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Spinodal Decomposition in Binary Gases
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We carried out three-dimensional simulations, with abhatx 10° particles, of phase segregation
in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving
Boltzmann-Vlasov equations. Using a combination of direct simulation Monte Carlo for the short range
collisions and a version of particle-in-cell evolution for the smooth long range interaction, we found
dynamical scaling after the ratio of the interface thickness to the domain size is less-@hian The
scaling lengthR(¢) grows at late times like*, with @ = 1 for critical quenches and = % for off-
critical ones. We also measured the variation of temperature, total particle density, and hydrodynamic
velocity during the segregation process. [S0031-9007(97)03106-2]

PACS numbers: 64.75.+g, 47.70.Nd, 68.10.—m

The process of phase segregation through which a sysoexistence region they will describe gas-gas segregation
tem evolves towards equilibrium following a temperature[14] into two phases, one rich in particles of type 1 and
quench from a homogeneous phase into a two phase rere other rich in particles of type 2. (Examples of gas
gion of its phase diagram has been of continuing intereshixtures that have a miscibility gap are helium-hydrogen,
during the last decades [1], but many problems still rehelium-nitrogen, neon-xenon, etc. [14].) We believe
main to be solved. This is particularly so for fluids,whenthat the model contains the essential features of phase
particle, momentum, and energy densities are conserveskparation in general binary fluid mixtures.
locally; these are currently the focus of both numerical To simulate our system we modeled the Boltzmann
studies [2—7] and microgravity experiments [8,9]. collisional part using a stochastic algorithm due to Bird

In this Letter we present computer simulations off15] known as direct simulation Monte Carlo (DSMC),
spinodal decomposition in a three-dimensional mixturgypijle for the Viasov part we used the particle-to-grid-
of two kinds of particles that we label 1 and 2 using Aweighting method, well known in plasma physics [16].
novel microscopic dynamics and computational schemgp, the DSMC method the physical space is divided into
The particles interact with each other through short rangegg|s containing typically tens of particles. The main

interactions modeled here by hard spheres having th@gredients of this procedure are the alternation of free
same mass: and diameter. Particles of different kinds ¢4, oyer a time interva\s and representative collisions

interact alsso through a long range repulsive_Kac pOtentiaIamong pairs of particles sharing the same cell. In the
V(r) = yvU(yr). The equilibrium properties of such

I und 4 th . ; particle-to-grid-weighting algorithm the particle densities
a Snyte;n areh we tun g:;too X It eret IS ever: a ”%mou&re computed on a spatial grid through some weighting
irrﬁﬁisgblg spta?eselcganv?/HiEE i?] tr?ewlin?imp—ef?) u;eis iso arHepending on the particle position; then the Vlasov forces
d ived by th [10], field th W?,] th[ d] iy are calculated on the same grid. Finally, the forces at the
described by the g“ea”‘ 1€ eory. en the density position of each particle are interpolated from the forces
is low enough”iﬁf < 1, and the potential sufficiently on the grid. The coupling of these methods, which have
:gngvéﬁnged’foz(im;zdl’ ;h(;fr:ei %,n%gy(%flrfhe(%yifem been extensively used individually, made possible our
N D JOyE = kgl Jlmir) i simulations of phase segregation with X 10° particles,
my(F) INny(H)ldr + [VF = Bani(Fona(F)dFidiz and oy only modest computational resources: a typical run
they — 0 critical temperature, which should be an UPPer, ok about 32 CPU hours on a 233 MHz Aloha Station
bound for7 aty > 0, is given byksT® = Ln [U(r) d7 . P '
) ¢ aty , IS QIVEN bykpl o = 3 It appears that this method can be extended to the study
In this regime the dynamical evolution of the system

. of the effects of phase segregation on inhomogeneous
should be W.e" Qescrlbed by two coupled BOItzmarm'hydrodynamical flows of practical importance [17].
Vlasov equations:

