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Large Amplitude Oscillations of a Bose Condensate
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We analyze the response of condensed trapped atoms to external driving magnetic fie
Solving the time-dependent Gross-Pitaewskii equation within a new, accurate algorithm, we fo
frequencies and relaxation times of collective oscillations in excellent agreement with the experime
results. Using simple scaling arguments we make quantitative predictions for future experime
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The recent experimental observations of collective e
citations of trapped atoms [1,2] are stimulating an in
creasing interest in the dynamical properties of a Bo
condensate. The frequencies of these resonances h
been studied solving the linearized Gross-Pitaewskii equ
tion [3,4], but a theoretical analysis of the damping o
the condensate oscillations is still lacking. Yet, to unde
stand how relaxation and loss of coherence arise on t
dynamics of finite, isolated quantum systems is a fund
mental problem investigated in many area of physics [5
For trapped bosons at temperatureT . Tc (with Tc the
critical temperature), the damping of collective motion
is mainly due to two-body collisions. The dynamics is
governed by the classical Boltzmann equation modified
take into account the stimulated collisions induced by th
Bose statistics [6]. AtT , Tc the thermal component of
the density will damp the condensate oscillations main
through one-body collisions (Landau damping) [7]. I
has been suggested that atT  0 the relaxation comes
from the coupling of the collective vibration into high-
frequency states due to the nonlinear mean-field intera
tion in the Gross-Pitaewskii equation (GPE) [8]. Let u
remark that this coupling does not increase the entropy
the system. The transformation of the collective energy
temperature would require higher-order terms in the no
linear interaction, and would lead to the loss of spatia
coherence and to the appearence of a normal compon
of the density, an important, still poorly understood prob
0031-9007y97y78(19)y3589(5)$10.00
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lem closely related with the appearence of the condens
at the critical temperature [9,10].

In the experimental setup of Refs. [1,2,11] trappe
atoms are evaporatively cooled well belowTc to form a
pure condensate, without signs of a thermal compone
In Ref. [1] collective, coherent excitations are induce
by a driving magnetic field with adjustable symmetrie
acting on the radial plane. The oscillations are studie
turning off the trapping magnetic field and imaging th
cloud after 7 ms of free expansion in space. Sever
distructive measurements are required to complete t
spectroscopical analysis. Monopolar oscillations of
sample of N  4500 6 300 atoms are observed at a
frequency v  s1.84 6 0.01dv0 (with v0 radial trap
frequency) and lifetimetrel  110 6 25 ms.

Collective oscillations can be studied theoretically solv
ing the Gross-Pitaewskii equation [12]:

ih̄
≠c

≠t
 2

h̄2

2m
=2c 1 fVho 1 Vscgc (1)

with the self-consistent field:

Vsc 
4p h̄2a

m
kck2. (2)

The scattering length for87Rb is a  110a0, with a0 the
Bohr radius, andc is normalized to the total number of
atoms. The trapping magnetic field can be parametriz
© 1997 The American Physical Society 3589
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as a cylindrically symmetric harmonic potentialVho 
1
2 mv

2
0sr2 1 L2z2d, with L 

p
8, r2  x2 1 y2, and

v0  2p 3 132 Hz. The stationary ground state o
GPE has been studied in Refs. [8,13,14,16] for positi
and negative scattering lengths, but to find the gene
time-dependent solution is more challenging. The fir
(to our knowledge) numerical analysis of GPE usin
an external isotropic harmonic potential has been do
in [8] within the Crank-Nicholson method. The majo
problem of this kind of lattice algorithms is the presenc
of small perturbations of the wave function caused b
random numerical noise and the finite spatial step s
of the grid. This noise, amplified by the nonlinear mea
field interaction in GPE, creates spurious excitations a
unphysical damping, limitating the analysis of collectiv
observables to short times [8].

In this Letter we describe a new, very accurat
algorithm to solve GPE that we apply to study th
resonances observed experimentally.

Without loss of generality we can write the wav
function as

c  Rs$r , td exp

∑
i
h̄

Ss$r , td
∏

(3)

with R and S real. Replacing Eq. (3) in Eq. (1) and
equating the real and imaginary parts, the GPE becom
equivalent to two coupled equations:

≠r

≠t
 =

µ
r

=S
m

∂
 0 , (4)

≠S
≠t

1

µ
=S
2m

∂2

1 Vho 1 Vsc 1 Uq  0 (5)

with the “quantum potential”Uq given by

Uq  2
h̄2

4m

∑
=2r

r
2

1
2

s=rd2

r2

∏
. (6)

Equation (4) represents the continuity equation for th
macroscopic particle densityr  R2 while Eq. (5) can
be interpreted as a classical Hamilton-Jacobi equat
for the action S. The latter describes particles mov
ing according to the classical and quantum force$Fcl 
2=sVho 1 Vscd and $Fq  2=Uq, respectively. In other
words, Eqs. (4), (5) introduce a “quantum phase spac
formed by real coordinates and canonical momentade-
fined as $p 

=S
m  m

d
dt $r. Observables can be calcu

lated from the quantum distribution functionfqs $r, $p, td
as proper phase-space integrals in analogy with cl
sical statistical mechanics. The monopole momentu
and potential energy areIstd 

R
r2fqs$r , $p, td d $rd $p and

V 
R

sVho 1 Vscdfqs$r , $p, td d $rd $p, respectively. Atten-
tion should be paid to the calculation of the kinetic energ
that is given byT 

R
sp2y2m 1 Uqdfqs $r, $p, td d $rd $p;

in fact, the quantum potentialUq is originated from the
3590
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Laplacian in the Schroedinger equation. Let us remar
that fq is positive definite and it represents a probability
density in the quantum phase space; it should not be con
fused with the Wigner distribution function [19].

