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We present a regularization of the recently proposed fundamental-measure functional for a mixture
of parallel hard cubes. The regularized functional is shown to have correct dimensional crossovers to
any smaller dimension, thus allowing its use to study highly inhomogeneous phases (such as the solid
phase). Furthermore, it is shown how the functional of the slightly more-general model of parallel
hard parallelepipeds can be obtained using the zero-dimensional functional as a generating functional.
Extensions to the multicomponent system, a restricted-orientation model, and mixtures or prallel hard
cylinders are also given. [S0031-9007(97)03105-0]
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Although nowadays the success ofdensity functional
theories to describe nonuniform fluids and their phase tr
sitions is out of question, it is generally acknowledge
that these theories are based on much too empiric assu
tions to be considered a systematic tool to study liqui
[1]. Nearly all of the available functionals propose a d
pendence on the density through nonlocal weights, who
choice rely upon approximations around the uniform flu
combined with heuristic arguments. Accordingly, they a
ways need a good knowledge of the bulk structure and th
modynamics of the uniform fluid, which thus becomes a
input of the functional. There is, however, a kind of func
tional which does not follow this general framework an
are constructed only from geometric features of the p
ticles; these are the so calledfundamental measure func
tionals(FMFs) [2–5]. Two important features distinguis
FMFs from “classical” functionals: (1) The thermodynam
ics and structure of the uniform fluid (and even that of th
nonuniform fluid) can bederivedfrom them, instead of re-
quiring it as an input, and (2) they achieve a dimension
reduction of the system by using strongly inhomogeneo
density profiles [6,7]. Actually these two properties a
interlaced, as it will become clear in what follows.

The first FMF was proposed for a fluid of hard spher
(HS) [3,4], and it was obtained by assuming that it depen
on a small set of geometrically weighted densities [
(how many and which weights are dictated by the lo
density limit of the free-energy functional). The precis
functional dependence still required anad hoc scaled-
particle assumption, but in turn, it yielded the Percu
Yevick free energy and direct correlation function (DCF
and allowed us to compute further structural properti
(such as the third order DCF [3]). The functional admi
two-dimensional (2D) [8] as well as a one-dimension
(1D) [3] extensions, the latter being the well-knownexact
functional.

There is a feature the exact HS functional exhibits:
right dimensional crossover, or, in other words, the fa
that the functional forD 2 1 dimensions must come ou
as a result of the one forD dimensions when the density
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profile is a delta function along one of the coordinates. Bu
this turns out to be a much too stringent requirement to b
fulfilled by an approximate functional. Needless to say
that functionals with this property will provide good de-
scriptions of strongly inhomogeneous systems (e.g., fluid
confined by walls). However, it would not be of great im-
portance to describe bulk phases were it not because the
is a special dimensional crossover any functional willing
to exhibit a sensible solid phase should verify: the reduc
tion to a zero-dimensional (0D) system [6,9], i.e., a cavity
able to contain at most one particle (which clearly mim-
ics the situation of a particle in a crystal lattice). None of
the classical functionals verify any dimensional crossove
[10], but the FMF for HS does some of them [6]; however,
when trying to reduce from 3D to 0D, some divergences
appear that cause this functional not to be able to stabiliz
a solid phase. Although a heuristic modification of the
functional eliminates those unphysical divergencies [6], i
is very remarkable that theD-dimensional HS FMF, for
any dimension, can be obtained from the exact 0D func
tional by requiring it to have a right dimensional crossove
from D to quasi-0 dimensions [7] (according to Ref. [7],
a quasi-0D system is provided by a density function con
sisting of a sum of deltas placed at points such that H
simultaneously placed at them overlap). The results tur
out to be nonlocal functionals of the one-particle weighted
densities, which can be further approximated by local one
without loosing their main dimensional crossovers. The
moral of this is that the 0D functional seems to be the
only thing one needs in order to make a FMF for a given
system.

Recently, a FMF has been developed for a system o
parallel hard cubes (PHC) [5]. Although such a system
is rather unrealistic, it is far more suitable than the HS
system to study the demixing transition of mixtures [5,11]
and so, it deserves consideration. On the other hand, o
a fundamental viewpoint, having FMFs for systems othe
than HS may help to clarify the basic structure of such
functionals in the aim of extending them to more genera
particle shapes (arbitrarily orientable, anisotropic particles
© 1997 The American Physical Society 3681
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for instance, so as to study liquid-crystalline phases).
this Letter we will show how the functional proposed in [5
can be regularized to have correct dimensional crossov
and this will make clear a simple relation between the FM
for PHC in different dimensions which will permit us to
derive them very easily from the 0D functional.

