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We study metal ammonia solutions using a generalized Kimball-Falicov model. The lattice model
contains a fluid-fluid interaction term and an electron-fluid interaction with a hard core and an attractive
tail. We derive the phase diagram using a strong-coupling mean field theory based on the slave boson
approach to the Hubbard model. The attractive force favors the homogeneous phase and a regime where
electrons localize in cavities devoid of fluid particles over phase separation. The Gaussian fluctuations
suggest the existence of bicontinuous channels percolating through the system. Comparisons with
experiments and computer simulations are presented. [S0031-9007(97)03061-5]

PACS numbers: 71.22.+i, 61.25.Mv, 71.10.Fd, 71.30.+h

Metal ammonia solutions exhibit a metal-insulator tran-support extended electronic states as the metal concentra-
sition (MIT) and a variety of thermodynamic phases [1—3].tion increases. The crossover occurs at metal concentra-
At low temperature, the system segregates into metal-rictions which are consistent with experimental data for the
and metal-poor phases [4]. At low metal concentrationMIT. This strongly suggests that structural changes ac-
the excess electrons are solvated in cavities surrounded locpmpany the MIT.
ammonia molecules [1,5]. They absorb light in the visible Our model is a modified Kimball-Falicov model [7] in
range, which gives the solution its characteristic blue colorthe strong-coupling limit. Excess electrons and ammonia
These localized electrons contribute minimally to electri-molecules are represented as fermions and lattice gas
cal conductivity. As the metal concentration increases, thearticles (“blockers”), respectively. They interact through
electrical conductivity sharply increases by several ordera hard-core repulsion and an attractive tail that mimicks
of magnitude within a small concentration range [1-3].the dipole- and screened charges-induced interactions.
Using computer simulations, Deng, Martyna, and Klein [6]The metal counterions provide a neutralizing background
have recently found that well-localized electron-containing6], and electron-electron repulsion is neglected. In the
cavities give way to bicontinuous percolating channelsthastrong coupling form [8], the partition function i =
| [ D'@y)Tr, e, where

So= —1 Y ](1 i = ) = (1~ n)f ¢m[v,,n, + &,(;Le = - Aiﬂwm
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(Gior, is-) are Grassmann (fermionic) fields for site | The exclusion constraint is difficult to implement in
spin o, and Euclidean time index, n; = 0,1 describes practice except in special cases [11]. In this work, we
the blocker occupancy of sit¢, and A; and &; are  remove the constraint by introducing auxillary fermions at
generating fields.v;; and w;; > 0 are fermion-blocker a modified chemical potential — «)u, onn; = 1 sites.
and blocker-blocker attractive forces, respectively,  The action is augmented by

and u, are the chemical potentials, an@l = & = 1.

We apply the constraint that blockers and fermions Sau _Z”i[f l_pia7-|:(1 — a)pe — 9 _ )t,}
cannot simultaneously occupy the same site. This on- ; T T

site exclusion and the attractive interactioy) compete

with each other. The model can be thought of as the X Yior — Ai}’ (2)
quantum analog of a classical lattice model [9] that

features short-ranged, competing forces and describes théhere A; = In[1 + e#(1=®)~A] and a is arbitrary.
lamella and bicontinuous microemulsion phases of oill\When n; = 1, (-, ¥is-) describe auxillary fermions
water-surfactant mixtures [10]. The physics of the twothat do not exhibit hopping, whose free energy contri-
problems is very similar. v;; herein plays the role of bution A; per spin has been subtracted out in Eq. (2).
surfactant molecules, tying together the dissimilar fermion(S, + S..x) how has2N unconstrained fermionic and
and blocker phases to form cavities and bicontinuousv blocker degrees of freedom which can be decoupled
structures [6]. using the Hubbard-Stratonovich transform [12,13]. We
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introduce scalar field&p;, o;} governed by the action —au.6;; + v;; dominates and makes this matrix positive
definite and invertible. Next we apply the transforma-
Zd)l Hii O-J " (1/2)%¢l Y /k”kl ¢l (3) tions g, — 0 t+ Z/a’f ull'w_bja"r‘r///trr and d)l - ¢z
ij
At low fermlon density, the diagonal term im; = | 2.; uijn;, whereupon anyz, coupled to Grassmann fields
can be replaced by > ; u;; qu The action becomes

- Zf th(;Le - i —éi - A,-)%,, f( %”;clqbk)&iar‘pjm'(l + ;Wzldn)
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The translation-invariant saddle point obtains by inﬂe-single-spin fermion density i9, = —(1/2)df /. =

grating over(#, ) and n;, and minimizing with respect (1 — p,)p. [14]. Therefore p, + p. =1, and the
to ¢, = ¢, o; = &, anda. The Helmholtz free energy exclusion constraint is satisfied on the average. (c)
per site,f, then becomes The hopping matrix element is renormalized by
i — (1 — pp)*t. Qualitatively similar features are
f= 2[ IN(1 — px) +In(1 — pp) — (6 — wops/2)pr, found in the slave boson approach to the Hubbard model
k [15,16]. A finite on-site interaction version of this

