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Fragmentation by Crack Branching
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Two-dimensional lattice models of crack branching give rise to fragmentation if disorder is introduced
in the model. The resulting fragment-size distribution is analyzed within a simple analytical model and
by numerical simulations. The analytical model gives, under rather general conditions, a power-law
distribution over the entire size range. In the specific case studied, the exponent rangesefrtam
—0.5, depending on the stopping probability of cracks. The analytical results are consistent with the
numerical simulations. [S0031-9007(97)03200-6]

PACS numbers: 46.30.Nz

Results of fragmentation processes are visible almosnodel should be seen as a small piece of a larger object
everywhere. Rock fragments, for example, are so conthat is being fragmented. This justifies our assumption
mon that the fragments have different names dependinthat the applied stress is constant both in space and in
on their size: boulders, stones, gravel, sand, and dugsime. The dynamic stress field from, e.g., a rapid impact
in decreasing order of size. The rather slow process ashould be continuous if the sample contains no preexisting
rock weathering is, of course, not the only fragmentatiormicrocracks. The stress field is therefore constant in
process in nature. Almost all kinds of explosions and colspace if considered over a small enough area. As cracks
lisions break pieces of matter into fragments. A commorpropagate rapidly (and more or less perpendicularly to the
feature of almost all these fragmentation processes is théical stress), the local stress field can be considered to be
the fragment-size distribution is given by a power lawconstant over the time it takes for a crack to propagate
in the small-size limit [1]. The origin of this power law across such a small area.
has attracted much attention lately [2—5]. It cannot origi- The lattice models which we consider here are a square
nate from randomly located microcracks that act asand a triangular lattice in which the lattice bonds are
nucleation centers for cracks, as this mechanism wouldlastic beams with a square cross sectioh length /,
produce an exponential distribution of fragment sizesand Young's modulug. Massesm; are placed at the
[1,6,7]. The exponential distribution is, of course, lattice sitesi and the beams are massless. The masses
asymptotically a power law in the small-size limit, but m; are chosen independently of each other from a uniform
power-law distributions found in experiments and numeri-distributionm(1 — d4§,), whered is the “strength” of the
cal simulations usually extend over at least 1 order oflisorder, ands, is a stochastic variable whose values
magnitude [2—4,7]. belong to the uniform distributiop—0.5,0.5]. If d < 2,

It was argued in Ref. [7] that in two dimensions the disorder is “weak” in the sense of Hansaral. [16].
the exponential distribution, created by the merging ofThe lattice is strained by an amouatin the y direction,
randomly nucleated cracks, holds in the large-fragmentvhich in the square-lattice case is one of the principal bond
limit, while another mechanism, fragmentation by crackdirections, and in the triangular lattice perpendicular to
branching, dominates in the small-fragment limit. A one of the principal bond directions. The sites at the top
fragment-size distribution which is a power law in the and bottom edges of the lattices are constrained to remain
small-size limit and a more rapidly decreasing functionat their original positions. In the square-lattice case the
in the large-size limit is also commonly found in both sites at the left and right edges are free to move without
experiments and numerical simulations [2,4,7]. constraints. Inthe triangular lattice the sites at the left and

To test our previously reported suggestion [7] that aright edges are only allowed to move in thalirection to
branching of cracks [8—12] is responsible for the power-avoid a global Poisson contraction of the lattice.
law distribution of fragment sizes in the small-size limit, The dynamics of the lattices is calculated using a dis-
we employ here a type of lattice model recently used tarete form of Newton's equations of motion, including
investigate crack branching in a material without disorderma small linear viscous dissipation term. The time evolu-
[13-15]. To create fragments, however, disorder mustion is calculated [17] by iteration of time steps starting
be introduced in this lattice model. This is achieved byfrom equilibrium at timer = 0. At ¢+ = 0, a few bonds
having randomly varying masses at the lattice sites. in the middle of the left edge are suddenly removed. The

The resulting lattice can be seen as a model of granulasther bonds break if the strain on them exceeds a thresh-
materials in which each lattice site corresponds to ald value, which in our case is taken to be a constant
grain, and lattice bonds correspond to elastic interactions + & for the total displacement difference of the sites at
between the grains. We wish to stress that our latticéhe ends of the bond.

0031-900797/78(19)/3677(4)$10.00  © 1997 The American Physical Society 3677



VOLUME 78, NUMBER 19 PHYSICAL REVIEW LETTERS 12 My 1997

The fracture processes occurring in the two lattice N(B) = 2478p5B, (2)
models are illustrated in Figs. 1 and 2. Figures 1(b)
and 2(b) display branching at small values &fwhile  Notice that p is not necessarily a constant, but may
Figs. 1(a) and 2(a) show the kind of fragments that arelepend onB. As calculated from Egs. (1) and (2), the
created for large values @f It is evident, in Fig. 1(a), in fragment-size distributio?&v(S) of fragments of sizeS is
particular, that crack branches merge to form fragmentgjiven by
From each merger of two branches usually only one
branch continues to propagate. It is also possible that a 1 In[p(S)]
branch stops spontaneously as can be seen in Figs. 1(a) In[N($)] = {_5 + W}'”S
and 2(a). »(5)7/In3