Any FMF expresses the excess (over the ideal) fr
energy of the system in terms of the local densityrsrd as

Fexfrg ­ kBT
Z

dr FsDdshnasrdjd , (1)

whereD is the dimension and thenasrd are a set of suitably
chosen geometrically weighted densities. According
Ref. [5], the free-energy densityFs3d, for the system of
(3D) PHC, is given byFs3d ­ F

s3d
1 1 F

s3d
2 1 F

s3d
3 , with

F
s3d
1 ­ 2n0 lns1 2 n3d, F

s3d
2 ­

n1 ? n2

1 2 n3
,

F
s3d
3 ­

5n3
2 2 9n2n2 ? n2

54s1 2 n3d2 .

(2)

Herena ; r ≠ va andna ; r ≠ wa , where≠ denotes
a convolution. The weightsva andwa are given by

v0srd ­ zxzyzz , v3srd ­ txtytz ,

w1srd ­ stxzyzz , zxtyzz , zxzytzd,

w2srd ­ szxtytz , txzytz, txtyzzd ,
(3)

v1srd ­ u ? w1srd, v2srd ­ u ? w2srd ,

with tx ­ Qssy2 2 jxjd, zx ­ s1y2ddssy2 2 jxjd (s
being the edge length of the cubes), andu ­ s1, 1, 1d.
Notice the different normalization in the definition of th
weighted densities with respect to that of Ref. [5].

As mentioned in [5], the 2D functional can be obtaine
in a similar way; in this case the weights are given by

v0srd ­ zxzy , v2srd ­ txty ,

w1srd ­ szxty , txzyd, v1srd ­ u ? w1srd ,
(4)

with u ­ s1, 1d, andFs2d ­ F
s2d
1 1 F

s2d
2 , with

F
s2d
1 ­ 2n0 lns1 2 n2d, F

s2d
2 ­

n2
1 2 n1 ? n1

2s1 2 n2d
.

(5)

Of course, the 1D functional is the same as that of H
(i.e., the exact one) because in this case both HS and P
reduce to segments on a line. Therefore,Fs1d ­ F

s1d
1 ­

2n0 lns1 2 n1d, wherev0srd ­ zx andv1srd ­ tx .
Let us now consider the 1D to 0D dimensional cros

over. To this purpose let us define the class of quasi-
densities as the set of functions with support in the i
terval s2sy2, sy2d (the fact that this interval is centered
around zero is completely irrelevant and it is only assum
for simplicity). The densitiesrsxd ­ hdsxd andrsxd ­P

i hidsx 2 xid, with 2sy2 , xi , sy2, hi $ 0, and
3682
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P
i hi ­ h # 1 (those considered in [7]), belong to this

class, but smooth functions with support within that inter
val do it as well. Then it is straightforward to check tha
[12]

n0 ­ 2
1
2

sx
≠n1

≠x
, (6)

wheresx ­ sgnx. Now, if we consider that

2 lns1 2 n1d
≠n1

≠x
­

≠Fs0dsn1d
≠x

, (7)

where [6] Fs0dshd ­ h 1 s1 2 hd lns1 2 hd, we can
check that Fex ­

R
dx Fs1d ­ Fs0dsssn1s0dddd, which re-

duces to the excess free energy of the 0D system forany
density of the quasi-0D class.

To check the 2D to 1D and 2D to 0D dimensiona
crossovers, let us define the quasi-1D density class as
set of 2D functions with support in the band2sy2 ,

y , sy2, and let us redefine the quasi-0D density clas
as the subset of the quasi-1D class whose members van
for x ” s2sy2, sy2d (i.e., 2D functions with support in a
square centered at the origin). Let us consider now th
2D functional (5), and let us putn1 ­ sn1,x , n1,yd; then
n2

1 2 n1 ? n1 ­ 2n1,xn1,y. On the other hand, as in the
previous case,

n0 ­ 2
1
2

sy
≠n1,x

≠y
, n1,y ­ 2

1
2

sy
≠n2

≠y
; (8)

therefore

Fs2d ­ 2
1
2

sy
≠

≠y
f2n1,x lns1 2 n2dg , (9)

and then

Fex ­ kBT
Z

dx dy Fs2d

­ kBT
Z

dx Fs1dsssn1,xsx, 0d, n2sx, 0dddd , (10)

which is the right 2D to 1D dimensional crossover. Fur
thermore, as we have discussed previously, the function
(10) has the right dimensional crossover to 0D for an
quasi-0D density.