The quantum evolution offq is given by a generalized
Liouville equation:

≠

≠t
fq 1

$p
m

=fq 2 =Vtot=pfq  0 (7)

with Vtot  Vho 1 Vsc 1 Uq. This equation can be
numerically solved using the “quantum atomic dynamics”
(QAD) algorithm as follows:

(1) The distribution function is parametrized as a sum
of “weighted test particles” (WTP):

fqs$r , $p, td  K
NtpX
i1

wsss$r 2 $ristddddwpsss $p 2 $pistdddd (8a)

and we choose

wsss$r 2 $ristdddd  expf2gsss$r 2 $ristdddd2g ,

wpsss $p 2 $pistdddd  dsss $p 2 $pistdddd (8b)

K 
N

Ntp

µ
g

p

∂3y2

with g fixed to reproduce the initial density profile (see
below).

(2) The time evolution of WTPh$ri , $pij proceeds as in a
classical particles dynamics where the mean-field and th
quantum potential are calculated self-consistently at eac
time step. A second-order Runge-Kutta method give
[15]

$pist 1
1
2 Dtd  $pist 2

1
2 Dtd 2 =Vtots$r , tdDt , (9a)

$rist 1 Dtd  $ristd 1 $pist 1
1
2 DtdymDt . (9b)

A total number of WTPNtp  8000 and the time step
Dt  0.002 ms are needed to ensure the convergence o
the results.

(3) The initial distribution of WTP in phase space
requires special care. The stationary ground state solutio
of GPE is given by

rs$r , t  0d 
Z

fqs $r, $pd d $p  kcs$r , t  0dk2, (10a)

$pist  0d  =Sym  0 . (10b)

Equation (10b) comes from the fact that in the ground
state S  mt, with m the chemical potential. The
initial position of h$rij can be chosen randomly by us-
ing the Metropolis algorithm [15] with the profile of
c calculated, for example, as in [13]. However, this
procedure introduces an undesired numerical noise. Th
classical nature of Eq. (7) suggests an exact, self
consistent solution to this problem. We add a smal
friction term $Ffric  2e $pym to Eq. (9a), and we allow
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the particles to propagate until they rearrange themselv
to the state withh $pi  0j and $Ftot  2=Vtot  0. This
gives the exact initial conditions in the quantum phas
space. Then the friction is switched off. The densit
profile so obtained is exactly the same as the one obtain
with the standard method described in [13].

In the small amplitude limit (linear regime) and for
isotropic external potentials, GPE describes undamp
oscillations [9,17]. The simplest way to show this i
to calculate the equation of motion for the monopol
moment. From Eq. (1) we obtain

d2I
dt2

1 5v2
0I 2 6E 1 2T  0 . (11)

The time evolution ofI is related self-consistently to
the kinetic energyT , but for a large number of particles
and small oscillationsT can be neglected. This roughly
corresponds to satisfy the conditionh  r0g0yh̄v0 ¿ 1
with r0 the peak density of the condensate andg0 
4p h̄2a

m . Whitin this approximation, Eq. (11) describes
undamped oscillations with frequencyv 

p
5v0. As

a numerical test of our algorithm, in Fig. 1 we show
the monopole moment versus time calculated for a sy
tem of 4500 atoms and with a small initial monopo
lar deformation, obtained by scaling the coordinates
$ri  s1 1 ad$r

gs
i , with a  0.005 and where$r

gs
i are the

WTP positions in the ground state. The system exhib
undamped oscillations (trel . 10 s that should be com-
pared with trel  0.110 s of [1]) with a frequency of
v  2.2v0. Further numerical tests, which will be pre-
sented elsewhere, were done to check that the total ene
is conserved at each time-step. This condition is esse

FIG. 1. Monopole moment (in arbitrary units) versus time fo
a system ofN  4500 atoms in an isotropic harmonic trap
of frequencyv0  2p 3 132 Hz. The initial deformation is
obtained by scaling the coordinate as$r  s1 1 ad$r

gs
i with

a  0.005. For such a small initial deformation the system
exibits undumped oscillations.
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tial in order to avoid unphysical damping coming from
numerical noise.

