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Large Amplitude Oscillations of a Bose Condensate
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We analyze the response of condensed trapped atoms to external driving magnetic fields.
Solving the time-dependent Gross-Pitaewskii equation within a new, accurate algorithm, we found
frequencies and relaxation times of collective oscillations in excellent agreement with the experimental
results. Using simple scaling arguments we make quantitative predictions for future experiments.
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The recent experimental observations of collective exiem closely related with the appearence of the condensate
citations of trapped atoms [1,2] are stimulating an in-at the critical temperature [9,10].
creasing interest in the dynamical properties of a Bose In the experimental setup of Refs. [1,2,11] trapped
condensate. The frequencies of these resonances haatms are evaporatively cooled well bel@y to form a
been studied solving the linearized Gross-Pitaewskii equgure condensate, without signs of a thermal component.
tion [3,4], but a theoretical analysis of the damping ofIln Ref. [1] collective, coherent excitations are induced
the condensate oscillations is still lacking. Yet, to underby a driving magnetic field with adjustable symmetries
stand how relaxation and loss of coherence arise on thacting on the radial plane. The oscillations are studied
dynamics of finite, isolated quantum systems is a fundaturning off the trapping magnetic field and imaging the
mental problem investigated in many area of physics [5]cloud after 7 ms of free expansion in space. Several
For trapped bosons at temperatdte> T, (with T. the  distructive measurements are required to complete the
critical temperature), the damping of collective motionsspectroscopical analysis. Monopolar oscillations of a
is mainly due to two-body collisions. The dynamics issample of N = 4500 = 300 atoms are observed at a
governed by the classical Boltzmann equation modified tdrequency « = (1.84 = 0.01)wo (with w( radial trap
take into account the stimulated collisions induced by thdrequency) and lifetime,; = 110 = 25 ms.
Bose statistics [6]. AT' < T, the thermal component of  Collective oscillations can be studied theoretically solv-
the density will damp the condensate oscillations mainlying the Gross-Pitaewskii equation [12]:
through one-body collisions (Landau damping) [7]. It p 2
has been suggested thatZat= 0 the relaxation comes il W _ — V2 + [Vho + Vil 1)
from the coupling of the collective vibration into high- at 2m
frequency states due to the nonlinear mean-field interac- ith th If. istent field:
tion in the Gross-Pitaewskii equation (GPE) [8]. Let us"' € sefl-consistent eld:
remark that this coupling does not increase the entropy of 4w h%a
the system. The transformation of the collective energy in Vie =
temperature would require higher-order terms in the non-
linear interaction, and would lead to the loss of spatialThe scattering length fafRb isa = 1104y, with a, the
coherence and to the appearence of a normal componeBbhr radius, and/ is normalized to the total number of
of the density, an important, still poorly understood prob-atoms. The trapping magnetic field can be parametrized
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as a cylindrically symmetric harmonic potentiell, =  Laplacian in the Schroedinger equation. Let us remark
%mwé(;’z + A2z2), with A = /8, r2=x2+ y2, and thatf, is positive definite and it represents a probability
wo = 27 X 132 Hz. The stationary ground state of density in the quantum phase space; it should not be con-
GPE has been studied in Refs. [8,13,14,16] for positivdused with the Wigner distribution function [19].

and negative scattering lengths, but to find the general The quantum evolution of, is given by a generalized
time-dependent solution is more challenging. The firstiouville equation:

(to our knowledge) numerical analysis of GPE using .

an external isotropic harmonic potential has been done if + vi — VWiiVpfa =0 7)

in [8] within the Crank-Nicholson method. The major a’t m o

problem of this kind of lattice algorithms is the presence

of small perturbations of the wave function caused byWlth Viw = Vio + Vie + Uy. This equation can be

random numerical noise and the finite spatial step Siznumerically §0Ived using the “quantum atomic dynamics”
of the grid. This noise, amplified by the nonlinear mean- Qé?%’ig%rilé?r?gﬁisofr?|1|‘8\r/1v§t'ion is parametrized as a sum
field interaction in GPE, creates spurious excitations and_ ..’ . L p
: . L . . _of “weighted test particles” (WTP):
unphysical damping, limitating the analysis of collective
observables to short times [8]. Ny
In .this Letter we describe a new, very accurate, f,(7,p,1)=K Z w( — F()w,(p — pi(1)) (8a)
algorithm to solve GPE that we apply to study the i=1
resonances observed experimentally.

