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Orthonormal Wavelet Bases for Quantum Molecular Dynamics
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We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-
dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for
prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and
the local density approximation to atomic and molecular systems. Our method shows systematic
convergence with increased grid size, along with improvement on compression rates, thereby yielding
an optimal grid for self-consistent electronic structure calculations. [S0031-9007(97)03146-3]

PACS numbers: 31.15.—p, 02.70.Rw

Recent advances imab initio calculational methods ing inverse transform necessary for the self-consistent cal-
have experienced a considerable amount of success aulations is complicated [8,13].
predicting ground-state structural and cohesive properties Wei and Chou [9] have devised a method for us-
of condensed-matter systems [1]. The pioneering worlkng compactly supported orthogonal wavelets, developed
of Car and Parrinello [2], based on dynamical simulatecby Daubechies Ds) [12], for self-consistent electronic
annealing, promoted a new class of approaches [3] applstructure calculations. This approach takes advantage
cable to density-functional theory within the local-densityof the existence of a fast, discrete wavelet transform
approximation (LDA) [4]. Density-functional molecular (DWT) [14] associated with the Daubechies wavelets.
dynamics (Car-Parrinello) [2] and other iterative methodsThey have demonstrated that the resulting Hamiltonian
[5] based on plane-wave basis have made such calculaatrix in wavelet space can be reduced by a factor of
tions possible for systems consisting of several hundreiundreds, making it feasible for obtaining the eigen-
atoms [6]. While these methods have been very sucvalues and eigenfunctions through standard diagonaliza-
cessful, several difficulties arise when they are extendetion. While the preliminary application of this method in
to systems with large length scales or those containingtomic and molecular systems is promising, there remain
transition-metal atoms. Several recently proposed techseveral important issues relevant to practical applications.
nigues such as optimized pseudopotentials, adaptivEhese include the selection of the wavelet components,
coordinates, and preconditioning combined withthe effective construction of the matrix elements of the
conjugate-gradient techniques have had considerablecal pseudopotential, and the convergence of the elec-
success [5-7]. Yet, these approaches are still constrainésbnic wave functions.
by the plane-wave-basis set which relies on the fast The selection of the wavelet components is a key un-
Fourier transform (FFT) to effectively transform betweensolved issue in applying wavelet bases to electronic struc-
real and reciprocal spaces. ture calculations. In principle, the selection should be

Recently, it has been recognized [8—10] that it may bébased on the eigenfunctions of the Hamiltonian matrix,
advantageous to perform electronic structure calculationse., the outcome of the diagonalization process. How-
using a wavelet basis that has dual localization characteever, the eigenfunctions are not knoaipriori. Approxi-
istics in real and reciprocal spaces. One of the impormate methods, e.g., using the wavelet transform of the
tant features of the wavelet basis is its ability to reducdocal potential as a guide [9], may not guarantee the se-
the number of components needed for solving the Kohnlected wavelet components being optimal. This may fur-
Sham equation [11], reminiscent of compression in apther lead to problems in convergence of the electronic wave
plying wavelets to image processing [12]. Furthermorefunctions. It is also worth pointing out that the represen-
multiresolution analysis provides automatic precondition+tation of the local pseudopotential in the wavelet space is
ing [6] on all length scales, which increases the rate obf a complicated form and amounts to ékﬁNg) process
convergence of the electronic wave functions. for a system oV, grid points. This severely hampers the

Arias and coworkers [8] employed a tight frame gener-practical applicability of their method [9].
ated by the Mexican hat wavelet and applied it to elec- In this Letter we report on the use of the Daubechies
tronic structure calculations. Their work represents arwavelet basess-D,4) in the Car-Parrinello (CP) al-
extension of multiresolution analysis to nonorthogonalgorithm [2]. Our approach preserves the advanced fea-
bases. The generalized multiresolution analysis, utilizingures of the CP method, and the transform between the
a Gaussian scaling function and the Mexican hat waveleteal and wavelet spaces can be efficiently carried out us-
turns out to be a very good approximation in representingng the DWT. The DWT associated with the wavelets
the electronic wave functions. However, the correspondef compact support has many similarities to FFT. Both
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are unitary and scale a@¢, logN,. The primary advan- We have developed a “bootstrap” algorithm for selecting
tage of DWT over FFT is the capability of representingthe significant wavelet components. The wavelet compo-
the wave functions with a minimal number of componentsnents of a continuous functia#(x), at scalej, are of the
that scales a®w ~ logN,. Using the CP method, the form:

calculations associated with the local pseudopotential—a

predominant part in the self-consistent calculations—are djx = [ dx u(x) 2—./'/2(/,(2—.1‘)( — k), (2)
then O(N,) for each energy level. In addition, the con-

struction of the separable nonlocal pseudopotential Maghere ¢ is the analyzing wavelet.

trix eIerpentS of the Kleinman-Bylander form [15] scales,, 5y elet with M vanishing moment$D,,), the wavelet
as O(Nw), while the matrix elements of the kinetic en- components at scalej 1) are related to those at
ergy can be obtained through transformation of a band(coarser) scalg by

diagonal matrix into wavelet space [9,16].

