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Two-loop QCD Corrections to Semileptonicb Decays at Maximal Recoil
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We present a completeOsa2
s d correction to the differential width of the inclusive semileptonic deca

b ! clnl at the kinematical point of vanishing invariant mass of the leptons,q2 ­ 0. Together with the
recently computedOsa2

s d correction at the upper boundary of the lepton invariant mass spectrum,
new information permits an estimate of theOsa2

s d effect in the total inclusive semileptonic decay width
b ! clnl. We argue that the non–Brodsky-Lepage-Mackenzie (BLM) part of theOsa2

s d correction
gives at most 1% correction to the inclusive semileptonic decay widthb ! clnl . This significantly
improves the credibility of extractingjVcbj from the inclusive semileptonic decays of theb hadrons.
[S0031-9007(97)03164-5]

PACS numbers: 13.20.He, 12.15.Hh, 12.38.Bx
t

d

p

n

y

e

t
n
e

e

n

n

h

Semileptonic decays of theb quarks provide the
best opportunity to determinejVcbj, a parameter of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix and
fundamental input parameter of the standard model. T
current experimental limit [1]

jVcbj ­ 0.036 to 0.046 s90% C.L.d (1)

is based on measurements of the beauty hadron dec
produced at theYs4Sd resonance (by ARGUS and by
CLEO II) and inZ-boson decays (by the four experimen
at LEP). In the future large samples of theb hadrons
collected atB factories (at SLAC and KEK) and at the
hadron colliders will increase the statistical accuracy
a few percent level. To fully exploit the anticipate
experimental improvement, the theoretical description
theb decay must be known with comparable precision.

There are two methods of extracting the value ofjVcbj,
based on measurements of the exclusive decayB ! D̄? l̄nl

and of the inclusive semileptonic decay width ofb hadrons
Gsl. These two methods rely on very different theoretic
considerations and experimental procedures and com
ment each other. Their merits and theoretical uncerta
ties are summarized, e.g., in Refs. [2–4]. One of the ma
sources of the theoretical error is the perturbative QCD c
rections at the two-loop level. For the exclusive decays
the zero recoil point these corrections have recently be
calculated [5]. This has significantly improved the acc
racy of the theoretical prediction for the exclusive metho

In the case of the inclusive semileptonic decay wid
of the b hadronsGsl, the only known effects beyond one
loop are those associated with the running of the stro
coupling constant [6–8]. They are obtained by computi
massless quark effects (Fig. 1) and then replacing
number of light flavorsNL by the combination in which
it enters the one-loopb function NL 2 33y2. These so-
called Brodsky-Lepage-Mackenzie (BLM) corrections [9
are expected to dominate the two-loop result; howev
only a full calculation of the remaining diagrams will pu
this statement on a firm foundation.
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Technically, the correction to the semileptonic deca
width Gsl is obtained by fixing the invariant mass of
the leptons q2 and computing the differential width
dGslydq2 with desired accuracy. Integrating overq2

within kinematical boundaries, one gets the inclusiv
semileptonic decay width ofb ! clnl :

Gsl ­
Z smb2mcd2

0
dq2 dGsl

dq2
. (2)

Going beyond the BLM approximation and computing
completeOsa2

s d corrections remains a daunting task a
present. In comparison with the zero recoil calculatio
the main difficulties are an additional kinematical variabl
describing the invariant mass of the leptons (q2) and the
presence of the real radiation of one and two gluons.

To circumvent these difficulties, we propose to estimat
the deviations from the BLM predictions by performing
completeOsa2

s d calcualtions fordGslydq2 at two bound-
aries of integration in Eq. (2).

In fact, one of these calculations has already bee
done in Ref. [5] whereOsa2

s d corrections to the transition
b ! clnl were calculated at the zero recoil limit. Since
in this limit the radiation of real gluons is absent, the
results of [5] provideOsa2

s d correction todGslydq2 at
q2

max ­ smb 2 mcd2.
The purpose of this Letter is to present a calculatio

of the Osa2
s d corrections atq2

min ­ 0 which is the other
boundary for the invariant mass of the leptons. With bot

FIG. 1. Diagrams involving a light quark loop (a) or real pair
emission (b). Symbols≠ mark places where the virtualW
boson can possibly couple to the quark line.
© 1997 The American Physical Society
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boundary points known we can estimate the deviation
the Osa2

s d corrections to the total inclusive semileptonic
decay width of theb quarkGsl from the BLM prediction.

Taking theq2 ­ 0 limit is important for the feasibility
of this calculation. In this case the calculation of rea
radiation of one and two gluons is considerably simplifie

The reason why the real radiation at orderOsa2
s d is dif-

ficult to calculate is that the particle in the initial state (th
decayingb quark) carries a color charge and therefor
can radiate. It is the presence of the massive propa
tors of this particle which makes the integrations over th
phase space very tough. For this reason even the Q
corrections to such well studied processes as the mu
decay remain unknown at the two-loop level. The kine
matical configuration in whichq2 ­ 0 and the quark in
the final state is massive is the first case where the co
plete evaluation of the real radiation in the decay of
fermion turns out possible. Below we sketch the bas
ideas of our approach; the technical details will be pr
sented elsewhere.