Without loss of generality we can write the wave and we choose

function as w(i — 7(1) = ext—y(F — 7(1)],
¥ = R(F,1) ex;{%S(?,t)} 3) wp(p = pi(t)) = 6;,15 — fa;%)) (8b)
Y
K = — | &
with R and S real. Replacing Eg. (3) in Eq. (1) and Nip <7T>

equating the real and imaginary parts, the GPE becomes, . I . '
eguivalgnt to two coupled gquat)i/oFrJ\S' with v fixed to reproduce the initial density profile (see

below).
ap VS (2) The time evolution of WTR?;, p;} proceeds as in a
or V<P ;) =0, (4)  classical particles dynamics where the mean-field and the
) quantum potential are calculated self-consistently at each
d \ : . ) .
N + <_S> + Vo + Ve + U, = 0 (5) time step. A second-order Runge-Kutta method gives
Jat 2m [15]
with the “quantum potentialU, given by Pilt + $A1) = pit — 3A1) — VWi (7, )AL, (92)
RV 1 (V) Bt + A1) = 7(t) + pit + 3A0)/mAr.  (9b)
Uy=———"——|—7— 55— 6
1 4m [ p 2 p? } © A total number of WTPN,, = 8000 and the time step

] o ] At = 0.002 ms are needed to ensure the convergence of
Equation (4) represents the continuity equation for thgne resyits.

macroscopic particle density = R* while Eq. (5) can (3) The initial distribution of WTP in phase space

be interpreted as a classical Hamilton-Jacobi equatiopyqyires special care. The stationary ground state solution
for the actionS. The latter describes particles mov- of Gpg is given by

ing according to the classical and quantum fofGe =
—V(Vy + V) andF, = —VU,, respectively. In other p(r,t =0) = [ fqF p)dp = llw(F,t = 0)lI%, (10a)
words, Egs. (4), (5) introduce a “quantum phase space”

formed by real coordinates and canonical mometga pi(t =0) = VS/m = 0. (10b)
fined as p = % = m%?. Observables can be calcu- Equation (10b) comes from the fact that in the ground

lated from the quantum distribution functiofy (7, p,r)  state S = ut, with u the chemical potential. The
as proper phase-space integrals in analogy with clagnitial position of {r;} can be chosen randomly by us-
sical statistical mechanics. The monopole momentuning the Metropolis algorithm [15] with the profile of
and potential energy at) = [ r>f,(7,p,t)dFdp and ¢ calculated, for example, as in [13]. However, this
V = [(Vho + Vi)f,(7, p,t)dFdp, respectively. Atten- procedure introduces an undesired numerical noise. The
tion should be paid to the calculation of the kinetic energyclassical nature of Eq. (7) suggests an exact, self-
that is given byT = [(p?/2m + U,)f,(¥, p.t)dFdp;  consistent solution to this problem. We add a small
in fact, the quantum potentidl, is originated from the friction term Fi. = —ep/m to Eq. (9a), and we allow
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the particles to propagate until they rearrange themselvesl in order to avoid unphysical damping coming from
to the state wit{p; = 0} andF,,, = —VV,, = 0. This  numerical noise.
gives the exact initial conditions in the quantum phase In the experiment [1], collective monopolar vibrations
space. Then the friction is switched off. The densityhave been induced using a time-dependent magnetic field
profile so obtained is exactly the same as the one obtainettting on thex-y plane during the first 0.05 s. In order
with the standard method described in [13]. to simulate exactly the experiments, we solve GPE by
In the small amplitude limit (linear regime) and for adding a time-dependent potentig} = %mwz(t)r2 that
isotropic external potentials, GPE describes undampedscillates with a frequency equal to that of the excitation
oscillations [9,17]. The simplest way to show this isunder study and with an amplitude equal to 1.5% of
to calculate the equation of motion for the monopolethe radial spring constant. In Fig. 2 we show the time

moment. From Eqg. (1) we obtain evolution of the monopole moment calculated in the radial
5 plane. The oscillations induced by the driving potential

d_i + 5wil — 6E + 2T = 0. (11) increase rapidly in ampli'tude duringz O.QS s. Thenthe
dt system oscillates freely in the anisotropic external trap. A

The time evolution of/ is related self-consistently to fit with an exponential decaying cosine function gives a
the kinetic energyr’, but for a large number of particles fréquency of oscillationso = 1.845w, and a relaxation

and small oscillationg” can be neglected. This roughly iMe 7l = 135 ms, in excellent agreement with the
corresponds to satisfy the condition= pogo/fiwo > 1 experimental values. The physical origin of the damping

with p, the peak density of the condensate and— holds on the interplay between the anisotropy of the trap,
4 ha - . I . which spreads the response of the system over two main
——. Whitin this approximation, Eq. (11) describes ; . ; L ;

