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Intrinsic Josephson Effect and Violation of the Josephson Relation in Layered Superconductor
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Equations describing the resistive state of a layered superconductor with anisotropic pairing are
derived. The similarity with a stack of Josephson junctions is found at small voltages only, when
current density in the direction perpendicular to the layers can be interpreted as a sum of the
Josephson superconducting, the Ohmic dissipative, and the interference currents. In the spatially
uniform state differential conductivity at higher voltages becomes negative. Nonuniformity of the
current distribution generates branch imbalance and violates the Josephson relation between frequency
and voltage. [S0031-9007(97)03075-5]

PACS numbers: 74.50.+r, 74.25.Fy, 74.80.Dm
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Layered high-Tc superconductors are known to exhib
the intrinsic Josephson effect when the current is flo
ing across the conducting layers (see, e.g., [1] and rec
measurements [2]). Though such materials can be c
sidered as a stack of 2D superconductors linked by
Josephson coupling [3,4], the theory of the ac Joseph
effect in tunnel junctions cannot be directly applied to d
scribe the resistive state of layered superconductors.
a system of series connected junctions the electric fi
is located mainly in the insulating barriers due to scree
ing by the electrons in the metal, and the superconduct
banks are in the equilibrium state. This results in ma
important consequences including the Josephson rela
between voltage and frequency. But in the layered ma
rials the superconducting layers are of atomic thicknes
and one must not ignore nonequilibrium effects which a
related to perturbations of the quasiparticle distributio
in the superconductor. On the other hand, many expe
mental evidences ford-wave or nearlyd-wave symmetry
of the superconducting order parameter in layered hig
Tc superconductors were given in the last few years, a
a compatibility of the experimental data with ad-wave
scenario was shown in many theoretical works (see, e
[5,6], and references therein). In this case the superc
ducting order parameter has nodes; i.e., the quasipart
density is never exponentially small and the nonequili
rium effects due to quasiparticles become especially i
portant. Thus, to understand the intrinsic Josephson ef
in high-Tc superconductors one must take into account t
nonequilibrium distribution of the quasiparticles and th
relaxation processes in the resistive state.

In this study we calculate current and charge den
ties in superconductors with anisotropic pairing as fun
tions of the phase differences of the order parameter
neighboring layers and of the nonequilibrium scalar p
tential related to the quasiparticle branch imbalance, i
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the difference between densities of electronlike and ho
like quasiparticles [7,8]. We find that the direct analog
with a stack of Josephson junctions is limited by noneq
librium effects and scattering processes, the differen
with Josephson junctions being the most pronounced
lower temperatures. This results in the negative diffe
ential conductivity and in the violation of the Josephs
relation. Similar effects are expected in layered superc
ductors with isotropic pairing, too, but in the latter ca
the quasiparticle density drops down exponentially wh
temperature decreases and generation of branch imbal
violating the Josephson relation would be negligible in t
most interesting region of low temperatures.

In our calculations we use the quasiclassical theory
nonequilibrium superconductivity [9] modified for the cas
of layered superconductors [10,11]. We solve the eq
tions in the discrete Wannier representation for the Keldy
[12] matrix propagator,̂Gnm. Its diagonal components ar
the retarded and advanced Green’s functions,gR andgA,
and its upper off-diagonal component,gK , is related to the
electron distribution function. We consider the hoppin
conductivity regime between the layers,t't ø h̄, which
corresponds to the case of Josephson interlayer coup
Heret' is the overlap integral describing the electron spe
trum in the perpendicular direction,e' ­ 2t' cosdk', d
is the lattice constant in the perpendicular direction, a
t is the momentum scattering time along the layers. T
approach bears some similarity to the interlayer diffusi
model [13] in which the interlayer coupling is mediate
through incoherent hopping processes,t' being neglected.
We assume that a symmetry of the superconducting or
parameter is imposed by the symmetry of the coupling p
tential in the self-consistency condition: thus we do n
address the question of the microscopic nature of the
teraction resulting in such a symmetry. Then the equat
for Ĝnm has the form
2ih̄

µ
sz

≠

≠t
Ĝnm 1

≠

≠t0
Ĝnmsz 1 v=Ĝnm

∂
1 t'

X
i­61

sAnn1iĜn1im 2 Ĝnm1iAm1imd 1 hnstdĜnm 2 Ĝnmhmst0d

­
ih̄
2t

skĜnnlĜnm 2 ĜnmkĜmmld , (1)
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wheref is the angle of the in-plane electron momentu
k· · ·l means averaging overf, andhn ­ 2isyDnsfd 1

mn 1 szvpn. Furthermore,mn ­ sh̄y2d≠xny≠t 1 eFn

is the gauge invariant scalar potential in layern, xn is
the order parameter phase in thenth layer, Fn is the
electric potential, pn ­ sh̄y2d=xn 2 seycdAn is the
superconducting momentum parallel to the layers,An is
the vector potential, andAnm ­ cosfsxn 2 xmdy2g 1

isz sinfsxn 2 xmdy2g. The Pauli matrices introduce
above act on the spin indices of Green’s functions. E
Ĝnm depends on two times (or on two energies in Fou
representation), and onf.

