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Anomalous Scaling and Structure Instability in Three-Dimensional Passive Scalar Turbulence
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The anomalous scaling phenomena of three-dimensional passive scalar turbulence are studied
using high resolution direct numerical simulation. The inertial range scaling exponents of the
passive scalar increment and the scalar dissipation are obtained. The connection between the
intermittency structure and the scaling exponent is examined and the structure instability of the high
amplitude scalar dissipation is used to clarify previous experimental results for the scaling exponents.
[S0031-9007(97)03065-2]
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The advection of a passive scalar field by a turbulent (ostructure functionS,(r) = ((AT,)?) should have a scal-
stochastic) incompressible velocity field is a process thaing relationS,(r) ~ r*, with z,, defined as theth order
exhibits cascade to small scales. The dynamics governingcaling exponent.

a passive scalar is described by the following equation:  Taking account of the intermittency correction [9] and
using the refined similarity hypothesis (RSH) [10,11],
oT/ot + u - VT = kV'T + f. () the gE)henomenological scglingpmodels 1£or th)e[passi]ve
HereT is the passive scalak, is the kinematic diffusivity, —scalar [12—14] lead to analytical predictions of anomalous
f is a random forcing, and the advective velocityis  scaling exponents. In a recent note, we have developed
governed by the Navier-Stokes (NS) equations in thre@ bivariate log-Poisson model [15]; the resulting scaling
dimensions. exponents agree well with experimental measurements.

The study of the dynamics in the passive scalar system Our research is motivated by the paper by Sreenivasan
has been one of the most active research areas in the figktd Antonia [16] who pointed out that two existing
of fluid turbulence for the last decade [1,2]. In particular,experimental measurements [14,17] do not provide a
based on a linear ansatz for the dissipation term, Kraichnagonvergent scaling relation for the passive scalar system.
[2] obtains an explicit prediction of the anomalous scalingln particular, the scaling exponents in [14] were obtained
exponents for a class of passive scalar advected by a whitssing the measured dissipation exponents by invoking the
and Gaussian incompressible velocity. The research h&SH, showing a saturation for = 6.
inspired a large number of papers [3] over the past two Direct numerical simulation (DNS) of the passive scalar
years, including numerical simulations [4] and analysis ofequation (1) and the Navier-Stokes equations were carried
experiments [5]. out simultaneously. A mesh size 612 was used in a

The passive scalar convected by Navier-Stokes turbusyclic cubic box for homogeneous isotropic turbulence.
lence, however, is a more difficult problem where the vedn order to maintain statistical steady states, both the
locity is far from white and Gaussian. No inertial range velocity field and the passive scalar field were forced
scaling based on the passive scalar dynamical equatidar k < 3 [18,19]. The forcing scheme keeps the total
(1) has been developed. The local similarity theory forenergy in the first two shelld (= £ < 2 and2 = k < 3)
the passive scalar, an extension to the 1941 Kolmogorogonsistent withk ~>/3. In addition, Fourier modes in each
similarity theory for the velocity field [6], was studied shell have equal energy and the phase of each mode is
by Obukhov [7] and Corrsin [8]. For fluid flows at a randomized. For simplicity, the Prandtl number is fixed
very high Reynolds number and with the Prandtl num-to be unity for this study. The analysis was carried out for
ber Pr = v/« close to unity, Obukhov’s theory assumesthe statistical steady states at Taylor microscale Reynolds
the existence of universal statistics of fluctuations at sonumberR, = 220. A spatial averaging over the whole
called inertial-range scales > r > 7, wherev is the  physical domain and a time average over approximately
kinematic viscosityL andn are the characteristic length ten large-eddy turnover time were used to replace the
scales for the large scale and the dissipation scale, respegnasemble average.
tively. This hypothesis has a series of implications, in- At a very high Reynolds number, Kolmogorowg's
cluding the2/3 law for the passive scalar fluctuations law [20] is exact in the inertial rangé(Au,)?) = ((u(x +
in the inertial range{(AT,)%) ~ (e)~'/3(N)r?/3, where r) — u(x)P’) = —4/5(e)r. Similarly, there is also an
N = «(VT)? is the scalar dissipation functior, is the exact scaling relation for the third order cross correlation
velocity dissipation functionA7, = T(x + r) — T(x)is  given by Yaglom [21]:(Au,(AT,)*) = —4/3(N)r. To
the scalar increment, an@d) denotes an ensemble aver- demonstrate the quality of the inertial range scaling of
age. In general, if there is a scaling range, e order  our DNS data, in Fig. 1 we present((Au,)%)/r(e) and
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FIG. 1. Numerical verification of Kolmogorov'$/5 law and  FIG. 2. The structure functio§,(r) as a function ofr. In
Yaglom’s 4/3 law. The dashed line is for Kolmogorov's inset (a) we show the local slopg(r) as a function ofr, and