0= 2u,p. + 41 — pp){e) + Hu, + ape)peps, method and a Gibbs-Bogoliubov variational derivation of
- _ @)1 Eq. (5) are given in Ref. [17]. The mean field theory is
¢ = —uopp, and p,=[1+e T ()  solved at constant pressure, temperature, and chemical

Here py = {1 + e*Ak*My+<_b+(Lt,,+0(,u,(,)p§}fl, pe = [, pr composition y, = py/(p» + 2p.). Th_e coexistenc_e
is the apparent fermion density,, is the blocker den- CUrves are found by graphically matching two solutions

sity, () denotes the average kinetic enerdy, equals that have identical chemical potentials. _
(1 — p,)? times the energy of plane waves with wave Gaussian fluctuations are computed by transforming
vector k, u, = 3. u;j, andw, = 3 w;j. f iS propor- the various fields to their Fourier space representation,

tional to the pressure. The mean field theory has the foll"tegrating out{y, ¢/} and {n;}, expanding the resulting

lowing features: (a) For purely fermion-blocker exclusionT€€ €nergy to second order #iy, 6%, &, Ay, and
interactions, it is exact in the— 0 limit. (b) The real o Imear combinations thereof, and integrating éuk; and

k .

g _ 0’¢
o (1/2)[kln(—aka) — poe(l = mf Al = f(l/sz)Ak ' {—Mk‘"ﬁ e ]Ak

My M{e
Pk Pk
(B oIl + (/D) [ M7l = 2p A, ©)
ki \Ar, — Ay,
whereD; = Mk M IMk 712, Ay is the two compo—| segregation and/or the extended fermion phase to deter-
nent vectof M A, + M &, MI7 (& — 2p,A,)], and  Mine the stable thermodynamic phase.
M7 (for example) is 6%InZ/alGcl> = py(1 — py). In the classicalr — 0 limit, V, = 1 lattice site is
The structure factors obtain by functionally differentiat- optimal, and the localized and extended fermion theories
ing (—f®) with respect ta\; and&;. are identical. When two-phase coexistence is stable,

The localized fermions of the cavity regime cannot beV, — «, and the localized and extended fermion phase
described by the extended fermion formalism. Instead, wéee energies agree with each other. Hence the two
assume the system is a superlattice made up of identicttieories agree in the high and low temperature limits.
rectangular cells of volum&,. Fluctuations in cell size We consider the various interaction terms step by step
and shape are neglected. Each cell contains either fermtie illustrate the minimal requirements of a model that
ons or blockers but not both. The fermion-containing cellseproduces the thermodynamic phases and correlation
are the cavities, and no fermion hopping between cells ifunctions. First we consider a purely excluded volume
permitted. The discrete fermion and blocker states withinnteraction ¢;; = w;; = 0), Fig. 1(a). At high tempera-
each cell are enumerated, ang andw;; between dif- ture, the thermal de Broglie wavelength is small, and
ferent cells are treated to mean field order. The fermioermions and blockers readily mix. At low temperature,
levels are further constrained so that their energies do ndérmions are highly degenerate, and phase segregation is
exceed thenobility edgeestimated via Eq. (5) [17]. This energetically favored. The dotted line marks the onset
constraint does not affect the phase diagrams significantlpf instability in the mean field solution. Along this line,
The Gibbs free energy per molecule is optimized with re-D; vanishes ak = 0 and the fluctuations diverge. The
spect to the discret&,, and compared to that of phase critical point of phase coexistence and the turning point of

3722



VOLUME 78, NUMBER 19 PHYSICAL REVIEW LETTERS 12 My 1997

homogeneous

(c)

phase sfg-:'p.