In the experiment [1], collective monopolar vibration
have been induced using a time-dependent magnetic fi
acting on thex-y plane during the first 0.05 s. In orde
to simulate exactly the experiments, we solve GPE
adding a time-dependent potentialVd 

1
2 mv2stdr2 that

oscillates with a frequency equal to that of the excitatio
under study and with an amplitude equal to 1.5%
the radial spring constant. In Fig. 2 we show the tim
evolution of the monopole moment calculated in the rad
plane. The oscillations induced by the driving potenti
increase rapidly in amplitude duringt  0.05 s. Then the
system oscillates freely in the anisotropic external trap.
fit with an exponential decaying cosine function gives
frequency of oscillationsv  1.845v0 and a relaxation
time trel  135 ms, in excellent agreement with the
experimental values. The physical origin of the dampin
holds on the interplay between the anisotropy of the tra
which spreads the response of the system over two m
frequencies (associated with atoms moving in the rad
and in the axial plane), and the nonlinear self-consiste
field that couples all the different modes of oscillation
Atoms moving faster or slower than the oscillatin
wave (that corresponds to a phonon in homogeneo
systems) will lose or gain kinetic energy, leading to th
relaxation of the system. In the linear regime, suc
a mechanism has been described by Landau in
study of plasma oscillations for homogeneous syste
(Landau damping) [18]. An intriguing possibility, which
deserves an accurate analysis, is that the damping
the collective motions is associated with the presence

FIG. 2. Monopole moment (in arbitrary units) versus tim
for a system ofN  4500 atoms in an anisotropic externa
trap. A driving field acting for t , 0.05 ms increases the
amplitude of oscillations. Then the system oscillates free
in the trap. The frequency isv  1.845v0 with a relaxation
time trel  135 ms, in agreement with the experimental resul
v  s1.84 6 0.01dv0 andtrel  110 6 25 ms.
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chaos in the trajectories of the test particles Eqs. (7
(9). It is quite possible that this fact reflects som
chaotic property of the trajectory of real atoms. Th
occurrence of a chaotic evolution of the condensa
density and of the phaseS has been recently investigated
by Kagan et al. [21], solving the GPE equation in the
Thomas-Fermi approximation. They have pointed out th
such a stochastic behavior leads to real relaxation a
irreversibility.

We note that in our simulation the monopole momen
calculated along the radial plane is in exact oppositio
of phase with the one calculated along the transver
plane. However, the experimental results [1] indica
that the phase shift is not equal top : this is connected
with the free expansion of the cloud that preceeds t
imaging [20].

A very important feature of the Gross-Pitaewskii equa
tion is the possibility to gain simple scaling laws fo
the relaxation times and the frequencies of the collecti
oscillations. Rescaling Eq. (1) as$r  $rolds 2mv0

h̄ d
1
2 and

t  toldv0, we obtain

i
≠f

≠t
 2 =2f 1

1
4 sr2 1 L2z2df

1 8paN

µ
2mv0

h̄

∂ 1

2

kfk2f (12)

with the normalization condition:Z
kfk2 d $r  1 . (13)

A rapid look at Eq. (12) shows that the relaxatio
time can be written, for a given initial deformation, a
trel  v

21
0 FsN a

l0
d, with the characteristic length for the

harmonic oscillatorl0  sh̄ymv0d
1

2 . Regardless of the
value of the number of atoms, trap frequencies, an
eventually, species of atoms with different masses a
scattering length, we obtain that the relaxation times a
the frequencies of two systemsa, b are simply related as

ta
relyt

b
rel  vbyva  v

b
0 yva

0 (14)

as far as we keepN a
l0

costantand fast  0d  fbst 
0d. A simple way to implement the last condition is

to switch off the driving field atta
d 

v
b

0

v
a
0

t
b
d . It would

be interesting to verify experimentally the scaling law
Eq. (14), which could be also used to test under whic
conditions the Gross-Pitaewskii equation can be appli
to study large amplitude collective motions. In fact, in
GPE, the mean field approximation breaks down for to
high energy vibrational modes [8]. Moreover, Eq. (14
could be used to calculate scattering length of differe
species of atoms.

There is a further comment that should be mad
here. The results presented so far clearly indicate th
the oscillations induced experimentally cannot be studi
3592
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in linear approximation. Theoretical calculations of the
frequencies in [3,4] have been performed only in that
limit, with an agreement with experimental data varying
from 2% to 6% [4]. It is clear that the dependence of
frequencies and relaxation times on the initial amplitude
of the oscillation deserves an accurate analysis. Indeed
it is just the possibility of exploring the response of
finite quantum systems in the nonlinear regime that
makes the study of condensate trapped atoms of particula
interest.

In conclusion, we have developed a new accurate
algorithm to study collective coherent oscillations of
trapped atoms. Frequencies and relaxation times o
monopolar oscillations have been found in excellent
agreement with the experimental data. The damping
comes from the interplay between the anisotropy of the
trap and the coupling of different modes of oscillations
due to the nonlinear mean-field interaction for large
amplitude oscillations. This damping could be associated
with the presence of chaos in the trajectories of the
test particles. Using simple scaling arguments for the
relaxation times and the frequencies, we make quantitative
predictions for future experiments.
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acknowledged.
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