forxe . 0. The positions of
“superstructure” peaks or shoulders observed in Li- a
Na-NH3 small-angle x-ray scattering [20] and small-ang
neutron-scattering [21] experiments also shift towar
sksNH3dc ­ 0 asxe decreases. Our results and Ref. [6
suggest that these hitherto unexplained trends are
to the increasing separation of percolating channe
The electrical conductivity should be sensitive to su
structural changes [23]. ThêCbbskd’s for the system
depicted in Fig. 1(c) and experimental structure facto
[20] all containk ­ 0 components. In our model, thes
features reflectwij . 0, and are absent for structure
3723
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factors computed atv ­ 0 [see inset of Fig. 2(c)], whose
intermediatek behavior are otherwise similar [17].

The theoreticalkc [experimental Li-NH3 sksNH3 dc]
values are 0.95 (1.3), 1.55 (2.1), and 1.70 (3.1) atxe ­
0.044, 0.10, and0.16, respectively. Quantative compari
son for xe , 0.04 is hampered by the small shoulder
predicted by the theory. While experiments, theory, a
simulations are in reasonable agreement forxe # 0.1, the
lattice model does not model the fluid accurately at sm
length scales.sksNH3 dc is sensitive to the identity of the
cation [20]. The functional form ofyij can be varied to
model this dependency.

To analyze the peak position, which is relatively tem
perature independent, we consider low temperature a
small re. First let v ­ 0, whereuponĈbbskd (modulo
a constant) is entirely due to the fermions, and its sm
k behavior determineskc. Furthermore,M

fj
k ­ 0 and

M
fs
k ­ û21

k . From Eq. (6), we have

Ĉbbskd ~
1

sMkd21 2 1
,

1
Mo 1 M2k2 1 Osk4d

; (7)

Mk is rbs1 2 rbdMff
k û2

k, Mo ­ M21
o 2 1 .

0 due to mechanical stability,M2 ­ 2s1y2M 2
o d≠2Mky

≠k2jk­0 ~ sk22
F 2 ced, kF ­ s6p2red1y3, and the posi-

tive scalarc is predominantlyre independent. At large
kF ande, M2 , 0. From Eq. (7), this means thatkc . 0,
and Ĉbbskd [Fig. 2(c), inset] exhibits the characteristic
form of microemulsionlike structure factors [22]. In
microemulsions, the surface tension is small, whic
favors segregation of the pure species on mesosco
microscopic length scales and leads to bicontinuity [9].
our model, asre decreases,kF decreases,M2 eventually
changes sign, andkc vanishes. This analysis shows tha
the superstructure in̂Cbbskd arises from the competition
between the fermion kinetic energy (thek22

F term) and
the fermion-blocker attraction, i.e., it has the same orig
as the cavity states. Furthermore, it is a purely quan
effect, absent fort ! 0.

At v ­ 0.16, the phases of metal ammonia solution
are reproduced. At thisv, M2 is always positive, and
Ĉbbskd has ak ­ 0 peak over the entirexb range (Fig. 2),
in agreement with experiments. TheĈbbskd’s are therefore
not microemulsionlike for smallk. However, at length
scales of 3–6 lattice sites, the superstructures persist,
the physics that governs microemulsions applies.

Our metal-insulator transition (the boundary betwee
the cavity phase and the extended fermion phase) occ
at xe , 0.07, depending on the temperature. MIT’s
occur at xe , 0.04 in metal ammonia solutions. The
cavity phase is more prominent at largeryij and lower
pressure. AtbP ­ 0.4 ande ­ 0.175, the MIT shifts to
xe ­ 0.14, comparable to the MIT (xe , 0.15) in metal
methylamine solutions [2], which have similar properties
3724
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Despite the simplicity of our model, the present work
predicts phase diagrams, superstructures, and metal in
lator transitions that qualitatively agree with those found
in metal ammonia solutions.
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