Wavelets are very useful in representing data or func-
tions [13]. An orthonormal wavelet is generated by an
analyzing wavelet and an auxiliary function called the sca

- . . .
. > L ““"provided that one can neglect the Taylor series expansion
ing function. The basis is constructed from the analyzmdg g y P

let and ing function by th i f1 | f u(x) to orders greater tham/. As an example, we
wavelet and scaling function by the operations ottransiagy,,, jn Fig. 1 the wavelet coefficients for a Gaussian
tions and dyadic dilations. Unlike the sines and cosine

that oo the b o Fouri vsi hich I?unction using theDg wavelet. The scaling behavior of
at comprise the bases In Fourier analysis, which aré Iqy,q oy efficients is readily observable, which constitutes the
calized in Fourier space but delocalized in real space, bo

th let and ling functi dual localized i asis of compression in the context of image processing.
mother wavelet and scaling function are dual localized in Taking advantage of the scaling behavior described
real and reciprocal spaces [12].

. o above, we start by solving for the (unknown) wave func-
The CP method [2] involves a fictitious molecular y g ( )

d . luti £ electroni functi th tion in wavelet space using the coefficients from the coars-
ynamics sofution ot electronic wave tunctions on th€qgt gcqle ) to scalej. Next, we select the important
Born-Oppenheimer surface,

wavelet coefficients from this subset of coefficients by re-
. moving those below the (predetermined) threshold toler-
pWi(e) = —HW:(1) + > Ay¥i(r), (1)  ance. Then, at scalg — 1, only those coefficients that

! are connected with the surviving components at sgale
need to be considered further for sorting. This procedure

For an orthonormal

dj—l,k =~ 2_(M+%)dj,k , (3)

where u is a fictitious mass and\;; are the Lagrange . . A .
constraints. The Gram-Schmidt orthogonalization schem¥ repeated until the f"FeSt scale is reached. .

is employed to keep the wave functions of the occupied A.few remarks are in order. In contrast to the S|“mple
states orthogonal. It is known that the calculation of non_sortln”g schgme U.SGd by othgr applications [9]’. the “boot-
local pseudopotentials and the orthogonalization proces%trap algorithm is efficient in tha_t any nggl.lg|bl'e com-
(using either Gram-Schmidt or iterative solutions) are botPonent at a coarse scale rgsults in the ehr_mnanon of t_he
tlenecks in plane-wave based calculations. The use of ofagssomated components at finer scales. It is worth noting

thonormal wavelet bases is capable of reducing the coélf'at this algorithm provides preconditioning [6] on the finer

for these calculations. In fact, for both types of calcula-
tions, the compression associated with the wavelet bases  Og

is most beneficial in that af (N7) process can be reduced E ;;
to O(Nyy). s 08
With the use of orthonormal wavelet bases for the _10% So4
expansion of wave functions, the corresponding matrix SR 02
representation of the Hamiltonian consists of kinetic and— _;5| ¢4 ook o5 o
potential energy parts. Choosing the three-dimensional@ X

wavelet as a combination of three one-dimensional_gD 20}
wavelets, the kinetic matrix factors into products of three

submatrices ofx, y, and z components, which can be =25}

readily calculated and tabulated beforehand [16]. The i ’

construction of the potential energy matrix in wavelet — —39f ”5 X -

space entails (i) calculating.+'¥ for each occupied en- Las RIS

ergy level in real space, and (ii) transforming the product 64128 256 512 1024
back into wavelet space. For electronic structure calcula- k

tions,_ an inverse wavelet transform of the resulting WaVe |G, 1. wavelet components of a Gaussian function (inset
funCt_lonS_ are needed to construct; of the Kohn-Sham  piot) usingDs. The dashed lines correspond to the boundaries
Hamiltonian [4]. between each scale (labeled py
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TABLE I. The kinetic, potential, and total energie€\(,, TABLE lll. The calculated total energy (in Rydberg) of
Eyo, and E,) of the harmonic oscillator in units ofvy, atomic helium with different grid size\,) and the correspond-
calculated with different waveletsZ{s, Ds, and D;4) for ing compression rateMy /N,).

different grid size §,) and the requested wavelet components

(Nw). System N, Nw/N,  Evipa (present work)  Eppa
N, Wavelet Ny Ein Epo Eoo Helium 323 17.6% -1.978 —2.814

643 2.3% —2.400

163 D 3101 0.4955596 0.5180191 1.0135787 1283 0.3% —2635
Dy 3009 0.4986462 0.5031520 1.0017982 pgeydo 323 21.4% —2536 —2831

