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Spinodal Decomposition in Binary Gases
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(Received 10 December 1996)

We carried out three-dimensional simulations, with about1.4 3 106 particles, of phase segregation
in a low density binary fluid mixture, described mesoscopically by energy and momentum conse
Boltzmann-Vlasov equations. Using a combination of direct simulation Monte Carlo for the short r
collisions and a version of particle-in-cell evolution for the smooth long range interaction, we fo
dynamical scaling after the ratio of the interface thickness to the domain size is less than,0.1. The
scaling lengthRstd grows at late times liketa , with a ­ 1 for critical quenches anda ­ 1

3 for off-
critical ones. We also measured the variation of temperature, total particle density, and hydrody
velocity during the segregation process. [S0031-9007(97)03106-2]

PACS numbers: 64.75.+g, 47.70.Nd, 68.10.–m
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The process of phase segregation through which a
tem evolves towards equilibrium following a temperatu
quench from a homogeneous phase into a two phase
gion of its phase diagram has been of continuing inte
during the last decades [1], but many problems still
main to be solved. This is particularly so for fluids,wh
particle, momentum, and energy densities are conse
locally; these are currently the focus of both numeri
studies [2–7] and microgravity experiments [8,9].

In this Letter we present computer simulations
spinodal decomposition in a three-dimensional mixtu
of two kinds of particles that we label 1 and 2 using
novel microscopic dynamics and computational sche
The particles interact with each other through short ra
interactions modeled here by hard spheres having
same massm and diameterd. Particles of different kinds
interact also through a long range repulsive Kac poten
V srd ­ g3Usgrd. The equilibrium properties of suc
a system are well understood; there is even a rigor
proof of a phase transition at low temperatures to
immiscible state [10], which in the limitg ! 0 [11] is
described by the mean-field theory. When the densitn
is low enough,nd3 ø 1, and the potential sufficiently
long ranged,ng23 ¿ 1, the free energy of the system
is well approximated byF ­ kBT

R
fn1s$rd ln n1s$rd 1

n2s$rd ln n2s$rdgdr 1
R

V sj$r1 2 $r2jdn1s$r1dn2s$r2dd $r1d $r2 and
theg ! 0 critical temperature, which should be an upp
bound forT

g
c atg . 0, is given bykBT0

c ­
1
2 n

R
Usrd d $r.

In this regime the dynamical evolution of the syste
should be well described by two coupled Boltzman
Vlasov equations:

≠fi

≠t
1 $y ?

≠fi

≠$r
1

$Fi

m
?

≠fi

≠ $y
­ Jf fi , f1 1 f2g , (1)

i ­ 1, 2, where fis$r , $y, td are the one-particle distribu
tion functions, $Fis$r, td ­ 2=

R
V sj$r 2 $r 0jdnjs$r 0d d $r 0,

njs$r 0d ­
R

fjs$r 0, $y, td d $y with i, j ­ 1, 2, i fi j, and
Jf f, gg is the Boltzmann collision operator for hard co
interactions [12]. Kinetic equations of this type have be
proposed in [13], and if the system is quenched inside
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coexistence region they will describe gas-gas segregat
[14] into two phases, one rich in particles of type 1 an
the other rich in particles of type 2. (Examples of ga
mixtures that have a miscibility gap are helium-hydroge
helium-nitrogen, neon-xenon, etc. [14].) We believ
that the model contains the essential features of ph
separation in general binary fluid mixtures.

