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Dimensional Crossover of the Fundamental-Measure Functional for Parallel Hard Cubes
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We present a regularization of the recently proposed fundamental-measure functional for a mixture
of parallel hard cubes. The regularized functional is shown to have correct dimensional crossovers to
any smaller dimension, thus allowing its use to study highly inhomogeneous phases (such as the solid
phase). Furthermore, it is shown how the functional of the slightly more-general model of parallel
hard parallelepipeds can be obtained using the zero-dimensional functional as a generating functional.
Extensions to the multicomponent system, a restricted-orientation model, and mixtures or prallel hard
cylinders are also given. [S0031-9007(97)03105-0]

PACS numbers: 61.20.Gy, 64.10.+h, 68.45.—v

Although nowadays the success adnsity functional profile is a delta function along one of the coordinates. But
theories to describe nonuniform fluids and their phase trarthis turns out to be a much too stringent requirement to be
sitions is out of question, it is generally acknowledgedfulfilled by an approximate functional. Needless to say
that these theories are based on much too empiric assumgrat functionals with this property will provide good de-
tions to be considered a systematic tool to study liquidscriptions of strongly inhomogeneous systems (e.g., fluids
[1]. Nearly all of the available functionals propose a de-confined by walls). However, it would not be of great im-
pendence on the density through nonlocal weights, whosgortance to describe bulk phases were it not because there
choice rely upon approximations around the uniform fluidis a special dimensional crossover any functional willing
combined with heuristic arguments. Accordingly, they al-to exhibit a sensible solid phase should verify: the reduc-
ways need a good knowledge of the bulk structure and thetion to a zero-dimensional (OD) system [6,9], i.e., a cavity
modynamics of the uniform fluid, which thus becomes arable to contain at most one particle (which clearly mim-
input of the functional. There is, however, a kind of func-ics the situation of a particle in a crystal lattice). None of
tional which does not follow this general framework andthe classical functionals verify any dimensional crossover
are constructed only from geometric features of the parf10], but the FMF for HS does some of them [6]; however,
ticles; these are the so call@@hdamental measure func- when trying to reduce from 3D to 0D, some divergences
tionals (FMFs) [2—5]. Two important features distinguish appear that cause this functional not to be able to stabilize
FMFs from “classical” functionals: (1) The thermodynam- a solid phase. Although a heuristic modification of the
ics and structure of the uniform fluid (and even that of thefunctional eliminates those unphysical divergencies [6], it
nonuniform fluid) can belerivedfrom them, instead of re- is very remarkable that thB-dimensional HS FMF, for
quiring it as an input, and (2) they achieve a dimensionahny dimension, can be obtained from the exact 0D func-
reduction of the system by using strongly inhomogeneousional by requiring it to have a right dimensional crossover
density profiles [6,7]. Actually these two properties arefrom D to quasi-0 dimensions [7] (according to Ref. [7],
interlaced, as it will become clear in what follows. a quasi-0D system is provided by a density function con-

The first FMF was proposed for a fluid of hard spheressisting of a sum of deltas placed at points such that HS
(HS) [3,4], and it was obtained by assuming that it dependsimultaneously placed at them overlap). The results turn
on a small set of geometrically weighted densities [2]out to be nonlocal functionals of the one-particle weighted
(how many and which weights are dictated by the lowdensities, which can be further approximated by local ones
density limit of the free-energy functional). The precisewithout loosing their main dimensional crossovers. The
functional dependence still required aa hoc scaled- moral of this is that the 0D functional seems to be the
particle assumption, but in turn, it yielded the Percus-only thing one needs in order to make a FMF for a given
Yevick free energy and direct correlation function (DCF), system.
and allowed us to compute further structural properties Recently, a FMF has been developed for a system of
(such as the third order DCF [3]). The functional admitsparallel hard cubes (PHC) [5]. Although such a system
two-dimensional (2D) [8] as well as a one-dimensionalis rather unrealistic, it is far more suitable than the HS
(1D) [3] extensions, the latter being the well-knoexact  system to study the demixing transition of mixtures [5,11],
functional. and so, it deserves consideration. On the other hand, on