> Since one of our main interests was the late time

afi + - a{i + ki a{i =J[fi,f1 + f»], (1) hydrodynamical regime, a delicate balance had to be struck

at ar m  Jv between the size of the system, the range of the potential,

i = 1,2, where f;(F,v,1) are the one-particle distribu- the temperature, and the particle density, making sure that
tion functions, F;(F,1) = =V [V([F — Fn;(7')d7',  each of the methods is used within its range of validity and

nj(#")y = [f;(7,0,)do with i,j =1,2, i # j, and thattheir combination remains computer manageable. On
J[ f,g] is the Boltzmann collision operator for hard core the one hand the potential must be reasonably long ranged
interactions [12]. Kinetic equations of this type have beerso that the Vlasov description is physically appropriate

proposed in [13], and if the system is quenched inside thand numerically sound, and on the other hand it must
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have a range much smaller than the size of the system. We first present results for critical quenches (equal
This restriction made necessary the use of two spatialolume fractions of the two phases). Three different po-
grids: a somewhat coarse one for the collisions and a findential ranges were used, and for each one of them 10-12
grid for the long range potential. It also imposed thequenches were performed. The domain size was probed
use of quadratic spline interpolation for the calculation ofusing the pair correlation functionC(7,¢) = V! X
grid quantities and a ten-point difference scheme for théd ; ¢(x,1)¢(x + 7,1)), where ¢ = (n; — ny)/(n; +
calculation of the forces [16]. n,) is the local order parametet; andn, are the local

Our results were obtained using a system with 1382 40@article densities,V is the volume, and the average
particles in a cube with periodic boundary conditions. Weis over the different runs. We determined(7,r) by
also studied smaller systems to identify unavoidable finitean_inverse Fourier transform of the structure function
size effects. The interaction potential used was Gaussiadi(k, 1) = |¢(k,1)|*; the order parametes(7,r) and its
Ux) = mr‘ie—xz, a > 0, but there is no reason to be- Fourier transformé (k, 1) were computed on &4 X
lieve that different repulsive potentials would qualitatively 64 < 64 cubic grid. The first zero of the spherically
change the results. All quenches were performed at a tdveraged correlation functionC'(r,7), was used as a
tal particle density:d® = 0.01 and an initial temperature Measure of the typical domain sizg(z). The data are
To, To/T° = 0.5. The initial conditions for each run were averages of the independent runs.
random positions for all particles and velocities distributed Assuming the existence of a single characteristic length
according to a Maxwellian of constant temperature. (Inthescale, the dynamical scaling prediction [1] for the late
DSMC evolution, as in the Boltzmann-Vlasov equations time spherically averaged correlation functiorcig-, 1) =
the hard cores only enter in determining the collision cros§[7/R(#)]. In Fig. 1 the correlation function for potential
sections.) The total energy of the system was very welfangey ' = 0.4 is plotted starting at = 160, showing
conserved by the dynamics. This meant that the kinetiéhat the system is well within the scaling regime. _
energy and hence the temperature increased as the systenpimple dimensional analysis of the hydrodynamical
segregated, but at late times it changed very slowly on thgvelution equations in the limit of large domain sizes,
time scale of our simulations. We indicate the final tem-aPPropriate for late times, yields a linear growth law for
peraturel’ in Figs. 1-4. The effective number of particles the domain sizes [191R(z) = (o/n)t, whenR is below
in the range of the potential was about 100—500. R, = n*/poanda: law,R(t) « (o/p)3t3, for R above

In the following we compare results of our simula- R, [20,21]; o is the surface tension coefficient, is the
tions with available theoretical and experimental work andshear viscosity, ang is the density. We measured
check various assumptions made in the former, e.g., the n&sing Laplace’s law andy by studying the decay of a
glect of density and temperature variations. We are alsginusoidal velocity profile. The time evolution &f(t) in
currently investigating both formal and rigorous Chapman-our simulations is at late times (see Fig.R)t) = a +
Enskog and Hilbert expansion methods for derivation of?(a/7)t, with b = 0.13 = 0.2 (0 = 260 andn = 3250
macroscopic evolution equations for this model [18]. Thefor y~' = 0.4, T/T? = 0.6). This numerical factor is
units used for lengths and times are the mean-free patimilar to the one observed in experiments [8] and recent