The right-hand side (rhs) of (1) is an elastic-collisi
integral in Born approximation. Using Born approxim
tion we neglect low-energy quasiparticle bound states
ated by impurities (see [14], and references therein), a
hence, our results are applicable provided typical ener
of quasiparticles are larger than the bandwidth of the
purity induced bound states,T .

p
h̄Tcyt.

We calculate current and charge densities assuming
clean limit, Tct ¿ h̄, and neglect, where possible, th
pairbreaking due to elastic scattering. We assume
h
e

pe

n

lly
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the case of frequencies̄hv much smaller than typical
electronic energies: temperature and the amplitude of
gap,D0.

Consider a current flowing between the layers of
quasi-two-dimensional superconductor,t' ø D0. When
the current exceeds its critical value it produces noneq
librium perturbations the scale of which is determined
the interlayer coupling, and for smallt', the value of the
nonequilibrium potentialm is small as well. Then we
may solve Eq. (1) perturbatively, consideringt' and m

as small values. We calculate the off diagonal in lay
number components ofgK in the linear approximation in
t'; these components are related to the current densit
the direction perpendicular to the layers. The diagon
in layer numbers component of TrgK determines pertur-
bations of the charge density; we calculate it up to t
second order int' neglectingm in comparison toD.
The structure of the solution can be demonstrated by
combinationgj ­ Ann21gK

n21n 2 gK
nn21An21n the integral

of which over energies andf yields the current density
across the layers [10]. In the Fourier representation
get
gj ­ 2 it' tanh
e

2T

µ
D2

sjRd3
2

D2

sjAd3

∂
Sv 2

X
v1

dnF

de

4it'usjej 2 jDjd
asv1 1 iñd

3

∑
v1sa2sv1cv2v1 2 cv1 sv2v1 d 1

X
v2

v2smn21 2 mndv2

h̄sv2 1 iñd ksv2 1 inbdysv2 1 iñdl
ssv2v1sv12v2 1 cv2v1cv12v2 d

∏
,

(2)
nce

not
nd
We
eter
s:
where S, s, and c are Fourier components of sinwn,
sinwny2, and coswny2, respectively, andwn ­ xn 2

xn21 is the phase difference between the layers. T
first term in (2) describes perturbations of the retard
and advanced propagators; it is related to the su
current, jRsAd ­ 6

p
se 6 i0d2 2 jDj2. The last terms

describe perturbations of the distribution function a
contribute to the quasiparticle current,nF is Fermi
distribution function, anda ­ eyj, j ­

p
e2 2 jDj2.

Furthermore,̃n ­ s1ytd fkal 2 sDyed kDyjlg is the effec-
tive momentum scattering rate for quasiparticles. Fina
nb ­ s1ytd fkal 2 a21 2 sDyed kDyjlg is the effective
e
d
r-

d

,

branch imbalance relaxation rate. The branch imbala
is related to the nonequilibrium potentialm [7,8,15]. In
the case of isotropic pairing elastic scattering does
contribute to the relaxation of the branch imbalance, a
the latter relaxes via energy scattering processes.
shall consider the opposite case of the order param
close to d-wave symmetry, when the gap has node
kDsfdl2 ø kDsfd2l. In this limit we may simplify the
equations because both̃n and nb do not depend onf,
ñ ­ s1ytd kal, and nb ­ s1ytd kD2sfdaye2l. Then the
expression for the current density between layersn and
n 2 1 acquires the form
j' ­ jc sinwn 1
1

ed

Z t

2`

dt1

t

"√Z t1

2`

dt2

t
ŝbst, t1, t2d fmn21st2d 2 mnst2dg 1 ŝst, t1d

h̄
2

≠wn

≠t1

!
3 cos

wnstd 2 wnst1d
2

1 ŝist, t1d
h̄
2

≠wn

≠t1
cos

wnstd 1 wnst1d
2

#
, (3)

where generalized conductivities are given by

ŝst, t1d ­ sN'

ø
e

j
e2ñst2t1d

¿
e

2 ŝist, t1d, ŝist, t1d ­ sN'

ø
D2

2ej
e2ñst2t1d

¿
e

, (4)

ŝbst, t1, t2d ­ sN'

ø
j

e
e2ñst2t1de2nbst12t2d

¿
e

. (5)
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Averaging over the angles and quasiparticle energies in
and (5) is performed according to

k· · ·le ­ 2
Z `

2`

dekusjej 2 jDsfdjd
dnF

de
s· · ·dl .