To simulate our system we modeled the Boltzman
collisional part using a stochastic algorithm due to Bir
[15], known as direct simulation Monte Carlo (DSMC)
while for the Vlasov part we used the particle-to-grid
weighting method, well known in plasma physics [16
In the DSMC method the physical space is divided in
cells containing typically tens of particles. The mai
ingredients of this procedure are the alternation of fr
flow over a time intervalDt and representative collisions
among pairs of particles sharing the same cell. In t
particle-to-grid-weighting algorithm the particle densitie
are computed on a spatial grid through some weighti
depending on the particle position; then the Vlasov forc
are calculated on the same grid. Finally, the forces at t
position of each particle are interpolated from the forc
on the grid. The coupling of these methods, which ha
been extensively used individually, made possible o
simulations of phase segregation with1.4 3 106 particles,
with only modest computational resources: a typical ru
took about 32 CPU hours on a 233 MHz Alpha Statio
It appears that this method can be extended to the stu
of the effects of phase segregation on inhomogeneo
hydrodynamical flows of practical importance [17].

Since one of our main interests was the late tim
hydrodynamical regime, a delicate balance had to be stru
between the size of the system, the range of the potent
the temperature, and the particle density, making sure t
each of the methods is used within its range of validity an
that their combination remains computer manageable.
the one hand the potential must be reasonably long ran
so that the Vlasov description is physically appropria
and numerically sound, and on the other hand it mu
© 1997 The American Physical Society 3499
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have a range much smaller than the size of the syste
This restriction made necessary the use of two spa
grids: a somewhat coarse one for the collisions and a fin
grid for the long range potential. It also imposed th
use of quadratic spline interpolation for the calculation
grid quantities and a ten-point difference scheme for t
calculation of the forces [16].

Our results were obtained using a system with 1 382 4
particles in a cube with periodic boundary conditions. W
also studied smaller systems to identify unavoidable finit
size effects. The interaction potential used was Gaussi
Usxd ­ ap

2
3

2 e2x2
, a . 0, but there is no reason to be

lieve that different repulsive potentials would qualitativel
change the results. All quenches were performed at a
tal particle densitynd3 . 0.01 and an initial temperature
T0, T0yT 0

c ­ 0.5. The initial conditions for each run were
random positions for all particles and velocities distribute
according to a Maxwellian of constant temperature. (In t
DSMC evolution, as in the Boltzmann-Vlasov equation
the hard cores only enter in determining the collision cro
sections.) The total energy of the system was very w
conserved by the dynamics. This meant that the kine
energy and hence the temperature increased as the sy
segregated, but at late times it changed very slowly on
time scale of our simulations. We indicate the final tem
peratureT in Figs. 1–4. The effective number of particle
in the range of the potential was about 100–500.

In the following we compare results of our simula
tions with available theoretical and experimental work an
check various assumptions made in the former, e.g., the
glect of density and temperature variations. We are a
currently investigating both formal and rigorous Chapma
Enskog and Hilbert expansion methods for derivation
macroscopic evolution equations for this model [18]. Th
units used for lengths and times are the mean-free pa
l ­ s2

1

2 pnd2d21, and mean-free time,t ­ lyc, where
c ­ s2kBT0ymd

1

2 andT0 ­
1
2 T0

c is the initial temperature.

FIG. 1. Scaled two-point correlation function for critica
quench withg21 ­ 0.4. Final temperatureT ­ 0.6T0
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We first present results for critical quenches (equa
volume fractions of the two phases). Three different po
tential ranges were used, and for each one of them 10–
quenches were performed. The domain size was prob
using the pair correlation function,Cs$r , td ­ V 21 3

k
P

$x fs $x, tdfs$x 1 $r, tdl, where f ­ sn1 2 n2dysn1 1

n2d is the local order parameter,n1 and n2 are the local
particle densities,V is the volume, and the average
is over the different runs. We determinedCs$r , td by
an inverse Fourier transform of the structure functio
Ss $k, td ­ jf̃s$k, tdj2; the order parameterfs$r, td and its
Fourier transformf̃s$k, td were computed on a64 3
64 3 64 cubic grid. The first zero of the spherically
averaged correlation function,Csr , td, was used as a
measure of the typical domain size,Rstd. The data are
averages of the independent runs.

Assuming the existence of a single characteristic leng
scale, the dynamical scaling prediction [1] for the lat
time spherically averaged correlation function isCsr, td .
CfryRstdg. In Fig. 1 the correlation function for potential
rangeg21 ­ 0.4 is plotted starting att ­ 160, showing
that the system is well within the scaling regime.