The idea which permitted us to calculate the contr
bution due to the real radiation of one and two gluon
is (qualitatively speaking) the expansion in the velocit
of the final quark. Indeed, in the limitmc ! mb the
charm quark in the final state is a slowly moving particle
with spatial components of its momentum of the orde
of mb 2 mc, much smaller than its mass. The four mo
menta of gluons and of leptons (forq2 ­ 0) are also
of the order ofmb 2 mc. It turns out that by a proper
choice of the phase space variables one can systematic
expand the amplitudes and the phase space in terms
d ; smb 2 mcdymb ø 1.

Some examples of the diagrams which contribute to t
QCD corrections to the semileptonic decay of theb quark
are shown in Fig. 2. Not shown are several other virtu
corrections as well as diagrams obtained by permuti
the gluon couplings to the quark line or by crossing th
external gluon lines. In total there are about 80 Feynm
diagrams which have to be evaluated.

We do not include the diagrams with threec quarks
in the final state in our analysis. Since3mc is only
marginally smaller thanmb , the contribution of such
diagrams is strongly suppressed.

We parametrize the expansion using the variabled ­
1 2 mcymb . In the first two nonvanishing orders (d3

andd4) only virtual corrections contribute [e.g., Figs. 2(a
and 2(b)]. The following two terms receive in addition
contributions from diagrams with one loop and one re
gluon emission [as in Figs. 2(c) and 2(d)], as well a
from diagrams with two gluons resulting from a deca
of a virtual gluon [Fig. 2(f)]. Only in the orderd7 the
contributions of a double gluon emission from the quar
line show up [Fig. 2(e)]. This hierarchy can be trace
back to the fact (evident in physical gauges) that th
interaction of the slowly moving quarks with real gluon
is proportional to the three velocity of the former.
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FIG. 2. Examples of the two-loop gluonic QCD corrections
to the decayb ! clnl ; (a),(b) virtual corrections; (c),(d) single
gluon emission; (e),(f ) emission of two gluons. Symbols≠
mark places where the virtualW boson can possibly couple
to the quark line. The left hand side diagrams are QED-like
while the right hand side ones are purely non-Abelian.

In the case of two-loop virtual corrections as well a
in the emission of two real gluons the expansion ind

means a Taylor expansion in the small external momen
of the leptons and gluons. Such an expansion does n
lead to any spurious ultraviolet or infrared divergences
The situation is different in the case of the single gluo
radiation in diagrams where there is in addition on
virtual loop [Figs. 2(c) and 2(d)]. There a naive Taylor
expansion in the external gluon momentum leads
artificial infrared divergences which correspond to the on
shell logarithmic singularities of the one-loop diagrams
Therefore a more sophisticated approach is needed a
the recently developed method of “eikonal expansions
[10,11] is used.

To present our result we write the differential semilep
tonic decay width of the decayb ! cln at q2 ­ 0 as∑

dGsl

dq2

∏
q2­0

­ G0

∑
DBorn 1

as

p
CFD1 1

µ
as

p

∂2

CFD2

∏
,

(3)

whereG0 ­
G2

Fm3
b

96p3 jVcbj2 andDBorn,1,2 describe themcymb

dependence in various orders in the strong couplin
constant.

Both DBorn ­ s1 2 m2
cym2

bd3 and D1 are known in a
closed analytical form [12,13].D2 is the main result of
the present Letter. For the purpose of presentation w
divide it up into four contributions according to the color
3631
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D2 ­ d3fsCF 2 CAy2dDF 1 CADA 1 TRNLDL

1 TRDHg . (4)

The last term,DH , describes the contributions of the
massiveb andc quark loops. Top quark contribution is
suppressed by a factor,m2

bym2
t and has been neglected.

For the SU(3) group the color factors areCA ­ 3, CF ­
4y3, TR ­ 1y2. NL ­ 3 is the number of the quark flavors
whose masses have been neglected (u, d, ands).
l
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3632
We have computed the expansion coefficients
DF,A,L,H up to d8, which for the physical value of the
charm and bottom masses gives an estimated ac
racy of our numerical predictions better than 1% (fo
d ­ 1 2 mcymb ø 0.7).

In the present Letter we list the analytical results on
up tod4, while the numerical evaluation is done using th
expansions up tod8. Using the pole mass of theb and
c quarks and expressing the one-loop corrections in ter
of aMSsm2

bd we find
DA ­ 2
355
36

1
2
3

p2 1 d

µ
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8

2 p2

∂
1 d2

µ
2
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1
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lns2dd 2
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8
9

c1 1
257
90

p2

∂
1 d3

µ
2 956 607

64 800
2

854
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∂
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∂
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2
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3
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∂
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2
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2
7
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∂
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9
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8

27
p2

∂
1 d4

µ
1 322 183
496 125

2
2404
1575

lns2dd 1
8

45
ln2s2dd 2

8
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9
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3

p2 1 ds274 1 8p2d 1 d2

µ
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2
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p2

∂
1 d3

µ
2
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2
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9

lns2dd 1
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p2

∂
1 d4

µ
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405

2
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135

p2

∂
,

(5)
p

the
ic
with c1 ­
21
2 z3 2 p2 lns2dd andc2 ­

3
2 z3 2 p2 ln 2.

