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Orthonormal Wavelet Bases for Quantum Molecular Dynamics
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We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-
dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for
prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and
the local density approximation to atomic and molecular systems. Our method shows systematic
convergence with increased grid size, along with improvement on compression rates, thereby yielding
an optimal grid for self-consistent electronic structure calculations. [S0031-9007(97)03146-3]

PACS numbers: 31.15.–p, 02.70.Rw
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Recent advances inab initio calculational methods
have experienced a considerable amount of succes
predicting ground-state structural and cohesive proper
of condensed-matter systems [1]. The pioneering wo
of Car and Parrinello [2], based on dynamical simulat
annealing, promoted a new class of approaches [3] ap
cable to density-functional theory within the local-densi
approximation (LDA) [4]. Density-functional molecular
dynamics (Car-Parrinello) [2] and other iterative metho
[5] based on plane-wave basis have made such calc
tions possible for systems consisting of several hund
atoms [6]. While these methods have been very su
cessful, several difficulties arise when they are extend
to systems with large length scales or those contain
transition-metal atoms. Several recently proposed te
niques such as optimized pseudopotentials, adap
coordinates, and preconditioning combined wi
conjugate-gradient techniques have had considera
success [5–7]. Yet, these approaches are still constrai
by the plane-wave-basis set which relies on the fa
Fourier transform (FFT) to effectively transform betwee
real and reciprocal spaces.

Recently, it has been recognized [8–10] that it may
advantageous to perform electronic structure calculatio
using a wavelet basis that has dual localization charac
istics in real and reciprocal spaces. One of the impo
tant features of the wavelet basis is its ability to redu
the number of components needed for solving the Koh
Sham equation [11], reminiscent of compression in a
plying wavelets to image processing [12]. Furthermor
multiresolution analysis provides automatic preconditio
ing [6] on all length scales, which increases the rate
convergence of the electronic wave functions.

Arias and coworkers [8] employed a tight frame gene
ated by the Mexican hat wavelet and applied it to ele
tronic structure calculations. Their work represents
extension of multiresolution analysis to nonorthogon
bases. The generalized multiresolution analysis, utilizi
a Gaussian scaling function and the Mexican hat wave
turns out to be a very good approximation in representi
the electronic wave functions. However, the correspon
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ing inverse transform necessary for the self-consistent
culations is complicated [8,13].

Wei and Chou [9] have devised a method for u
ing compactly supported orthogonal wavelets, develop
by Daubechies (D6) [12], for self-consistent electronic
structure calculations. This approach takes advant
of the existence of a fast, discrete wavelet transfo
(DWT) [14] associated with the Daubechies wavele
They have demonstrated that the resulting Hamilton
matrix in wavelet space can be reduced by a factor
hundreds, making it feasible for obtaining the eige
values and eigenfunctions through standard diagonal
tion. While the preliminary application of this method i
atomic and molecular systems is promising, there rem
several important issues relevant to practical applicatio
These include the selection of the wavelet componen
the effective construction of the matrix elements of t
local pseudopotential, and the convergence of the e
tronic wave functions.

The selection of the wavelet components is a key u
solved issue in applying wavelet bases to electronic str
ture calculations. In principle, the selection should
based on the eigenfunctions of the Hamiltonian matr
i.e., the outcome of the diagonalization process. Ho
ever, the eigenfunctions are not knowna priori. Approxi-
mate methods, e.g., using the wavelet transform of
local potential as a guide [9], may not guarantee the
lected wavelet components being optimal. This may fu
ther lead to problems in convergence of the electronic wa
functions. It is also worth pointing out that the represe
tation of the local pseudopotential in the wavelet space
of a complicated form and amounts to anOsN2

gd process
for a system ofNg grid points. This severely hampers th
practical applicability of their method [9].

In this Letter we report on the use of the Daubech
wavelet bases (D6-D14) in the Car-Parrinello (CP) al-
gorithm [2]. Our approach preserves the advanced f
tures of the CP method, and the transform between
real and wavelet spaces can be efficiently carried out
ing the DWT. The DWT associated with the wavele
of compact support has many similarities to FFT. Bo
© 1997 The American Physical Society
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are unitary and scale asNg logNg. The primary advan-
tage of DWT over FFT is the capability of representin
the wave functions with a minimal number of componen
that scales asNW , logNg. Using the CP method, the
calculations associated with the local pseudopotential—
predominant part in the self-consistent calculations—a
then OsNgd for each energy level. In addition, the con
struction of the separable nonlocal pseudopotential m
trix elements of the Kleinman-Bylander form [15] scale
as OsN2

W d, while the matrix elements of the kinetic en
ergy can be obtained through transformation of a ban
diagonal matrix into wavelet space [9,16].