There is a feature the exact HS functional exhibits: aa fundamental viewpoint, having FMFs for systems other
right dimensional crossover, or, in other words, the facthan HS may help to clarify the basic structure of such
that the functional foD — 1 dimensions must come out functionals in the aim of extending them to more general
as a result of the one fdp dimensions when the density particle shapes (arbitrarily orientable, anisotropic particles,
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for instance, so as to study liquid-crystalline phases). I»; n;, = » = 1 (those considered in [7]), belong to this
this Letter we will show how the functional proposed in [5] class, but smooth functions with support within that inter-
can be regularized to have correct dimensional crossovergal do it as well. Then it is straightforward to check that
and this will make clear a simple relation between the FMH12]

for PHC in different dimensions which will permit us to 1

d
derive them very easily from the 0D functional. no = TS % , (6)
Any FMF expresses the excess (over the ideal) free ) )
energy of the system in terms of the local dengity) as ~ Wheres, = sgnx. Now, if we consider that
am B(I)(O)(l’ll)
Flpl = kT [ deoPna ), @ =in(l = m) T = ™

whereD is the dimension and the, (r) are a set of suitably Where [6] @ () =7 + (1 — n)In(1 — 7), we can
chosen geometrically weighted densities. According theck that F&* = [dx @1 = ®©(x,(0)), which re-
Ref. [5], the free-energy densi(tg)b(3), f(zr) the s(y;%tem of gucei to ft?ﬁ exces_s(;‘geelenergy of the OD systenaufigr

< i 3 _ 8 3 3 ensity of the quasi-0D class.
(3D) PHC, is given byb' P+ Py 4 037, with To Zheck tr?e 2D to 1D and 2D to OD dimensional
crossovers, let us define the quasi-1D density class as the
set of 2D functions with support in the bando /2 <

©)

n; -n
o = (3 Iy 2

—ngIn(l — n3), d," = ,
1 - nj

(2)

¥ — 5n3 — 9momy - My
’ 54(1 — n3)?

Heren, = p ® w, andn, = p ® w,, where® denotes
a convolution. The weighte, andw, are given by

a)()(l’) = gxgy'gz,
wi(r) = (Tx§y§23 ngygm gxgyTz),
wo(r) = (ngyTz’ TxgyTz’ TxTygz) s

wi(r) = u - w(r),

w3(r) = TxTyTz,

®3)
ws(r) = u - wy(r),

with 7. = O(c/2 = |x]), & = (1/2)8(0/2 = |x]) (o
being the edge length of the cubes), amd= (1,1, 1).

Notice the different normalization in the definition of the

weighted densities with respect to that of Ref. [5].

As mentioned in [5], the 2D functional can be obtained

in a similar way; in this case the weights are given by

a)o(l’) = gx{y,

wZ(r) = TxTy,

(4)
wi(r) = (&ety, 720dy)s wi(r) = u - wi(r),
with u = (1,1), and®® = &\ + &, with
2
@ _ _ @ _m—n-m
(O no In(1 ns), (O 72(1 ) .
(5)

Of course, the 1D functional is the same as that of HS
(i.e., the exact one) because in this case both HS and PHC

reduce to segments on a line. Therefobé!) = (I)il) =

—noIn(l — ny), wherewy(r) = £, andw,(r) = 7,.

y < o/2, and let us redefine the quasi-OD density class
as the subset of the quasi-1D class whose members vanish
forx & (—o/2,0/2) (i.e., 2D functions with support in a
square centered at the origin). Let us consider now the
2D functional (5), and let us pui; = (n;,n1,); then

ni —ny - n; =2n,n,,. On the other hand, as in the
previous case,

1 any. 1 ony
=~ sy ayx’ MLy = 5 Sy E; (8)
therefore
1 9
(I)(z) — —5 Sy 5 [_nl,x In(l - nZ)]» (9)
and then

F* = kBTf dx dy ®®

:wﬂfww%mwmmmm,am

which is the right 2D to 1D dimensional crossover. Fur-
thermore, as we have discussed previously, the functional
(10) has the right dimensional crossover to 0D for any
quasi-0D density.