We now turn to the numerical analysis of our resu
Here the issue of numerical values for the quark mas
becomes important. It is safe to assume that the pole m
of the b quark lies between 4.6 and 5.1 GeV. The ma
of the c quark is determined bymb 2 mc, obtained from
the heavy quark effective theory (HQET) calculation
[2–4,7]. We usemb 2 mc ø 3.45 6 0.10 GeV where
the error bar is rather conservative.

Accordingly, the numerical value ofd changes within
the range of 0.65–0.77. The numerical values for t
functionD2 become

D2 ­ 26.03, 27.45s4d, 28.96 , (6)

for d ­ 0.65, 0.7, 0.75, respectively.
The error estimate, shown for the central value

d ­ 0.7, is obtained by multiplying the last compute
t.
es
ass
s

s

e

f

term by 3, which corresponds roughly to summing u
the remainder of the series ind assuming constant coeffi-
cients. This procedure overestimates the error because
coefficients in fact decrease (there is at most a logarithm
divergence atd ­ 1 caused by neglected diagrams with
three realc quarks in the final state).

Taken literally, theOsa2
s d corrections are quite large.

However, as we will show below, the bulk of them is due
to the BLM corrections.

The BLM prediction with four light flavors of quarks
gives the following results:

DBLM
2 ­ 2d3DLTR

µ
33
2

2 4

∂
­ 26.54, 28.15s6d, 29.87, (7)

for d ­ 0.65, 0.7, 0.75, respectively.
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By comparing the numbers in Eq. (7) with those i
Eq. (6) we conclude that the BLM correction accounts fo
most of the effect. We estimate the residual correctio
by subtracting the BLM piece from the exact correction
We get a residual corrections0.51, 0.7, 0.91dCFsasypd2,
which, usingassmbd ­ 0.23, gives numerically0.5, 0.7,
0.8% correction relative to the Born rate ford ­
0.65, 0.7, 0.75.

Therefore, we arrive at the conclusion that at th
lower boundary of the invariant masses of leptonsq2

min ­
0, the BLM piece of theOsa2

s d correction represents
the complete result with an excellent accuracy. Th
remaining correction does not exceed the value of 1
even accounting for an uncertainty in input parameters.

Finally, we estimate theOsa2
s d radiative corrections to

the total semileptonic decay width of theb quark. In
the BLM approximation such corrections have been ca
culated in Refs. [6,7]. Therefore, we are only intereste
in the deviations from the BLM approximation.

Our estimate of the non-BLM corrections to the inclu
sive width is based on the expectation that the large
deviation from BLM should occur at the maximal re
coil limit, i.e., at q2 ­ 0. To clarify this point, we note
that the results of Ref. [5] imply that at zero recoil limi
[q2

max ­ smb 2 mcd2] the deviation of the exact result
from the BLM approximation is very small. On the othe
hand, the results of this Letter show that atq2 ­ 0 the
non-BLM part of the correction grows with the decreas
of the c-quark mass, i.e., with the increase in the pha
space available for real gluon radiation. If one fixes th
value of thec-quark mass, but varies instead the invaria
mass of leptonsq2, the strongest emission of real gluon
will occur at the maximal recoil point of the spectrum, a
q2 ­ 0. It is for this reason that we expect the larges
discrepancy between the BLM prediction and the full co
rection at the lower end of theq2 distribution, forq2 ­ 0.

Turning to the estimate itself, from Ref. [5] we know
that at q2

max ­ smb 2 mcd2 (zero recoil limit) the non-
BLM correction to the differential width relative to the
Born value is of the order of20.1%. On the other
end of the lepton invariant mass distribution the resu
of this Letter implies a slightly larger, but also tiny
deviation below 1%. We note that the change of sig
of the non-BLM corrections cancels part of their impac
on the total width. Taking the absolute value of th
larger of the corrections at the boundaries as an upp
bound we concludethat the non-BLM piece of theOsa2

s d
corrections to the total semileptonic decay widthb !

clnl should not exceed the value of1%.
The value of second order correction to the inclusiv

width depends on the adopted definition of the qua
masses. Our result is presented in terms of the po
r
n
.
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masses, which is a convenient choice for the correctio
not associated with the running of the coupling consta
It was argued in [14] that such parametrization lea
to small higher-order non-BLM corrections. Our resu
confirms this expectation.

It is fair to say at this point that our estimate of th
non-BLM piece of the corrections to the total inclusiv
semileptonic decay width based on the two bounda
values cannot be considered as a rigorous proof. Keep
in mind that the complete calculation of the two-loo
QCD corrections to the total decay width remains
very difficult task, a calculation of these corrections
some intermediate pointq2

int for the differential inclusive
semileptonic decay width of theb quark is highly
desirable. If such a calculation confirms that the no
BLM piece of the correction remains within the rang
set by its value on two boundaries, our estimate for t
correction to the total semileptonic decay width of theb
quark will be on a very safe ground.
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