Wavelets are very useful in representing data or fun
tions [13]. An orthonormal wavelet is generated by a
analyzing wavelet and an auxiliary function called the sca
ing function. The basis is constructed from the analyzin
wavelet and scaling function by the operations of trans
tions and dyadic dilations. Unlike the sines and cosin
that comprise the bases in Fourier analysis, which are
calized in Fourier space but delocalized in real space, b
mother wavelet and scaling function are dual localized
real and reciprocal spaces [12].

The CP method [2] involves a fictitious molecula
dynamics solution of electronic wave functions on th
Born-Oppenheimer surface,

mC̈istd ­ 2HCistd 1
X

l

LilClstd , (1)

where m is a fictitious mass andLil are the Lagrange
constraints. The Gram-Schmidt orthogonalization sche
is employed to keep the wave functions of the occupi
states orthogonal. It is known that the calculation of no
local pseudopotentials and the orthogonalization proce
(using either Gram-Schmidt or iterative solutions) are bo
tlenecks in plane-wave based calculations. The use of
thonormal wavelet bases is capable of reducing the c
for these calculations. In fact, for both types of calcula
tions, the compression associated with the wavelet ba
is most beneficial in that anOsN2

gd process can be reduced
to OsN2

W ).
With the use of orthonormal wavelet bases for th

expansion of wave functions, the corresponding mat
representation of the Hamiltonian consists of kinetic an
potential energy parts. Choosing the three-dimensio
wavelet as a combination of three one-dimension
wavelets, the kinetic matrix factors into products of thre
submatrices ofx, y, and z components, which can be
readily calculated and tabulated beforehand [16]. T
construction of the potential energy matrix in wavele
space entails (i) calculatingVeffC for each occupied en-
ergy level in real space, and (ii) transforming the produ
back into wavelet space. For electronic structure calcu
tions, an inverse wavelet transform of the resulting wa
functions are needed to constructVeff of the Kohn-Sham
Hamiltonian [4].
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We have developed a “bootstrap” algorithm for selectin
the significant wavelet components. The wavelet comp
nents of a continuous functionusxd, at scalej, are of the
form:

djk ­
Z

dx usxd 22jy2cs22jx 2 kd , (2)

where c is the analyzing wavelet. For an orthonorma
wavelet with M vanishing momentssDMd, the wavelet
components at scale (j 2 1) are related to those at
(coarser) scalej by

dj21,k ø 22sM1 1

2
ddj,k , (3)

provided that one can neglect the Taylor series expans
of usxd to orders greater thanM. As an example, we
show in Fig. 1 the wavelet coefficients for a Gaussia
function using theD8 wavelet. The scaling behavior of
the coefficients is readily observable, which constitutes t
basis of compression in the context of image processin

Taking advantage of the scaling behavior describ
above, we start by solving for the (unknown) wave fun
tion in wavelet space using the coefficients from the coa
est scale (J) to scalej. Next, we select the important
wavelet coefficients from this subset of coefficients by r
moving those below the (predetermined) threshold tole
ance. Then, at scalej 2 1, only those coefficients that
are connected with the surviving components at scalej
need to be considered further for sorting. This procedu
is repeated until the finest scale is reached.

A few remarks are in order. In contrast to the simp
sorting scheme used by other applications [9], the “boo
strap” algorithm is efficient in that any negligible com
ponent at a coarse scale results in the elimination of t
associated components at finer scales. It is worth not
that this algorithm provides preconditioning [6] on the fine

FIG. 1. Wavelet components of a Gaussian function (ins
plot) usingD8. The dashed lines correspond to the boundari
between each scale (labeled byj).
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TABLE I. The kinetic, potential, and total energies (Ekin,
Epot, and Etot) of the harmonic oscillator in units ofv0,
calculated with different wavelets (D6, D8, and D14) for
different grid size (Ng) and the requested wavelet componen
(NW ).

Ng Wavelet NW Ekin Epot Etot

163 D6 3101 0.4955596 0.5180191 1.013578
D8 3009 0.4986462 0.5031520 1.001798
D14 2680 0.4999382 0.5000889 1.000027

323 D6 4724 0.4994644 0.5016613 1.001125
D8 3764 0.4998524 0.5002569 1.000109
D14 3341 0.4999917 0.5000093 1.000000

643 D6 3996 0.4997000 0.5006009 1.000300
D8 3644 0.4998777 0.5002089 1.000086
D 14 3584 0.4999938 0.5000062 1.000000

scales. Most importantly, the dynamic simulated anne
ing procedure for solving the eigenfunctions allows, at th
same time, the selection of important wavelet compone
without the necessity of resorting to approximations.

For purposes of demonstrating our approach, we a
ply the method to the three-dimensional harmonic oscill
tor. Table I shows our results for the system at vario
grid sizes, using Daubechies wavelets with varying su
ports. As seen from Table I, a systematic convergence
the exact result is achieved with increasing grid size an
or with the use of smoother wavelets of wider suppor
along with the notable improvement of the compressio
rate (as measured byNW yNg). For instance, using the
D14 wavelet at a grid size of643, the eigenvalue con-
vergence is better than10210 with a compression rate of
about 1%.