Dy 2680 0.4999382 0.5000889 1.0000276 643 2.4% —2.785

323 D 4724 0.4994644 0.5016613 1.0011258 1283 0.3% —2.792

Dy 3764 0.4998524 0.5002569 1.0001093
Dy 3341 0.4999917 0.5000093 1.0000009
643 D 3996 0.4997000 0.5006009 1.0003004
Dy 3644 0.4998777 0.5002089 1.0000867
D 3584 0.4999938 0.5000062 1.0000000 compression rates (the typical compression rate fia
system is about 0.2%).
It is worthwhile to compare CP methods using tradi-

| Most i v the d ic simulated Itional plane-wave and wavelet bases in order to evaluate
scales. Most importantly, the dynamic simulated annealg, efficiency of our approach. For a single iteration, this

ing procedure for solving the eigenfunctions allows, at the, ., i< 10 comparing the relative speed between FFT and
same time, the selection of important wavelet componentBW—r Our best optimized DWT is three times slower
without the necessity of resorting to approximations. than the FFT. Although there is room for further opti-

For purposes of demonstratmg our approach, We.apr'nizing the DWT, this is not the main thrust of the present
ply the method to the three-dimensional harmonic OSC'”aLetter. As a result, for relatively small systems (e.g., har-

tor. Table | shows our results for the system at Variou%onic oscillator at sizel6), the plane-wave code out-
grid sizes, using Daubechies wavelets with varying Sur;'Eerforms our algorithm. This is, however, no longer the

ports. As seen from Table |, a systematic convergence t ase for larger systems (e.g., harmonic oscillatos4d)

the exact result is achieved with increasing grid size an ecause the wavelet algorithm yields much faster conver-

olr with t.hr? Lrjlse of st;?oqther wavelets ?fr:/wder S“pPOTtS ence rate, which can be attributed to the drastic reduction
along with the notable improvement of the compressior, ihe number of local minima.

rate (as measured WW/.NS’)' Iior Insta}nce, using the For a better understanding of how our method works,
Dia Wave_let at a grid S,'Zloe 0164\' the elgen\{alue €ON" " we consider all-electron calculations with the Coulomb
vergence is better thar0™ ™ with a compression rate of ,antial. We employ a simple approximation to the sin-
about 1%. I . . gular Coulomb potential by replacing it with a nonsin-

. An |mportant'ram|f|cat|0n of thesg results is the St.ab',l'gular one of the formZerf(r/o)/r, whereo is chosen

ity of our algorithm. The systematic convergence md."to cover only the nearest neighbor points. This potential
cates that the bootstrap a_Igorlthm isa contr_olled selectio ,arantees the ground state energy to be an upper bound,
procedure. _We have verified th? systematic Convergencl,y 5 petter approximation of the original Coulomb po-
of our algorithm for the harmonic oscillator, the hydro- tential with increasing grid size. It is important to point

gen atom (see Table 1), and the self-consistent electronig ¢ this choice of the potential is not for obtaining ac-
structure calcu!at|c_)ns utilizing pseudopotentials. For il-¢, e energies for systems like the hydrogen atom, which
lustration, we list in Tables Il and IV results for LDA i\ ail known and can be properly handled by other meth-
calculations with the pseudopotentials for the helium atom, 4« [10]. Rather, we wish to use this exercise to explore
and hydrogen dimer. These results demonstrate that f%e applicability of our approach to singular potentials.

relatively. smooth p.otential's, our algorithms _conver_gesFigure 2 shows the radial part of the calculated ground
systematically with increasing grid size, with improving

TABLE Il. The kinetic, potential, and total energie&x(,, TABLE IV. Calculated bond lengthd) and vibrational fre-
Epo, and Eio) Of the hydrogen atom in atomic units and the quencies ¥) of the diatomic H using the Murnaghan equation
compression rateNy /N, ), calculated usingDs for different  of state. Experimental results from Ref. [14] are included for

grid size (V,). comparison.

Ng NW/Ng Ekin Epot Etot Grid d (a.U.) v (Cmil)
16° 57.9% 0.40484 —1.23225 —0.82740  Modified Coulomb 643 1.62 3820

323 13.4% 0.58328 —1.48928 —0.90599  Modified Coulomb 1283 1.52 4390

643 2.1% 0.71455 —1.66780 —0.95325 Pseudopotential 644 1.57 4180

1283 0.3% 0.78551 —1.76712 —0.98161  Experiment 1.40 4400
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0.6 ' . . . r . . bonding length and vibrational frequency. Our calculation
Hydrogen using the simplified potential on a28* grid yielded
reasonably better results, indicating that the wavelet basis
is capable of handling singular potentials, even with
simple approximations.

In summary, we have presented a method that permits
03T B | us to perform quantum molecular dynamics simulations

. based on orthonormal wavelet bases. We have developed
------------ IR an efficient scheme for the selection of important wavelet
[ N ] components. The advantage of using a dynamical simu-
lated annealing lies in the fact that it is not only making
the selection of the components a controlled procedure,
but also offering a natural way for reducing the cost in
comparison with plane-wave based calculations.
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