4/5 law and the solid line is for Yaglom'st/3 law. The ininset (b) we present the two-point correlation function of the
symbols are from DNS data/ for —((Au,)’)/({(e)r) and  passive scalar dissipation.

o for —((Au,)(AT,)*)/((N)r)]. Heren = (v°/(e)'/* is the

Kolmogorov dissipation length. In the inset we show the scalar . .

spectrum compared with Oboukov’s5/3 law for the inertial  Was calculated using a least squares fit to a power law
range scaling. for every three neighboring points. A flat region for

eachp can be seen for,(r), supporting the existence
of inertial scaling range. In inset 2(b), we present

_ 2 - : . . . i
(Au,(AT,)%)/r(N) as functions ofr. Itis seen that e 1o point correlation function of the passive scalar
both quantities show a narrow inertial scaling range (Iesﬁlissipation functionN(x)N(x + r)) as a function ofr.

than one decade and they are also displaced with respegfain a scaling relation for the dissipation correlation
to each other). On the other hand, although DNS wa$; tound: (NCGON(x + 7)) ~ r~* with u ~ 0.25. The

carrie_d out at moderate Reynolds numbers,. the value_s %termittency parametep. agrees well with previous
the dimensionless constants agree well with theoret'caéxperimental results [17].

predictions 4/5 and4/3 for velocity and passive scalar, |, Fig. 3, we show the normalized probability density

respectively). It was reported in Ref. [22] that theseqnction (PDF){D)P(D), as a function of the normalized
dimensionless constants were smaller in the experimental

measurements (for a circular jet witlR, = 220 and
the atmospheric surface layer wiR, = 7200) than the 10
theoretical values. In the inset, we show the passive scalar
spectrumk, (k) as a function of the wave numbkr The 3
inertial range with a slope slightly less than5/3 [7] 0.1
could be identified. This smaller than5/3 exponent
was previously observed experimentally [23]. A bump g
between the inertial and dissipation ranges perhaps i% 0.001
associated with the “bottleneck effect” [24]. T 0.0001
In Fig. 2, we plot structure functiong|AT,|?) as
functions of r for p = 2,4,6, and 8. The power law
inertial range can be identified f@2 = r = 1. From 10°
data analysis we notice that in fact the passive scalar
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increment displays a better scaling relation than the 10 ; . MAA,
velocity increment [18], and therefore it is not necessary 10 B i | ST | Al
to invoke the extended-self-similarity (ESS) technique 0 50 100 150 200
[25]. As a matter of fact, we have tried ESS by D/<D>

plotting (|AT,|7”) as a function of Au,(AT,)?). The error FIG. 3. Normalized PDF(D)P(D) as a function of the
bar for the extracted scaling exponents in the inertianormalized dissipation. HerP is the dissipation function (the

; ; ::o.g0lid line is for the scalar dissipation and the dot-dashed line
range seems bigger than the result using the Orlgln‘)Jiaor the velocity dissipation). The dotted line is for the scalar

structure functions. In inset 2(a), we ShOW the Ioca‘Idissipation function with Gaussian statistics. In the inset we
slope z,(r) = dlogS,(r)/dlogr as a function ofr for  present the flatness of the scalar incremétitgnd the velocity
the samep in the structure function. The local slope increment k) as a function of- (lattice unit).
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fluctuation dissipationD /(D), whereD is the dissipation here: zo5 = 0.165 = 0.007,z; = 0.354 * 0.012,z, =
function. It is clear that both the velocity dissipation 0.606 = 0.019, zz = 0.794 = 0.025, z4 = 0.943 = 0.030,