In both cases, 1D and 2D, the right dimensional cros
over arises as a consequence of the fact that for quasi-
densities the functionals can be obtained as

Fs1d ­ 2
1
2

sx
≠Fs0d

≠x
, (11)

Fs2d ­

µ
2

1
2

∂2

sxy
≠2Fs0d

≠y≠x
. (12)

The dimensional crossovers then follow from the direc
integration of the derivatives. It can then be inferred tha
theD-dimensional functional with the correct dimensiona
crossovers will, for quasi-0D densities, be expressed as

FsDd ­

µ
2

1
2

∂D

sx1···xD

≠DFs0d

≠xD · · · ≠x1
, (13)
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but if we compute the 3D case, and take into account th

n2 ­

µ
2sx

≠n3

≠x
, 2sy

≠n3

≠y
, 2sz

≠n3

≠z

∂
,

n1 ­

µ
syz

≠2n3

≠y≠z
, szx

≠2n3

≠z≠x
, sxy

≠2n3

≠x≠y

∂
, (14)

n0 ­ 2sxyz
≠3n3

≠x≠y≠z
,

we find thatF
s3d
1 andF

s3d
2 are the same as those in Eq. (2)

but F
s3d
3 is given by

F
s3d
3 ­

n3
2 2 3n2n2 ? n2 1 2n2 ? n2 ? n2

6s1 2 n3d2
, (15)

where the notationv ? v ? v ­ y3
x 1 y3

y 1 y3
z has been

introduced. This new expression differs from that o
Eq. (2) not only in the numerical coefficients, but also i
the appearance of a new term,n2 ? n2 ? n2, which has no
equivalent in HS [3,7]. At first this may seem a spuri
ous term, because it is not even rotationally invariant; o
second thought, there is no reason why it should be, sin
the system itself (PHC) is not rotationally invariant eithe
Such a symmetry is replaced by a discrete group of sy
metries which, restricted to the fact that the vector densiti
n1 andn2 must have positive components, translates in
a simple axes-exchange symmetry. The new term ob
ously has this symmetry. The important thing is that whi
this new 3D functional has beenbuilt to have correct di-
mensional crossovers, the old one does not even fulfill t
3D to 0D one (F

s3d
3 develops delta cube divergences whe

the density approaches a delta function, much in the sa
way as the old version of the HS FMF did [3]). It can b
checked that the new functional stabilizes a solid phase,
packing fractions aboveh ø 0.3, by following the stan-
dard procedure of parametrizing the density function by
sum of Gaussians placed at the lattice sites [1], whereas
divergences in the old functional give rise to a free ener
which decreases monotonously as the Gaussians shrin

But to be correct, the new 3D functional should provid
the exact second and third virial coefficients in the densi
expansion of the DCF, for this is the requirement und
which FMFs are built [3,5]. It is very remarkable that
when applied to the uniform fluid, the new functiona
providesexactly the same expressionsfor both the free
energy and the DCF as found in Ref. [5](bear in mind
the different normalization of the weighted densities.
Therefore, the new term introduces nothing new for th
uniform fluid, but it drastically changes the behavior o
the nonuniform fluid.

Formula (13) provides a simple method to obtain th
FMF for aD-dimensional PHC fluid; although the formula
holds true only for quasi-0D densities, once the function
form has been derived and the scalar, vector, and ten
weighted densities have been identified, it can also
applied to arbitrary density functions [this is precisely th
procedure we have followed to obtain the 3D functiona
at
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(15)]. At this level, Eq. (13) may seem nothing more tha
a fortunate trick to obtain the functionals; however, a slig
manipulation of the equation will provide further insight o
the actual meaning of this method.

First of all, let us consider the slightly more gener
problem of a fluid ofD-dimensional parallel hard paral
lelepipeds (PHP) of edge lengthsss1d, . . . , ssDd along the
x1, . . . , xD axes. If we definehsrd ­ r ≠ vDsrd, with
vDsrd ­ Qsss1dy2 2 jx1jd · · · QsssDdy2 2 jxD jd, then
the 0D free-energy density functional for this system w
be given by F

s0d
PHP ­ hsrd 1 f1 2 hsrdg lnf1 2 hsrdg.

Formula (13) still yields theD-dimensional functional for
quasi-0D densities, but if we make use of the identity

2
1
2

sxj

≠

≠xj
Q

µ
ss jd

2
2 jxj j

∂
­

≠

≠ss jd Q

µ
ss jd

2
2 jxj j

∂
,

Equation (13) transforms into

F
sDd
PHP ­

≠DF
s0d
PHP

≠ssDd · · · ≠ss1d , (16)

which provides the FMF also for nonquasi-0D densi
functions (because it does not involve derivatives wi
respect to the coordinates).