The first term in (3) describes the Josephson curre
jc ­ h̄c2ys4pel

2
'dd being the critical current,l' is the

penetration length for a superconducting current perp
dicular to the layers. The quasiparticle contribution
given by the last terms containing retardation effects
lated to the momentum and branch imbalance relaxati
These effects correspond to factorssv 1 ind in (2). In
the limit of D ! 0 these terms reduce to the Ohmic cu
rent sN'Eys1 1 ivtd, wheresN' is the static conduc-
tivity in the normal state. In the low frequency limi
the quasiparticle contribution may be interpreted as t
Ohmic and interference current (the last term), the Ohm
current consisting of two contributions, one of which is re
lated to the branch imbalance and to its relaxation. Wh
w is a slowly varying function of time,v ø ñ, the retar-
dation effects can be neglected, and the terms depend
on the phase difference acquire a simple form typical f
w
h
a

th
tr

e

o

4)
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the Josephson tunnel junctions:

j' ­ jc sinwn 1
h̄

2ed

µ
s

≠wn

≠t
1 si

≠wn

≠t
coswn

∂
,

(6)

where conductivities are given by (4) and (5) with th
exponents integrated over timet1, which results in factors
1yñ. NearTc one getss ­ sN'. At low temperatures,
T ø D0, the quasiparticle conductivity is of the order o
the normal state conductivity, because the decrease o
normal carrier density upon cooling is compensated
the decrease of the effective scattering rate of quasip
ticles by the same factor~ TyD0. For the simplest
angular dependence of the gap parameter with thed-wave
symmetry,D ­ D0 cos2f, we find s ­ 3sN'y4. For
the interference term we getsi ­ sDyT dsN' at T ¿ D,
andsi , sN'y4 at lower temperatures.

The value ofm in the current density (3) must be de
termined from the separate equation describing the bra
imbalance dynamics. Such an equation is given by
Poisson’s equation with the charge density calculated fr
the integral of TrgK

nn over energies. In the Fourier repre
sentation we get for the charge densityrn in thenth layer
i-
ty
2ivrn ­ 2ivg
k2

4pe
mn 2 =ss2k=mnye 1 ivs1kPnd 1

1
ed2

X
v1

sJn 2 Jn21d , (7)

whereJn ­
P

v2
s2'sn; v, v1, v2d fmnsv2d 2 mn21sv2dg 2 s1'sn; v1, vd2ih̄v1wnsv1d describes the flow of quas

particles between layersn andn 2 1 generating the branch imbalance. Note thatssnd in the equations for charge densi
depend on the branch imbalance scattering rate, they are different from the conductivities for current densities.

g ­ 1 2

ø
va

sv 1 inbd

¿
e

, skk ­ sNk

ø
ia122kvk

tsv 1 iñd sv 1 inbdk

¿
e

, (8)

s1'snd ­ sN'

ø
ia21vscv1cv2v1 2 sv1 sv2v1 d

tsv1 1 iñd sv 1 inbd

¿
e

, (9)

s2'snd ­ sN'

ø
ivv2sa23cv12v2 cv2v1 2 a21sv12v2 sv2v1 d

tsv1 1 iñd sv 1 inbd sv2 1 inbd
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e
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From Eq. (7) one can see that the branch imbalancemn fi

0 is generated by a nonuniform quasiparticle current flo
In the limit of small phase differences between t

layers Eqs. (3)–(5) and (7)–(10) describe the line
response characterized by different conductivities for
response to the solenoidal and to the potential elec
fields [16].

Using the definition ofmn we get

eVn 2
h̄
2

≠wn

≠t
­ mn 2 mn21 , (11)

where Vn ; Fn 2 Fn21 is the difference of electric
potentials per a layer. Thus, the rhs of (11) describ
violation of the Josephson relation.