—_—————— e ]

jo}
(2]
©
=
& 10 2
homogeneous S
\ =
A BC\ 3
D O]
%, A (0.80); B (0.90); C (0.93); D (0.95)
0 1 1 1 1 O-O
0.0 0.2 0.4 0.6 0.8 1.0

& FIG. 2. Structure factors. (a) Electron-electron; (b) electron-

FIG. 1. Mean field phase diagrams. (#P = 0.6, ex-  blocker; (c) blocker-blocker. “N” (dotted line): sample struc-

cluded volume interaction only; (b3 P = 0.6, with attractive  ture factors for Fig. 1(a). “A"-"D” label structure factors at

fermion-blocker tail; (c)8P = 0.65, with both fermion-blocker  points indicated in Fig. 1(c). The cross correlations are nega-

and blocker-blocker attraction. Dashed line: boundary of thdive. They axes have been shifted and rescaled. Inset: small-

cavity phase; dotted lines: onset of instability. In (b), the ar-k behavior of Cp, (k) at point A in Fig. 1(c) andy, = 0.8 in

rows indicate the emergence of modulate phasesinsreases. Fig. 1(b), on an expanded scale. Arrow: peak position at 9%
Li molar fraction (y, = 0.91) computed in Ref. [6].

the instability line do not coincide due to the introduction
of auxillary fermions. No cavity-dominated regime is
found in the absence of attractive interactions, and théated than localized states, while phase segregation occurs
optimal cavity size isV, — «. The structure factors at low temperature. Since different theories are used for
exhibit Ising-like behavior, peaking &= 0 (Fig. 2). the extended and localized fermions, we do not equate
Next we apply a square well potential; = e = 0.1  their chemical potentials to establish phase coexistence.
for i # j, [r; — rjly,. =1 [Fig. 1(b)]. The attractive Figure 2 plots the structure factors at points A-D
interaction favors the homogeneous phase over phase Fig. 1(c). C..(k), Cpy(k), and C.,(k) all exhibit
separation. The lowy, branch of the instability line structures atk. = 1 to 1.8. By comparison, the all-
marks the points wher®, first vanishes afinite k. € >  atom structure factor computed gt = 1 — y, = 0.09
0 also stabilizes cavities: Fermions can reside in cavitiein Ref. [6] peaks at(konu,). = 1.4 [Fig. 2(c)], where
devoid of blockers, lowering the kinetic energy while ony, is the ammonia Lennard-Jones diameter. This peak
benefiting from the fermion-blocker attractive interactionarises from the bicontinuity, and characterizes the mean
at the cavity boundarye = 0.1 is insufficient to induce a separation between the percolating channels [6]. Our
cavity-dominated regime. Further increasingesults in  structure factors, derived by assuming that the fermions
the finite k-instabilities preempting the coexistence curvepercolate through space, therefore strongly suggest that
[Fig. 1(b)]. This is the signature of modulated phasespur model exhibits bicontinuity, with percolating channels
which also occur in lattice models for oil-water-surfactant3—6 lattice sites apartk. decreases with decreasing
mixtures [9,18] and Kimball-Falicov models with finite and eventually vanishes foy., > 0. The positions of
on-site fermion-blocker interactions [19]. “superstructure” peaks or shoulders observed in Li- and
Metal ammonia solutions phase separate at low temNa-NH; small-angle x-ray scattering [20] and small-angle
peratures; they do not form modulated phases. Imeutron-scattering [21] experiments also shift towards
Fig. 1(c), we further apply a square well poten-(konu,). = 0 as y. decreases. Our results and Ref. [6]
tial between blockers,w;; = o = 0.002 for i # j, suggest that these hitherto unexplained trends are due
Ir, — rjl.y. =2, and increase to 0.16. w;; stabilizes to the increasing separation of percolating channels.
the two-phase region with respect to periodic phases athe electrical conductivity should be sensitive to such
low temperature. A narrow strip dominated by cavitiesstructural changes [23]. Thé,,(k)’s for the system
now appears at intermediate temperatures. These cavitidepicted in Fig. 1(c) and experimental structure factors
are occupied by one localized fermion of each spin. Af20] all containk = 0 components. In our model, these
high temperature, extended states are more readily popteatures reflectw;; > 0, and are absent for structure
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factors computed ab = 0 [see inset of Fig. 2(c)], whose  Despite the simplicity of our model, the present work
intermediatek behavior are otherwise similar [17]. predicts phase diagrams, superstructures, and metal insu-
The theoreticalk, [experimental Li-NH (konm,)c] lator transitions that qualitatively agree with those found
values are 0.95 (1.3), 1.55 (2.1), and 1.70 (3.1yat=  in metal ammonia solutions.
0.044, 0.10, and0.16, respectively. Quantative compari- One of us (F.S.C.) acknowledges financial support
son for y. < 0.04 is hampered by the small shouldersfrom David Chandler. K.L. is indebted to Professor
predicted by the theory. While experiments, theory, anK. B. Whaley. We also thank Hyung-June Woo, Carlo
simulations are in reasonable agreementyfpr= 0.1, the  Carraro, and Richard Stratt for useful suggestions, and
lattice model does not model the fluid accurately at smalDavid Chandler for suggesting a lattice model treatment.
length scales.(kony,). is sensitive to the identity of the
cation [20]. The functional form of;; can be varied to
model this dependency.
To analyze the peak position, which is relatively tem-
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