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Intrinsic Josephson Effect and Violation of the Josephson Relation in Layered Superconductors
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Equations describing the resistive state of a layered superconductor with anisotropic pairing are
derived. The similarity with a stack of Josephson junctions is found at small voltages only, when
current density in the direction perpendicular to the layers can be interpreted as a sum of the
Josephson superconducting, the Ohmic dissipative, and the interference currents. In the spatially
uniform state differential conductivity at higher voltages becomes negative. Nonuniformity of the
current distribution generates branch imbalance and violates the Josephson relation between frequency
and voltage.  [S0031-9007(97)03075-5]

PACS numbers: 74.50.+r, 74.25.Fy, 74.80.Dm

Layered high¥. superconductors are known to exhibit the difference between densities of electronlike and hole-
the intrinsic Josephson effect when the current is flowlike quasiparticles [7,8]. We find that the direct analogy
ing across the conducting layers (see, e.g., [1] and recemtith a stack of Josephson junctions is limited by nonequi-
measurements [2]). Though such materials can be coribrium effects and scattering processes, the difference
sidered as a stack of 2D superconductors linked by theith Josephson junctions being the most pronounced at
Josephson coupling [3,4], the theory of the ac Josephsdower temperatures. This results in the negative differ-
effect in tunnel junctions cannot be directly applied to de-ential conductivity and in the violation of the Josephson
scribe the resistive state of layered superconductors. Irelation. Similar effects are expected in layered supercon-
a system of series connected junctions the electric fielductors with isotropic pairing, too, but in the latter case
is located mainly in the insulating barriers due to screenthe quasiparticle density drops down exponentially when
ing by the electrons in the metal, and the superconductintemperature decreases and generation of branch imbalance
banks are in the equilibrium state. This results in manyiolating the Josephson relation would be negligible in the
important consequences including the Josephson relatianost interesting region of low temperatures.
between voltage and frequency. But in the layered mate- In our calculations we use the quasiclassical theory of
rials the superconducting layers are of atomic thicknessasonequilibrium superconductivity [9] modified for the case
and one must not ignore nonequilibrium effects which areof layered superconductors [10,11]. We solve the equa-
related to perturbations of the quasiparticle distributiortions inthe discrete Wannier representation for the Keldysh
in the superconductor. On the other hand, many experfl2] matrix propagatorG,,,. Its diagonal components are
mental evidences fai-wave or nearlyd-wave symmetry the retarded and advanced Green’s functigfsand g*,
of the superconducting order parameter in layered highand its upper off-diagonal componegf, is related to the
T. superconductors were given in the last few years, andlectron distribution function. We consider the hopping
a compatibility of the experimental data withdawave conductivity regime between the layers,s < #, which
scenario was shown in many theoretical works (see, e.gcorresponds to the case of Josephson interlayer coupling.
[5,6], and references therein). In this case the supercomderet is the overlap integral describing the electron spec-
ducting order parameter has nodes; i.e., the quasiparticteum in the perpendicular directios, = 2¢, cosdk, , d
density is never exponentially small and the nonequilib-is the lattice constant in the perpendicular direction, and
rium effects due to quasiparticles become especially ims is the momentum scattering time along the layers. This
portant. Thus, to understand the intrinsic Josephson effeetpproach bears some similarity to the interlayer diffusion
in high-T. superconductors one must take into account thenodel [13] in which the interlayer coupling is mediated
nonequilibrium distribution of the quasiparticles and thethrough incoherent hopping processesbeing neglected.
relaxation processes in the resistive state. We assume that a symmetry of the superconducting order

In this study we calculate current and charge densiparameter is imposed by the symmetry of the coupling po-
ties in superconductors with anisotropic pairing as functential in the self-consistency condition: thus we do not
tions of the phase differences of the order parameter iaddress the question of the microscopic nature of the in-
neighboring layers and of the nonequilibrium scalar po+teraction resulting in such a symmetry. Then the equation
tential related to the quasiparticle branch imbalance, iefor G, has the form
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where ¢ is the angle of the in-plane electron momentum the case of frequencieBw much smaller than typical