Equation (16) has the important consequence that
the thermodynamics of the inhomogeneousD-dimensional
fluid is contained in the 0D functional. This result re
veals the same fundamental idea recently formulated
HS [7], namely thatthe 0D functional plus the require-
ment of the exact dimensional crossovers determines
shape of theD-dimensional funtional.In the latter, how-
ever, a completely different exploitation of the same id
is followed and the result is a functional which is not loc
in the weighted densities anymore. An attempt to find
equivalent to Eq. (16) for HS, where the 0D functional ac
as a generating functional, has just been carried out [1
In this work, theD-dimensional FMF for HS, in the ver-
sion of Ref. [4], in which all weighted functions are scala
is given by the action on the 0D functional of a differentia
operator with respect to the sphere radius. The resul
nevertheless not as satisfactory as for the PHP system
instance, the 3D DCF generates an unphysical delta fu
tion at contact). On the other hand, while Eq. (16) emerg
here in a very natural way, the differential operator in [1
is introduced heuristically with some free constants whi
are fitted afterwards by imposing certain constraints (e.
to match a given equation of state). On the contrary, t
functional for 2D agrees with the simplified version of th
one obtained in [7]. We do not understand the reason w
this approach fails in 3D. It might be related to its sub
tle relationship with the scaled particle theory [3]. In th
latter the thermodynamics is obtained by estimating t
variations of the free energy with respect to the partic
size, but then the third derivative needs to be approximat
In the former it is precisely this derivative that causes t
failure [14].
3683
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Generalizing (16) to mixtures is straightforward; it
simply amounts to writing

F
sDd
PHP ­

≠DF
s0d
PHP

≠s sDd · · · ≠s s1d ,
≠

≠s s jd ;
X

i

≠

≠s
s jd
i

,

(17)

where s
s jd
i denotes the edge length along thexj co-

ordinate of speciesi. Of course, nowhsrd ­
P

i ri ≠

v
sDd
i srd, wherev

sDd
i is the same as that for PHP, but with

the ss jds corresponding to speciesi. The functional (17)
has a particularly important application to study liquid
crystalline phases, for if we consider the six possib
orientations of a parallelepiped as belonging to six di
ferent species, the functional (17) can be understood
representing a restricted-orientation, one-species syst
of hard parallelepipeds. Besides that, the functional m
provide some clues to understand the structure of a FM
for freely orientable, general anisotropic particles.

The derivation we have made here suggests furth
extensions of the theory. For instance, consider a syst
of hard parallel cylinders oriented along thez axis. It is
clear that the 3D to 2D dimensional crossover, eliminatin
the z coordinate, will transform this system into a system
of hard disks. Therefore, ifF

s2d
HS is a FMF for hard disks

(e.g., those of Refs. [7,13]), the corresponding FMF for th
cylinders can be derived fromeFs2d

HS, the same functional
asF

s2d
HS, but with the weights multiplied byQsLy2 2 jzjd

(L being the length of the cylinders) and the 2D density o
disks replaced by a 3D density of cylinders. The derivatio
will simply be F

s3d
cyl ­ ≠ eFs2d

HSy≠L. This functional can
immediately be generalized to a mixture of parallel har
cylinders as in (17), and this provides a tool to stud
analytically the influence of polydispersity in the phas
diagram of liquid crystals [15].

In spite of its merits (the main one being the fac
that it provides a “first principles” theory, in which the
thermodynamics and the correlations are derived rath
than imposed), the method presented here deserves so
criticism. First of all, the FMF (16) is not the exact
one, for it does not reproduce the exact virial expansio
beyond third order [5], but even worse, the very structu
of Eq. (16) already tells us that the method is “exhauste
in the sense that the vanishing ofvDsrd outside a particle
automatically implies that the DCF has exactly the range
the potential, i.e., it vasnishes outside the core. This res
has long been known not to be true (although it is ver
accurate) above 1D. This is a serious defect if fundamen
measure theory is ever to yield the exact functional o
some system, and it is not clear how to get rid of it
Perhaps, as the extensions above suggest, the immed
future of this theory is to provide an accurate framework t
deal with arbitrary hard particle systems, but this step w
require understanding the connection between the differe
approaches followed for PHP and HS.

To summarize, we have shown how the FMF for PHC
presented in [5] can be regularized to have a right dime
3684
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sional crossover to any smaller dimension. In the deriva
tion we have found the remarkable result that the FMF
for PHP, in any dimensionD, can be obtained by simply
deriving with respect to every edge length the 0D func
tional, thus prompting the idea of this functional being a
kind of generating functional (an idea already explored fo
HS [7,13], but which for the present system reaches it
clearest and simplest expression). In passing we have o
tained the FMF for a mixture of PHP, and suggested how
can be exploited as a restricted-orientation model for liquid
crystals. Finally a further extension of the method permits
us to find a FMF for a mixture of parallel hard cylinders,
thus opening the possibility of studying polydispersity in
liquid crystals.

We are indebted to Y. Rosenfeld for calling our
attention to this problem, P. Tarazona for illuminating
discussions and for keeping us informed of his progres
in studying HS, J. A. White for sending us a preprint,
and B. Mulder for suggesting the extension of the PHP
functional to a restricted-orientation model. One of us
(J. A. C.) owes much to a discussion with L. Araujo which
turned out to be crucial for the development of this work.
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