To get a more quantitative picture of this process + In[—}(— - 1> + Aln2. (3)
we study a simple model of merging branches [18]. 2 In4
The model is sketched in Fig. 3. Branches appear on ) )
both sides of the central crack that propagates throughf » is constant, then Eq. (3) is of a power-law form,
the lattice perpendicularly to the external stress. Thes& (S) « $™¢, wherea = —1/2 + Inp/In4. _
branches merge pairwise to form a single merged branch AS the number of fragments decreases with increasing
which continues to propagate. At each merger of twoB: a fragmentation process has a finite penetration depth if
branches a fragment is formed. The merged branchd§e number of fragments formed At= 0 is limited. We
continue to merge pairwise and thus form new fragmentsdefine the penetration depthx as the distance from the
The sizes of the fragments formed in this way, as sketchegentral crack to the furthest edge of the largest fragment.
in Fig. 3, are given by Then, for a constant, we have

B
S = 222", 1) Ax = 2% — 1, M:h’](2No)—|np’ 4)
n=0 In2 —Inp

whereB = 0 for the fragments formed in the first merger " ]
of branchesB = 1 in the second merger, and so on. If whereN, = 2% is the number of fragments formed in the

24 is the number of fragments formed in the first merger,ﬁrSt merger. Single cracks can propagate further but no

then at each value aB, 245 fragments are formed if MOre fragments are formed. _
there is no spontaneous stopping of cracks. If, due tg 1he model leading to Eg. (3) is an example of a
crack stopping, only a fractiop of the possible fragments Tragmentation process that can be divided into st@s

are formed at each value &, then the numbeN (B) of for which the size of the fragments formed is given by
fragments formed at levet is S = a®, and the number of such fragmentsNsx b5,

Herea and b are model-dependent parameters. If there
exists a range ofB for which ¢« and b are constant,
the fragmentation process will create a fragment-size
distribution of a power-law formy(S) o« §"?/na  These

FIG. 1. (a) Crack pattern formed in a square lattice of size

120 X 120 after 700 time steps. Hene = [ =E =1, m = FIG. 2. (a) Crack pattern formed in a triangular lattice of
0.1, and d = 0.8. (b) Branch pattern formed in a similar size 160 X 80 after 400 time steps. Here = 0.8, F =1,
lattice, but withd = 0.1. The real displacements after 300 m = 0.1, andd = 0.3. (b) Branch pattern formed in a similar
time steps are shown. lattice, but withd = 0.05.
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' To get smooth distributions from the simulation data,
1 we replace the distributioN (S) by

M(S) o« §7! [x N(S")ds'.
S

E The simulations give, as is evident from Fig. 4, for the
square lattice a distribution that is very close to a power
I & contral crack law for the entire size range. The simulated distribution

FIG. 3. Schematic picture of the fragmentation model. Frag-'s’ on a log-log scale, a "‘.“e Cur\{ed,. howe\_/er, which
ments formed at stage = 0, 2 are shaded. suggests thap decreases slightly with increasigy but

the change irp is very small. For the triangular lattice,
however, the distribution follows perfectly the power-law
conditions are not the most general ones, but they shouli@rm for the entire size range.
nevertheless encompass a large class of fragmentationEven though the model leading to Eq. (3) is very

branches

processes. schematic, it seems to catch much of the qualitative
The total amount of elastic energy that is lost when théoehavior of the fragmentation process. In Fig. 1(a) the
branches are formed is given by fragments are almost equally distributed along the central
B crack (except close to the left edge where the crack
dW o« f N(B')/S(B') dB'. starts from). Most of the smallest fragments are close

0

to the central crack and the fragments become, on the
If the input of elastic energy is limited, thesiW must average, increasingly larger away from the central crack.
also be finite for allB. This means that./a < 1, which, If we fit the powera to the simulation results, we obtain
when applied to Eq. (3), gives < 1. In other words, all « = —1.5 for the square lattice, and = —1.8 for the
cracks will sooner or later stop spontaneously. A possible
picture of the fragmentation process would then be that it
proceeds with a more or less constantintil the energy 10000 e i
is dissipated ang drops to zero. This picture would lead 70
to a fragment-size distribution that has a power-law form
at small sizes, and a distinct cutoff at a finite fragment
size. If, on the other hand, there is an unlimited input of
energy, no cutoff will occur.

A third possibility would be thap varies so that there
is a constant probability that a crack will stop at each time
a lattice bond is broken at the crack tip. Thenwill
decrease with increasinB, as longer cracks have to be
formed for larger fragments. If — » is the probability
that a crack will stop at any lattice bond at the tip, then
p(B) = exd(22*! — 1)In»], and this means that

N(S) o (1/)s~ /234 mS, (5) 10000 - Tos

This distribution becomes a power law for very small
(i.e., S = 1), but is essentially an exponential function of
VS, and decreases therefore with increasinguch more
rapidly than a power law.

We have used numerical simulations with the lattice
models described above to test whether the fragment-size
distribution is of the power-law form of Eq. (3) or
whether it decreases faster [Eq. (5)]. In many experi-
ments and numerical simulations the distributions
obtained display power laws in the small-size limit, but
decrease faster in the large-size limit [1,2,4]. If Eq. (3)
is correct, then a more rapid decrease should be due fdG. 4. Simulated fragment-size distributions for (a) square

; ; lattices, and (b) triangular lattices, for different numbers of time
some mechanism other than the crack branching [7]. Iféteps (200—700), and averaged over different values 01—

on the othgr hand, Eq_. (5) is correct, .the'n cr_ack branch_ing'5)’ and different values a@f (0.005-0.03). The symbols refer
may explain the entire fragment distribution found into the number of time steps used. The linesre’ ands '8

experiments and numerical simulations. for (a) and (b), respectively.

1
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