We consider, first, the uniform case. In the case
spatially uniform current distribution both=Pn ­ 0 and
Jn ­ Jn21, and using in (7)r ­ 0 we find mn ­ 0.
.
e
r
e
ic

s

f

Then, according to (11), the Josephson relation betw
the frequency and the electric potential difference pe
layer,Vn, is satisfied. In the limit of small frequencies th
current-phase relation (6) has the form similar to Jose
son tunnel junctions, and the effects typical for Jose
son junctions must be observed. However, the analog
limited by the region of voltages and frequencies sma
than the effective momentum scattering rate of the qua
particles,nqp ø ñse ­ Td. At higher voltages the finite
scattering time effects, which were neglected in (6), d
stroy the analogy.

In principle, for typical parameters of a supercondu
tor both current biased and voltage biased regimes in
resistive state are possible. For simplicity we shall co
centrate on the case of the voltage bias, which can be r
ized, for example, when a capacity is connected in para
with the superconductor. Then we can easily find the ti
3553
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).
dependence of the phase difference using the Josephson relation, and calculate the current density from Eq. (3

j' ­ sN'

ø
V

2adts4v2 1 ñ2d

∑
ñs1 1 a2d 1

D2

2j2

p
4v2 1 ñ2 cosvt
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where h̄v ­ 2eV and we omitted the layer index in the
uniform state. Equation (12) resembles the expression
the current density across a tunnel junction. It contai
dc and ac components, the characteristic frequency
voltage of such a junction,̄hvc ; 2eVc, are determined
by the momentum scattering time:Vc , sD0yT d2sh̄yetd
at T ¿ D0, and Vc , sTyD0d sh̄yetd at T ø D0. At
eV ¿ h̄nqp the dc current decreases with voltage increa
ing. Note that at lower temperatureseVc , h̄nqp ; thus,
the I-V curve starts to decrease with voltage already
V , Vc. Though numerically the result depends on th
details of the angle dependence of the order parame
qualitatively it can be illustrated by the explicit calcula
tions withD ­ D0 cos2f at temperaturesT ø D0.

j' ­
sN'

8d

Ω
3V at V ø Vc ,
sp h̄TyeD0td2V 21 at V ¿ Vc . (13)

The origin of the negative differential conductivity a
high voltages can be interpreted as the decrease of the
sipation at frequencies higher than the quasiparticle sc
tering rate,v ¿ nqp , or, equivalently, using the analogy
to the negative differential conductivity in semiconducto
superlattices [17] at voltages per period higher than bo
the width of the miniband and the momentum scatteri
rate. In the latter case the chemical potential in the ad
cent layers is shifted by the value of the voltage excee
ing the width of the band of the allowed electronic state
therefore, the electron’s energy in one layer correspon
to the forbidden states in the neighboring layer. So, t
effect must be present in the normal state of layered c
ductors as well (see also [18]).

The negative differential conductivity indicates to a
instability of the uniform resistive state at voltageseV .

h̄nqp . The instability must result in a nonuniform curren
distribution in which, according to (7),m fi 0 and the
Josephson relation is violated. Nonuniform current dist
bution may be created also at lower voltages due to ma
other reasons, e.g., due to the Meisner effect, contacts
nonuniformities of the material. Thus, the correction
the Josephson relation in (11) depends on experime
conditions. For illustration we estimate such a correcti
for an artificial but easily treatable model of the nonun
formity created by a layer dependent impurity scatteri
time,tn. We consider the case when variations oftn with
n are small, and the nonequilibrium potentialm can be
calculated perturbatively. Then using conditionrn ­ 0
we get for the case of low frequenciesv ø nqp

mn ­

ø
t2
'

2h̄a

µ
Ùwn

nbnsñn 1 ñn21d
2

Ùwn11

nbnsñn 1 ñn11d

∂¿
e

.

(14)
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Estimating the integrals in (14) forT ø D0 we get
from (11) fVn 2 sh̄y2ed ÙwngyVn , h̄22t2

'tnstn11 2

tn21d sD0yT d ln D0t. One can see that the significan
violation of the Josephson relation may be created ev
by small variations oft in different layers.

Thus, generally speaking, the Josephson relation
layered superconductors with Josephson interlayer c
pling and anisotropic pairing is satisfied under the sp
cial conditions of the uniform current distribution only
which is difficult to satisfy. Even in the ideally uniform
samples the uniform state is expected to be unstable
higher voltages because of the negative differential co
ductivity. This may be the origin of the irregular characte
of the I-V curves observed usually in the measuremen
of the intrinsic Josephson effect in high-Tc materials.
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