A= (2577nd2)‘11, and mean-free timer = A/c, where
¢ = (2kgTy/m)> andTy = %T? is the initial temperature. 10 ' ' '
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FIG. 1. Scaled two-point correlation function for critical 0-4 curve. A stralglht line fit & = 1) is drawn for late times
quench withy ! = 0.4. Final temperaturd = 0.67°. and ax 13 fit (a = 3) is drawn for early times.
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' : ' to be roughly equal toy !, far away from the critical
volurme temperature, as we are [22]. . _
fraction T/10 We also looked directly at the wall profiles separating

200 | * 028 057 different phases and found that they are approximately de-
° 922 93¢ scribed by solitonic solutions [23]. These are particle den-
sitiesn;(z) depending on a single spatial coordinate, such
that fi(z,v) = n;(z) exp(—mv?/2kzT) are stationary
solutions of Eq. (1) and,(*«) = ny(+~) are the mean-
field equilibrium densities at temperatufe The order
parameter profiles which satisfy the equation and the ones
observed in the simulation (see Fig. 4) have both approxi-
mately the hyperbolic tangent form [22], taBii2¢£), with
z the coordinate perpendicular to the domain wall gral
parameter which characterizes the interface thickness. We
0, 00 200 300 found that this thickness is about 50% bigger than'.
t The total density is about 20% smaller (fgr ' = 0.4,
FIG. 3. Domain growth for off-critical quenches with ' =  7/T? = 0.6) at the interface than in the bulk, in very
0.4; straight line fits are drawn. good agreement with the solitonic solution (see Fig. 4).
The solitonic profiles were calculated at an effective tem-
peratureT.¢; for which the asymptotic values of the order
| . . . arameter matched the ones observed in the simulations.
arge scale molecular dynamics simulations [7]. Whethe h : : )

2 . ese asymptotically matched mean-field profiles are
or not a crossover to a growth occurs at later times, steeper (in units ofy~') than the ones observed, with
larger domain sizes cannot be decided by our presefeiier agreement ag is decreased. We believe that this
results. We estimated that we would need a system with Q}iscrepancy is due to the fact thay7. > Test/T?, as

least 4 times as many particles as the present one to obseryg, equilibrium curve fory > 0 is flatter aroundr, than
the growth of domains with sizes bigger thap. : ¢

The I : d the 1 hen d .the mean-field curve.

| € I|_neaE) regime S;arltj around t 3 time when %/nzml— The need for a clear separation between boundary width
cal scaling begins to hold, I.e., at a domain size of aboubng gomain size may explain why in earlier molecular
12-15 timesy~ . This is in agreement with Siggia [19] 4y namics simulations [2], a smaller exponent is found: in
who argued that the linear regime is due to surface tensio ose computations the maximum domain size observed is

driven flows, so the interfaces should be well defined, i'e'bnl 6-8 times the potential ranae. so the hvdrodvnamic
their width should be small compared to the domain size, y P ge, y y

This width is usually taken to be of ordér the correlation regime was probably never reacheq. In s'mU|at'°nS using
length of order parameter fluctuations. One expects the lattice BoItzmann_ method.the interaction range is Qf
' the order of one lattice spacing and the hydrodynamic

exponent is observed when the domain size is about ten
T . . T T lattice units [4], in agreement with our analysis. ]

At early times the growth is consistent with &
behavior, for all potential ranges [19,24]. This exponent
is not associated with a scaling regime and it may not be
universal, but it is not inconsistent with the experimental
results [8,9]. In fact, we were able to collapse the three
curves onto each other through scaling of the lengths and
times Fig. 2 [6].

Off-critical quenches were performed for a single range
of the potential and three volume fractions. To our knowl-
edge no published results of such simulations exist, al-
though they are mentioned in [7]. Therefore, we compare
our results to recent experimental work [9] and analyze
them using the known coarsening mechanisms [19,25].
B ra—rs s : L - - In Fig. 3 we present the domain growth fer ! = 0.4

and volume fractions 0.16, 0.22, and 0.28. We @lotr)
vs t, and the late times regime is clearly consistent with
FIG. 4. Total densityn (+) and order parameter (+)  an exponent ofy . In this regime the system satisfies

variations at the interface between the two phases; = 0.4 . .
andT/T? = 0.6. The full lines are the solitonic solution (see dynamical77 scaling very well. The presence of a late

1
text). times ¢35 growth at volume fractions less or equal than

R3(t)
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