An important ramification of these results is the stab
ity of our algorithm. The systematic convergence ind
cates that the bootstrap algorithm is a controlled select
procedure. We have verified the systematic convergen
of our algorithm for the harmonic oscillator, the hydro
gen atom (see Table II), and the self-consistent electro
structure calculations utilizing pseudopotentials. For
lustration, we list in Tables III and IV results for LDA
calculations with the pseudopotentials for the helium ato
and hydrogen dimer. These results demonstrate that
relatively smooth potentials, our algorithms converge
systematically with increasing grid size, with improvin

TABLE II. The kinetic, potential, and total energies (Ekin,
Epot, and Etot) of the hydrogen atom in atomic units and th
compression rate (NW yNg), calculated usingD8 for different
grid size (Ng).

Ng NW yNg Ekin Epot Etot

163 57.9% 0.40484 21.23225 20.82740
323 13.4% 0.58328 21.48928 20.90599
643 2.1% 0.71455 21.66780 20.95325

1283 0.3% 0.78551 21.76712 20.98161
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TABLE III. The calculated total energy (in Rydberg) of
atomic helium with different grid size (Ng) and the correspond-
ing compression rate (NW yNg).

System Ng NW yNg ELDA (present work) ELDA

Helium 323 17.6% 21.978 22.814
643 2.3% 22.400

1283 0.3% 22.635
Pseudo 323 21.4% 22.536 22.831

643 2.4% 22.785
1283 0.3% 22.792

compression rates (the typical compression rate for a1283

system is about 0.2%).
It is worthwhile to compare CP methods using tradi

tional plane-wave and wavelet bases in order to evalua
the efficiency of our approach. For a single iteration, thi
amounts to comparing the relative speed between FFT a
DWT. Our best optimized DWT is three times slower
than the FFT. Although there is room for further opti-
mizing the DWT, this is not the main thrust of the presen
Letter. As a result, for relatively small systems (e.g., har
monic oscillator at size163), the plane-wave code out-
performs our algorithm. This is, however, no longer the
case for larger systems (e.g., harmonic oscillator at643)
because the wavelet algorithm yields much faster conve
gence rate, which can be attributed to the drastic reductio
in the number of local minima.

For a better understanding of how our method works
we consider all-electron calculations with the Coulomb
potential. We employ a simple approximation to the sin
gular Coulomb potential by replacing it with a nonsin-
gular one of the formZerfsrysdyr, wheres is chosen
to cover only the nearest neighbor points. This potentia
guarantees the ground state energy to be an upper bou
and a better approximation of the original Coulomb po
tential with increasing grid size. It is important to point
out that this choice of the potential is not for obtaining ac
curate energies for systems like the hydrogen atom, whic
is well known and can be properly handled by other meth
ods [10]. Rather, we wish to use this exercise to explor
the applicability of our approach to singular potentials
Figure 2 shows the radial part of the calculated groun

TABLE IV. Calculated bond length (d) and vibrational fre-
quencies (n) of the diatomic H2 using the Murnaghan equation
of state. Experimental results from Ref. [14] are included fo
comparison.

Grid d (a.u.) n scm21d

Modified Coulomb 643 1.62 3820
Modified Coulomb 1283 1.52 4390
Pseudopotential 644 1.57 4180
Experiment 1.40 4400
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FIG. 2. The radial part of the hydrogen atom’s ground sta
eigenfunction calculated on a grid of163 (¶), 323 (+), 643 (h),
and1283 (3) as compared to the analytical solution (solid line

state wave function for the hydrogen atom with respe
to different grid sizes, as compared to the exact solutio
The major deviation from the analytical solution occur
as expected, around the ionic core region. Our calcu
tion clearly shows that, with an increase of the grid siz
the algorithm picks up more wavelet components arou
the ionic core region, thereby improving the results. Sim
lar behavior is also observed for the helium atom (see T
ble III).

Table IV shows the results for the hydrogen dimer
different grid sizes with use of the simplified potentia
and the hydrogen pseudopotential. Figure 3 shows
representative curves and data points used to calculate

FIG. 3. Calculated total energy of H2 as a function of bond
length using pseudopotential (+), and all-electron calculati
with different grid size [(¶) for 643 and (h) for 1283,
respectively]. The curves are fits of the Murnaghan equati
of states of the calculated points.
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bonding length and vibrational frequency. Our calculatio
using the simplified potential on a1283 grid yielded
reasonably better results, indicating that the wavelet bas
is capable of handling singular potentials, even wit
simple approximations.

In summary, we have presented a method that perm
us to perform quantum molecular dynamics simulation
based on orthonormal wavelet bases. We have develop
an efficient scheme for the selection of important wavele
components. The advantage of using a dynamical sim
lated annealing lies in the fact that it is not only making
the selection of the components a controlled procedur
but also offering a natural way for reducing the cost in
comparison with plane-wave based calculations.
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