In both cases, 1D and 2D, the right dimensional cross-
over arises as a consequence of the fact that for quasi-0D
densities the functionals can be obtained as

1 o®©
(I)(l) = —3 Sx Bx . (11)
1\ 9?00
®®:<_5>“f53?' (12)

Let us now consider the 1D to OD dimensional CroSS—rhe dimensional crossovers then follow from the direct

over. To this purpose let us define the class of quaSi'OQntegration of the derivatives.
densities as the set of functions with support in the iny
terval (—o /2, o/2) (the fact that this interval is centered
around zero is completely irrelevant and it is only assume

for simplicity). The densitiep(x) = n8(x) andp(x) =
>imidlx — x;), with —o/2 < x; < /2, n; =0, and
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It can then be inferred that
he D-dimensional functional with the correct dimensional

grossovers will, for quasi-0D densities, be expressed as
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but if we compute the 3D case, and take into account thafl5)]. At this level, Eg. (13) may seem nothing more than
ans o ans aforftunats trick to obtain '_[he fu_nctiongls; howeyer,_a slight
n, = <—sx —, =8y, S —> manipulation of the equation will provide further insight on
ox dy 9z the actual meaning of this method.

9%ns3 0%ns 0%ns First of all, let us consider the slightly more general

Ny = {$yz dyaz’ Szx azax’sxy axay )’ (14) problem of a fluid ofD-dimensional parallel hard paral-
lelepipeds (PHP) of edge lengthd", ..., P along the
= g & ns X1,...,xp axes. If we definen(r) = p ® wp(r), with
’ P axayoz” wp(r) = O(cV/2 = |xil)--- (P /2 — |xpl), then

the OD free-energy density functional for this system will
, , ©
be given by dpip = 7(r) + [1 = n@)]In[1 — 7(r)].
Formula (13) still yields théd-dimensional functional for

q)(3) n% —3non7 "Ny + 205 - Ny Mo (15) quasi-0D densities, but if we make use of the identity

’ 6(1 — n3)? ’ L g () 9 o)

where the notatiorv - v - v = v} + v} + v} has been 75 Sy 5= ®<T - |x.i|> = 9o) ®<T - |xj|>’
introduced. This new expression dlffers from that of !
Eq. (2) not only in the numerical coeff|C|ents but also inEquation (13) transforms into

we flnd that(lb(3) and(I)(3) are the same as those in Eq. (2)
butd) Vis given by

the appearance of a new term, - - n,, which has no .
equivalent in HS [3,7]. At first thls may seem a spuri- o 0 (I)f)})IP
ous term, because it is not even rotationally invariant; on Pprp = 90D ... 90" (16)