and the scalar dissipation fields are strongly intermittents = 1.180 * 0.041,zg = 1.376 = 0.050, and zi9 =
[26]. We have also compared the PDFs with the log-1.546 = 0.063. Itis noticed that the second order scaling
normal distribution by looking at the statistics 8f, =  exponent deviates from Obukhovs/3 law by 15%.
(InD — (InDY)/{(InD — {InD)®Y2, It is found that This result agrees well with previous experimental results
while low order moments of both fields are quite close[14,17,23]. The fourth order scaling exponent in DNS
to the log-normal values, the scalar dissipation seems also agrees quite well with the theoretical prediction
little more intermittent. From the plot, we also note thatzs = 2z, — w in [4], a result primarily for the white and
the PDF of the scalar dissipation has a wider tail tharGaussian velocity. In general, all scaling exponents from
that of the velocity dissipation, indicating that spatially DNS coincide well with the phenomenological theory
there are more large amplitude events in the passivfl5] and the real-life experiment [17].

scalar dissipation than the velocity dissipation. In the We point out that the DNS results shown in Fig. 4 were
inset we show the flatness of the passive scalar incremenbtained using a spatial averaging over the whole simula-
and the longitudinal velocity increment as functions oftion domain §123) and a long-time averaging<10 large-

the separation. It is seen that the flatness of the scal@ddy turnovertimes). In fact, the scaling exponent for each
increment is larger than that of the longitudinal velocity single time frame displays intense fluctuation with time,
increment, except whem is in the large scale region much larger than the fluctuation of the exponents for the
where both fields are essentially Gaussian and thewelocity increment [18] using a spatial averaging of the
flathesses approach the Gaussian valuge dh particular, same size. To demonstrate this fluctuation, in the inset of
when r is in the dissipation range, the flatness of theFig. 4, two typical scaling exponents without time averag-
passive scalar increment is significantly larger than thaing are shown. The time difference between two frames is
of the velocity increment, in agreement with the PDFs. about 0.2 large-eddy turnover time. Although the curves

The scaling exponent, as a function of the order for p = 4 agree quite well, they are qualitatively different
index p is shown in Fig. 4. The symbol is for the result for largerp. A large variation of the corresponding PDFs
from DNS measurement and the symbol for the result with time has also been observed. One set of the scaling
from the experiment by Antoniet al. [17]. The solid line  exponents[(J) clearly establishes a saturation wher= 7,
is from a bivariate log-Poisson model in [15] assumingindicating a possible upper bound for the most intensive
that the correlation coefficient between velocity field andevents. The saturation of scaling exponents for the pas-
the passive scalar field is zero. The DNS scaling exposive scalar has been observed in [14] (shown also in the
nents are obtained using the flat region in the local slop&set by the¢ sign) and [27]. The scaling exponents in
plot as shown in the inset (a) of Fig. 2. Some typicalanother group X) are larger than the time-averaged val-
scaling exponents and the corresponding errors are listages in Fig. 4 forp = 5. Such strong fluctuations could
be a reason for the saturation displayed in [14] where the
results were obtained based on 1D cuts through the field
and may not capture the strongest events with a limited
sample. On the other hand, the experimental scaling ex-
ponents were obtained through the RSH, and it cannot be
ruled out that the saturation could be due to shortcomings
of the RSH at high values qf.

To understand the physics behind the large time fluctua-
tion of the scaling exponent, we have studied the intermit-
tency structures of the passive scalar field, in particular the
large amplitude events of the dissipation function and the
scalar derivative. The latter is directly associated with
the scalar incremenAT, = [; a(T/dx)dx. Using the
visualization technique, we find that with increasing of
amplitude, the isosurface of the scalar dissipation changes
from fragmentlike to sheetlike (shown in Fig. 5). The dy-
namical evolution of the sheetlike structures, such as for-
mation and annihilation, clearly plays a key role in the
time dependence of the scaling exponents, simply because
FIG. 4. The scaling exponent, as a function ofp. Thee  the large amplitude events are the predominate effects
symbol is for DNS and théJ symbol is for the experiment o the high order scalar increments and their exponents.
data in [17]. The solid line is for a bivariate log-Poisson modeIF the struct tabilit it of Vi i
in [15]. In the inset we show the scaling exponents at two rom the structure stability point of ViIew, we Suspec
different time steps without using time averaging. The datathat the sheetlike structure is more unstable to perturba-
from [14] are represented by tkesymbol. tions, such as forcing, than the filamentlike structure [28],
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