Simple dimensional analysis of the hydrodynamica
evolution equations in the limit of large domain sizes
appropriate for late times, yields a linear growth law fo
the domain sizes [19],Rstd ~ ssyhdt, whenR is below
Rh ­ h2yrs and at

2

3 law,Rstd ~ ssyrd
1

3 t
2

3 , for R above
Rh [20,21]; s is the surface tension coefficient,h is the
shear viscosity, andr is the density. We measureds
using Laplace’s law andh by studying the decay of a
sinusoidal velocity profile. The time evolution ofRstd in
our simulations is at late times (see Fig. 2)Rstd ­ a 1

bssyhdt, with b . 0.13 6 0.2 (s ­ 260 andh ­ 3250
for g21 ­ 0.4, TyT0

c ­ 0.6). This numerical factor is
similar to the one observed in experiments [8] and rece

FIG. 2. Scaled domain growth at critical quench; theg21 ­
0.3 andg21 ­ 0.5 curves have been collapsed onto theg21 ­
0.4 curve. A straight line fit (a ­ 1) is drawn for late times
and a~ t

1
3 fit (a ­

1
3 ) is drawn for early times.



VOLUME 78, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 5 MAY 1997

,
e
h
e

m
o
]

.e
z

e

g
de-
n-
ch

nes
xi-

We

y
4).
m-
r

ons.
re

h
is

idth
ar
in
d is
ic

ing
of
ic

ten

nt
be

tal
ee
and

ge
l-
al-
re

ze
5].

ith
s
te

n

FIG. 3. Domain growth for off-critical quenches withg21 ­
0.4; straight line fits are drawn.

large scale molecular dynamics simulations [7]. Wheth
or not a crossover to at

2

3 growth occurs at later times
larger domain sizes cannot be decided by our pres
results. We estimated that we would need a system wit
least 4 times as many particles as the present one to obs
the growth of domains with sizes bigger thanRh.

The linear regime starts around the time when dyna
cal scaling begins to hold, i.e., at a domain size of ab
12–15 timesg21. This is in agreement with Siggia [19
who argued that the linear regime is due to surface tens
driven flows, so the interfaces should be well defined, i
their width should be small compared to the domain si
This width is usually taken to be of orderj, the correlation
length of order parameter fluctuations. One expectsj

FIG. 4. Total density n spd and order parameterf s1d
variations at the interface between the two phases;g21 ­ 0.4
andTyT 0

c ­ 0.6. The full lines are the solitonic solution (se
text).
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to be roughly equal tog21, far away from the critical
temperature, as we are [22].

We also looked directly at the wall profiles separatin
different phases and found that they are approximately
scribed by solitonic solutions [23]. These are particle de
sitiesniszd depending on a single spatial coordinate, su
that fisz, $yd ­ niszd exps2my2y2kBTd are stationary
solutions of Eq. (1) andn1s6`d ­ n2s7`d are the mean-
field equilibrium densities at temperatureT . The order
parameter profiles which satisfy the equation and the o
observed in the simulation (see Fig. 4) have both appro
mately the hyperbolic tangent form [22], tanhszy2jd, with
z the coordinate perpendicular to the domain wall andj a
parameter which characterizes the interface thickness.
found that this thickness is about 50% bigger thang21.
The total density is about 20% smaller (forg21 ­ 0.4,
TyT0

c ­ 0.6) at the interface than in the bulk, in ver
good agreement with the solitonic solution (see Fig.
The solitonic profiles were calculated at an effective te
peratureTeff for which the asymptotic values of the orde
parameter matched the ones observed in the simulati
These asymptotically matched mean-field profiles a
steeper (in units ofg21) than the ones observed, wit
better agreement asg is decreased. We believe that th
discrepancy is due to the fact thatTyT

g
c . TeffyT 0

c , as
the equilibrium curve forg . 0 is flatter aroundTc than
the mean-field curve.