second thought, there is no reason why it should be, since
the system itself (PHC) is not rotationally invariant either.which provides the FMF also for nonquasi-OD density
Such a symmetry is replaced by a discrete group of symfunctions (because it does not involve derivatives with
metries which, restricted to the fact that the vector densitiegespect to the coordinates).
n; andn, must have positive components, translates into  Equation (16) has the important consequence that all
a simple axes-exchange symmetry. The new term obvithe thermodynamics of the inhomogeneduslimensional
ously has this symmetry. The important thing is that whilefluid is contained in the 0D functional. This result re-
this new 3D functional has beepuilt to have correct di- veals the same fundamental idea recently formulated for
mensional crossovers the old one does not even fulfill the|S [7], namely thathe 0D functional plus the require-
3D to OD one (I>3 develops delta cube divergences whenment of the exact dimensional crossovers determines the
the density approaches a delta function, much in the samshape of theD-dimensional funtional.In the latter, how-
way as the old version of the HS FMF did [3]). It can be ever, a completely different exploitation of the same idea
checked that the new functional stabilizes a solid phase, fds followed and the result is a functional which is not local
packing fractions abovey = 0.3, by following the stan- in the weighted densities anymore. An attempt to find an
dard procedure of parametrizing the density function by aquivalent to Eq. (16) for HS, where the 0D functional acts
sum of Gaussians placed at the lattice sites [1], whereas tlas a generating functional, has just been carried out [13].
divergences in the old functional give rise to a free energyn this work, theD-dimensional FMF for HS, in the ver-
which decreases monotonously as the Gaussians shrink.sion of Ref. [4], in which all weighted functions are scalar,
But to be correct, the new 3D functional should provideis given by the action on the 0D functional of a differential
the exact second and third virial coefficients in the densityoperator with respect to the sphere radius. The result is
expansion of the DCF, for this is the requirement undemnevertheless not as satisfactory as for the PHP system (for
which FMFs are built [3,5]. It is very remarkable that, instance, the 3D DCF generates an unphysical delta func-
when applied to the uniform fluid, the new functional tion at contact). Onthe other hand, while Eq. (16) emerges
providesexactly the same expressiof@ both the free here in a very natural way, the differential operator in [13]
energy and the DCF as found in Ref. [@ear in mind is introduced heuristically with some free constants which
the different normalization of the weighted densities) are fitted afterwards by imposing certain constraints (e.g.,
Therefore, the new term introduces nothing new for thgo match a given equation of state). On the contrary, the
uniform fluid, but it drastically changes the behavior of functional for 2D agrees with the simplified version of the
the nonuniform fluid. one obtained in [7]. We do not understand the reason why
Formula (13) provides a simple method to obtain thethis approach fails in 3D. It might be related to its sub-
FMF for aD-dimensional PHC fluid; although the formula tle relationship with the scaled particle theory [3]. In the
holds true only for quasi-OD densities, once the functionalatter the thermodynamics is obtained by estimating the
form has been derived and the scalar, vector, and tenseariations of the free energy with respect to the particle
weighted densities have been identified, it can also bsize, but then the third derivative needs to be approximated.
applied to arbitrary density functions [this is precisely theln the former it is precisely this derivative that causes the
procedure we have followed to obtain the 3D functionalfailure [14].
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Generalizing (16) to mixtures is straightforward; it sional crossover to any smaller dimension. In the deriva-

simply amounts to writing tion we have found the remarkable result that the FMF
) aDQD{aoﬁlp 9 9 for .P!-IP, ir) any dimensio®, can be obtained by simply
Oppp = 90D 00’ Fy=y) = Z TR deriving with respect to every edge length the OD func-
i 00; tional, thus prompting the idea of this functional being a

_ (17)  «kind of generating functional (an idea already explored for
where (r,(") denotes the edge length along the co- HS [7,13], but which for the present system reaches its
ordinate of species. Of course, nown(r) = >, p; ®  clearest and simplest expression). In passing we have ob-
o (r), wherew'” is the same as that for PHP, but with tained the FMF for a mixture of PHP, and suggested how it
the o('s corresponding to speciés The functional (17) ¢an be exploited as a restricted-orientation model for liquid
has a particularly important application to study liquid- crystals. Finally a further extension of the method permits
crystalline phases, for if we consider the six possible!S to find a FMF for a mixture of parallel hard cylinders,
orientations of a parallelepiped as belonging to six dif-thus opening the possibility of studying polydispersity in
ferent species, the functional (17) can be understood diuid crystals. _
representing a restricted-orientation, one-species systemWe are indebted to Y. Rosenfeld for calling our
of hard parallelepipeds. Besides that, the functional maf{tention to this problem, P. Tarazona for illuminating
provide some clues to understand the structure of a FMHiScussions and for keeping us informed of his progress
for freely orientable, general anisotropic particles. in studying HS, J.A. White for sending us a preprint,

The derivation we have made here suggests furthetnd B. Mulder for suggesting the extension of the PHP
extensions of the theory. For instance, consider a systefdnctional to a restricted-orientation model. One of us
of hard parallel cylinders oriented along theaxis. Itis (J-A.C.) owes much to a discussion with L. Araujo which
clear that the 3D to 2D dimensional crossover, eliminatingurned out to be crucial for the development of this work.
the z coordinate, will transform this system into a system

of hard disks. Therefore, mﬁg is a FMF for hard disks
(e.g., those of Refs. [7,13]), the corresponding FMF for the