”a d ilati ith f _ /5 A frequencies (associated with atoms moving in the radial
undamped oscilialions with Irequenay = vowo. AS 544 iy the axial plane), and the nonlinear self-consistent
a numerical test of our algorithm, in Fig. 1 we show

th | ¢ i lculated f field that couples all the different modes of oscillation.
€ monopole moment VErsus ime caicuiated 10r a SySa, ¢ moving faster or slower than the oscillating

ltemdo]f 450? atorrgj _an((jj \g'th algmzaltIL initial (;nontopo- wave (that corresponds to a phonon in homogeneous
ar detorma '9grl' obtained Ly scaling the (E,(g)gr Inates a‘§ystems) will lose or gain kinetic energy, leading to the
ri = (1 + a)ii, with & = 0.005 and wherer; are the o i0ation of the system. In the linear regime, such
WTP positions in t.he ground state. The system exhlblt%l mechanism has been described by Landau in the
undamp(_ad oscillationsrg, > 10 s that should be com- study of plasma oscillations for homogeneous systems
pared with 7 = 0.110 s of [1]) with a frequency of (Landau damping) [18]. An intriguing possibility, which
deserves an accurate analysis, is that the damping of

w = 2.2wy. Further numerical tests, which will be pre-
; ; X N He collective motions is associated with the presence of
is conserved at each time-step. This condition is essen-
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© FIG. 2. Monopole moment (in arbitrary units) versus time
FIG. 1. Monopole moment (in arbitrary units) versus time for for a system ofN = 4500 atoms in an anisotropic external
a system ofN = 4500 atoms in an isotropic harmonic trap trap. A driving field acting forr < 0.05 ms increases the
of frequencyw, = 27 X 132 Hz. The initial deformation is amplitude of oscillations. Then the system oscillates freely
obtained by scaling the coordinate @s= (1 + «)7f with in the trap. The frequency i® = 1.845w, with a relaxation
a = 0.005. For such a small initial deformation the system time 7, = 135 ms, in agreement with the experimental results
exibits undumped oscillations. o = (1.84 = 0.01)wy and 7, = 110 * 25 ms.
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chaos in the trajectories of the test particles Egs. (7)4n linear approximation. Theoretical calculations of the
(9). It is quite possible that this fact reflects somefrequencies in [3,4] have been performed only in that
chaotic property of the trajectory of real atoms. Thelimit, with an agreement with experimental data varying
occurrence of a chaotic evolution of the condensatdérom 2% to 6% [4]. It is clear that the dependence of
density and of the phas® has been recently investigated frequencies and relaxation times on the initial amplitude
by Kaganet al.[21], solving the GPE equation in the of the oscillation deserves an accurate analysis. Indeed,
Thomas-Fermi approximation. They have pointed out thait is just the possibility of exploring the response of
such a stochastic behavior leads to real relaxation anfihite quantum systems in the nonlinear regime that
irreversibility. makes the study of condensate trapped atoms of particular
We note that in our simulation the monopole momentinterest.
calculated along the radial plane is in exact opposition In conclusion, we have developed a new accurate
of phase with the one calculated along the transversalgorithm to study collective coherent oscillations of
plane. However, the experimental results [1] indicatetrapped atoms. Frequencies and relaxation times of
that the phase shift is not equal to: this is connected monopolar oscillations have been found in excellent
with the free expansion of the cloud that preceeds thagreement with the experimental data. The damping
imaging [20]. comes from the interplay between the anisotropy of the
A very important feature of the Gross-Pitaewskii equa-trap and the coupling of different modes of oscillations
tion is the possibility to gain simple scaling laws for due to the nonlinear mean-field interaction for large
the relaxation times and the frequencies of the coIIectiveampIitude oscillations. This damping could be associated
oscillations. Rescaling Eq. (1) as= with the presence of chaos in the trajectories of the

t = toqwo, We obtain test pqrticl_es. Using simple sceling arguments fo_r the
relaxation times and the frequencies, we make quantitative
i% — — V2 + l(rz + A2 predictione for futgre experiments.. _
at Discussions with S. Stringari and E. Tosatti are
2mwy \2
N 87mN< ) e (12) acknowledged.

with the normalization condition:

| notra = 1. (13)
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