(---) means averaging ovep, andi, = —ioyA,(¢p) + electronic energies: temperature and the amplitude of the
un + o,vp,. Furthermoreu, = (h/2)dx,/dt + e®d, gap,Ao.
is the gauge invariant scalar potential in layger y, is Consider a current flowing between the layers of a

the order parameter phase in théh layer, d, is the quasi-two-dimensional superconductor, << Ay. When
electric potential, p, = (5/2)Vx, — (e/c)A, is the the current exceeds its critical value it produces nonequi-
superconducting momentum parallel to the layexs,is  librium perturbations the scale of which is determined by
the vector potential, andi,,, = co§(x, — xm)/2] + the interlayer coupling, and for small, the value of the
io,siM(x» — xm)/2]. The Pauli matrices introduced nonequilibrium potentiale is small as well. Then we
above act on the spin indices of Green’s functions. Eaclmnay solve Eq. (1) perturbatively, considering and u
G, depends on two times (or on two energies in Fouriems small values. We calculate the off diagonal in layer
representation), and of. number components @ in the linear approximation in

The right-hand side (rhs) of (1) is an elastic-collision¢, ; these components are related to the current density in
integral in Born approximation. Using Born approxima- the direction perpendicular to the layers. The diagonal
tion we neglect low-energy quasiparticle bound states crein layer numbers component of gt determines pertur-
ated by impurities (see [14], and references therein), andhations of the charge density; we calculate it up to the
hence, our results are applicable provided typical energiesecond order irn¢; neglectingu in comparison toA.
of quasiparticles are larger than the bandwidth of the imThe structure of the solution can be demonstrated by the
purity induced bound state%, > /AT, /. combinationg; = A,,—18n—1n — &mi—14An—1 the integral

We calculate current and charge densities assuming the which over energies ang yields the current density
clean limit, 7.7 > £, and neglect, where possible, the across the layers [10]. In the Fourier representation we
pairbreaking due to elastic scattering. We assume ?Isget
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where S, s, and ¢ are Fourier components of s, | branch imbalance relaxation rate. The branch imbalance
sing,/2, and cosp,/2, respectively, andp, = xy, — is related to the nonequilibrium potential [7,8,15]. In
xn—1 is the phase difference between the layers. Théehe case of isotropic pairing elastic scattering does not
first term in (2) describes perturbations of the retardectontribute to the relaxation of the branch imbalance, and
and advanced propagators; it is related to the supethe latter relaxes via energy scattering processes. We
current, ¢4 = +./(e = i0)> — |A]>. The last terms shall consider the opposite case of the order parameter
describe perturbations of the distribution function andclose to d-wave symmetry, when the gap has nodes:
contribute to the quasiparticle currentys is Fermi  (A(¢))> < (A(¢)?). In this limit we may simplify the
distribution function, anda = €/¢, & = /e’ — |A|>.  equations because bothand »;, do not depend onp,
Furthermorep = (1/7)[{a) — (A/e)(A/&)]isthe effec- 7 = (1/7)(a), and v, = (1/7)(A%(¢)a/€*). Then the

tive momentum scattering rate for quasiparticles. Finallyexpression for the current density between layerand

vy = (1/7)[{a) — a ' — (A/e)(A/€)] is the ef‘fective| n — 1 acquires the form
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where generalized conductivities are given by
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G(t,1)) = oy (e ai(t, 1), Gi(t, 1) = ony e , (4)
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Averaging over the angles and quasiparticle energies in (4he Josephson tunnel junctions:
and (5) is performed according to i
O O
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The first term in (3) describes the Josephson currentvhere conductivities are given by (4) and (5) with the
o = hcz/(47re/\id) being the critical current | is the exponents integrated over tinmg which results in factors

penetration length for a superconducting current perpent/ 7 Near7. one getsr = o, . Atlow temperatures,
dicular to the layers. The quasiparticle contribution is! << Ao, the quasiparticle conductivity is of the order of
given by the last terms containing retardation effects refn® normal state conductivity, because the decrease of the
lated to the momentum and branch imbalance relaxatiof!ormal carrier density upon cooling is compensated by
These effects correspond to factdts + i») in (2). In the decrease of the effective scattering rate of quasipar-
the limit of A — 0 these terms reduce to the Ohmic cur-ficles by the same factor T//A,. For the simplest
rentoy, E/(1 + iwr), whereoy, is the static conduc- angular dependence of the gap parameter with/thave
tivity in the normal state. In the low frequency limit SYmmetry,A = A¢cos2¢, we find o = 3oy, /4. For

the quasiparticle contribution may be interpreted as th&he interference term we get = (A/T)oy, atT > A,
Ohmic and interference current (the last term), the Ohmi@ndoi ~ oy /4 at lower temperatures.