The need for a clear separation between boundary w
and domain size may explain why in earlier molecul
dynamics simulations [2], a smaller exponent is found:
those computations the maximum domain size observe
only 6–8 times the potential range, so the hydrodynam
regime was probably never reached. In simulations us
the lattice Boltzmann method the interaction range is
the order of one lattice spacing and the hydrodynam
exponent is observed when the domain size is about
lattice units [4], in agreement with our analysis.

At early times the growth is consistent with at
1

3

behavior, for all potential ranges [19,24]. This expone
is not associated with a scaling regime and it may not
universal, but it is not inconsistent with the experimen
results [8,9]. In fact, we were able to collapse the thr
curves onto each other through scaling of the lengths
times Fig. 2 [6].

Off-critical quenches were performed for a single ran
of the potential and three volume fractions. To our know
edge no published results of such simulations exist,
though they are mentioned in [7]. Therefore, we compa
our results to recent experimental work [9] and analy
them using the known coarsening mechanisms [19,2
In Fig. 3 we present the domain growth forg21 ­ 0.4
and volume fractions 0.16, 0.22, and 0.28. We plotR3std
vs t, and the late times regime is clearly consistent w
an exponent of13 . In this regime the system satisfie
dynamical77 scaling very well. The presence of a la

times t
1

3 growth at volume fractions less or equal tha
3501
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about0.3 was observed recently in microgravity experi
ments [9] and reasonably explained theoretically using
droplet coalescence mechanism [19,25]. This regime w
also analyzed by Siggia [19] who predicted a prefacto
proportional toy

1

3 (y being the volume fraction of the
minority phase). In our simulations the prefactors are
reasonable agreement with the above prediction. Furth
more, we can clearly see the motion and coalescence
the droplets in movies of the dynamics.

In writing down evolution equations for the order pa
rameter and velocity fields in a symmetric binary syste
with momentum and energy conservation it is generally a
sumed that the density and temperature variations are sm
[26]. We were able to check these quantities directly b
dividing the system into “hydrodynamical” cells, each con
taining about 100 particles, and computing the order p
rameter, density, temperature [kBT ; 1

3 msk $y2l 2 k $yl2d,
averages over the cell], and fluid velocity in each cel
While the statistical fluctuations of these quantities are n
vanishingly small, as they should be for true hydrodynam
variables, they are small enough for such a description
be at least reasonable. We found that at late times a
away from the domain boundaries the values of the dens
and order parameter were close to their equilibrium value
The temperature appeared to be uniform, with normal equ
librium fluctuations everywhere in the system. This show
that the time scales over which heat transport takes pla
are much smaller than the time scales over which there
significant phase separation.

If, as argued, the linear growth regime is due to su
face tension driven flows, one would expect bigger hy
drodynamic velocities close to the interfaces than in th
bulk. We looked therefore at the distribution of hydrody
namic velocities as a function of the order parameter f
critical quenches. As the system segregates, bigger h
drodynamic velocities are typically observed close to th
domain walls, identified by small values of the order pa
rameter. While this may be due in part to the density bein
smaller at the boundary between domains, it is also cons
tent with the idea that at late times the flows are generat
mainly by the curvature of well formed interfaces. We ar
planning to study this issue more carefully using bigge
systems.

A natural refinement of our model would be the us
of the Enskog correction for the collisions [12] (which
would require numerically replacing the DSMC part with
its recently proposed extension [27]) and of long rang
attractive forces between like particles.

We believe that we have introduced a new model whic
is closer to reality than lattice gases usually simulate
but still tractable numerically by the new techniques tha
we have introduced. These techniques are of independ
interest and have enabled us to compute temperat
changes, density variations, and profiles not done befo
Furthermore, we can compare our results to some ex
ones. In fact, we think that this model is a paradigm fo
the rigorous derivation of hydrodynamic equations.
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