. ) @) , .
cylinders can be derived fromy;s, the same functional  [1] See, for instance, M. Baus, J. Phys. Condens. Matter

asd)g;, but with the weights multiplied b (L/2 — |z]) 2, 2241 (1990);Fundamentals of Inhomogeneous Fluids,
(L being the length of the cylinders) and the 2D density of ~ edited by D. Henderson (Dekker, New York, 1992); G.J.

disks replaced by a 3D density of cylinders. The derivation ~ Vroege and H.N.W. Lekkerkerker, Rep. Prog. Phgs,
il si B _ .z . . 1241 (1992); H. Léwen, Phys. Rep37, 249 (1994).
will simply be ®;; = d®ys/dL. This functional can [2] J.K. Percus, J. Stat. Phys2, 1157 (1988).

immediately be generalized to a mixture of parallel hard [3] v Rosenfeld, Phys. Rev. Let63, 980 (1989); see also

cylinders as in (17), and this provides a tool to study Y. Rosenfeld, J. Phys. Condens. MatBr9289 (1996),
analytically the influence of polydispersity in the phase and references therein.
diagram of liquid crystals [15]. [4] E. Kierlik and M.L. Rosinberg, Phys. Rev. A2, 3382

In spite of its merits (the main one being the fact (1990); Phys. Rev. Al4, 5025 (1991).
that it provides a “first principles” theory, in which the [5] J.A. Cuesta, Phys. Rev. Left6, 3742 (1996).
thermodynamics and the correlations are derived rathed®] Y. Rosenfeld, M. Schmidt, H. Léwen, and P. Tarazona,
than imposed), the method presented here deserves some éép4hz)fé (i%g‘;‘;“s- Mattd, L577 (1996); Phys. Rev. E
Cr|t|C|sm.. First of all, the FMF (16) is np_t the exaqt [7] P. Tarazona and Y. Rosenfeld, Phys. Rev. E (to be
one, for it does not reproduce the exact virial expansion

. ublished).
beyond third order [5], but even worse, the very structure [8] 5 Rosenf)eld Phys. Rev. A2, 5978 (1990).

of Eq. (16) already tells us that the method is “exhausted” [9] Y. Rosenfeld, J. Phys. Condens. MatgrL795 (1996).

in the sense that the vanishing @f,(r) outside a particle [10] And yet they describe accurately the solid phase [1]. But
automatically implies that the DCF has exactly the range of  this solid has unphysical properties, such as a negative

the potential, i.e., it vasnishes outside the core. Thisresult density of vacancies, or a regular behavior of the free
has long been known not to be true (although it is very energy at closest packing [6,9].

accurate) above 1D. This is a serious defect if fundamental1] M. Dijkstra and D. Frenkel, Phys. Rev. Leff2, 298
measure theory is ever to yield the exact functional of ~ (1994); M. Dijkstra, D. Frenkel, and J.-P. Hansen,
some system, and it is not clear how to get rid of it. _ J- Chem. Physl0, 3179 (1994). .

Perhaps, as the extensions above suggest, the immedi&}é! ! instead of considering this class of functions we take
future of this theory is to provide an accurate framework to that of functions highly localized within the same interval,

- . . . . Eqg. (6) becomes an asymptotic equality, so that the higher
deal with arbitrary hard particle systems, but this step will the localization the more accurate the equation.

require understanding the connection between the differerph] A. Gonzélez, J. A. White, and R. Evans, J. Phys. Condens.
approaches followed for PHP and HS. Matter 9, 2375 (1997).

To summarize, we have shown how the FMF for PHC[14] J. A. White and A. Gonzélez (private communication).
presented in [5] can be regularized to have a right dimenfL5] A. Stroobants, J. Phys. Condens. MaeA285 (1994).
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