current consisting of two contributions, one of which is re- 1€ value ofu in the current density (3) must be de-
lated to the branch imbalance and to its relaxation. Whefrmined from the separate equation describing the branch
@ is a slowly varying function of timep < 7, the retar- |mk_)alan?e dynamics. Such an equation is given by the
dation effects can be neglected, and the terms dependilfﬁo'sson s equation with the charge density calculated from

on the phase difference acquire a simple form typical fo seentigzi%%\ri\llgggtg%rci\r/leercir;?é%iedse.nsl;?;;ihnetrfgu&elra?eprre-
n
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whereJ, = >, 021 (n; 0, w1, w2) [n(w2) — pn-1(@2)] — 011 (n; w1, w)2ihw @,(w;) describes the flow of quasi-
particles between layersandn — 1 generating the branch imbalance. Note #ét) in the equations for charge density
depend on the branch imbalance scattering rate, they are different from the conductivities for current densities.
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From Eq. (7) one can see that the branch imbalance* | Then, according to (11), the Josephson relation between
0 is generated by a nonuniform quasiparticle current flowthe frequency and the electric potential difference per a
In the limit of small phase differences between thelayer,V,, is satisfied. In the limit of small frequencies the
layers Egs. (3)—(5) and (7)—(10) describe the linearcurrent-phase relation (6) has the form similar to Joseph-
response characterized by different conductivities for theson tunnel junctions, and the effects typical for Joseph-
response to the solenoidal and to the potential electrison junctions must be observed. However, the analogy is

fields [16]. limited by the region of voltages and frequencies smaller
Using the definition ofu, we get than the effective momentum scattering rate of the quasi-
particles,v,, = #(e = T). At higher voltages the finite
h de, >redp ) .
eV, — — —— = [y — Mn-1, (11) scattering time effects, which were neglected in (6), de-
2 ot stroy the analogy.
where vV, = &, — ®,_; is the difference of electric In principle, for typical parameters of a superconduc-
potentials per a layer. Thus, the rhs of (11) describesor both current biased and voltage biased regimes in the
violation of the Josephson relation. resistive state are possible. For simplicity we shall con-

We consider, first, the uniform case. In the case oftentrate on the case of the voltage bias, which can be real-
spatially uniform current distribution botiP, = 0 and ized, for example, when a capacity is connected in parallel
J, = Ju,—1, and using in (7)p = 0 we find u, = 0.  with the superconductor. Then we can easily find the time
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dependence of the phase difference using the Josephson relation, and calculate the current density from Eq. (3).

A2
jL = m\u< 14 [17(1 + a%) + — Vi4w? + 2 cost ) (12)

2adt(4w? + 72) 2£2

whereziw = 2¢V and we omitted the layer index in the Estimating the integrals in (14) fol' < Ay we get
uniform state. Equation (12) resembles the expression fdrom  (11) [V, — (A/2€)¢nl/Vy ~ 262 1(7p1 —

the current density across a tunnel junction. It containg,_;) (Ao/T)InAgr. One can see that the significant
dc and ac components, the characteristic frequency andolation of the Josephson relation may be created even
voltage of such a junctiomjw,. = 2¢V,, are determined by small variations of- in different layers.

by the momentum scattering tim&. ~ (Ay/T)*(fi/eT) Thus, generally speaking, the Josephson relation in
at 7 > Ay, and V. ~ (T/Ao) (h/eT) at T < Ag. At layered superconductors with Josephson interlayer cou-
eV > hvy, the dc current decreases with voltage increaspling and anisotropic pairing is satisfied under the spe-
ing. Note that at lower temperature¥,. ~ /ivy,; thus, cial conditions of the uniform current distribution only,
the I-V curve starts to decrease with voltage already atvhich is difficult to satisfy. Even in the ideally uniform

V ~ V.. Though numerically the result depends on thesamples the uniform state is expected to be unstable at
details of the angle dependence of the order parametenjgher voltages because of the negative differential con-
qualitatively it can be illustrated by the explicit calcula- ductivity. This may be the origin of the irregular character
tions withA = Ay cos2¢ at temperature¥ < Ay. of the I-V curves observed usually in the measurements
of the intrinsic Josephson effect in high-materials.
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