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Anomalous Scaling and Structure Instability in Three-Dimensional Passive Scalar Turbulence
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The anomalous scaling phenomena of three-dimensional passive scalar turbulence are studied
using high resolution direct numerical simulation. The inertial range scaling exponents of the
passive scalar increment and the scalar dissipation are obtained. The connection between the
intermittency structure and the scaling exponent is examined and the structure instability of the high
amplitude scalar dissipation is used to clarify previous experimental results for the scaling exponents.
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The advection of a passive scalar field by a turbulent (
stochastic) incompressible velocity field is a process th
exhibits cascade to small scales. The dynamics govern
a passive scalar is described by the following equation:

≠Ty≠t 1 u ? =T  k=2T 1 f . (1)

HereT is the passive scalar,k is the kinematic diffusivity,
f is a random forcing, and the advective velocityu is
governed by the Navier-Stokes (NS) equations in thr
dimensions.

The study of the dynamics in the passive scalar syst
has been one of the most active research areas in the fi
of fluid turbulence for the last decade [1,2]. In particula
based on a linear ansatz for the dissipation term, Kraichn
[2] obtains an explicit prediction of the anomalous scalin
exponents for a class of passive scalar advected by a w
and Gaussian incompressible velocity. The research
inspired a large number of papers [3] over the past tw
years, including numerical simulations [4] and analysis
experiments [5].

The passive scalar convected by Navier-Stokes turb
lence, however, is a more difficult problem where the v
locity is far from white and Gaussian. No inertial rang
scaling based on the passive scalar dynamical equa
(1) has been developed. The local similarity theory f
the passive scalar, an extension to the 1941 Kolmogo
similarity theory for the velocity field [6], was studied
by Obukhov [7] and Corrsin [8]. For fluid flows at a
very high Reynolds number and with the Prandtl num
ber Pr  nyk close to unity, Obukhov’s theory assume
the existence of universal statistics of fluctuations at s
called inertial-range scalesL ¿ r ¿ h, wheren is the
kinematic viscosity,L andh are the characteristic length
scales for the large scale and the dissipation scale, resp
tively. This hypothesis has a series of implications, in
cluding the 2y3 law for the passive scalar fluctuation
in the inertial range:ksDTrd2l , kel21y3kNlr2y3, where
N  ks=T d2 is the scalar dissipation function,e is the
velocity dissipation function,DTr  Tsx 1 rd 2 T sxd is
the scalar increment, andk?l denotes an ensemble aver
age. In general, if there is a scaling range, thepth order
0031-9007y97y78(18)y3459(4)$10.00
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structure functionSpsrd  ksDTrdpl should have a scal-
ing relationSpsrd , rzp , with zp defined as thepth order
scaling exponent.

Taking account of the intermittency correction [9] an
using the refined similarity hypothesis (RSH) [10,11
the phenomenological scaling models for the pass
scalar [12–14] lead to analytical predictions of anomalo
scaling exponents. In a recent note, we have develo
a bivariate log-Poisson model [15]; the resulting scalin
exponents agree well with experimental measurements

Our research is motivated by the paper by Sreeniva
and Antonia [16] who pointed out that two existin
experimental measurements [14,17] do not provide
convergent scaling relation for the passive scalar syste
In particular, the scaling exponents in [14] were obtain
using the measured dissipation exponents by invoking
RSH, showing a saturation forp $ 6.

Direct numerical simulation (DNS) of the passive scal
equation (1) and the Navier-Stokes equations were carr
out simultaneously. A mesh size of5123 was used in a
cyclic cubic box for homogeneous isotropic turbulenc
In order to maintain statistical steady states, both t
velocity field and the passive scalar field were force
for k , 3 [18,19]. The forcing scheme keeps the tot
energy in the first two shells (1 # k , 2 and2 # k , 3)
consistent withk25y3. In addition, Fourier modes in each
shell have equal energy and the phase of each mod
randomized. For simplicity, the Prandtl number is fixe
to be unity for this study. The analysis was carried out f
the statistical steady states at Taylor microscale Reyno
numberRl  220. A spatial averaging over the whole
physical domain and a time average over approximat
ten large-eddy turnover time were used to replace
ensemble average.

At a very high Reynolds number, Kolmogorov’s4y5
law [20] is exact in the inertial range:ksDur d3l  kfusx 1

rd 2 usxdg3l  24y5kelr . Similarly, there is also an
exact scaling relation for the third order cross correlati
given by Yaglom [21]:kDur sDTrd2l  24y3kNlr. To
demonstrate the quality of the inertial range scaling
our DNS data, in Fig. 1 we present2ksDurd3lyrkel and
© 1997 The American Physical Society 3459
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FIG. 1. Numerical verification of Kolmogorov’s4y5 law and
Yaglom’s 4y3 law. The dashed line is for Kolmogorov’s
4y5 law and the solid line is for Yaglom’s4y3 law. The
symbols are from DNS data [n for 2ksDur d3lyskelrd and
≤ for 2ksDur dsDTr d2lyskNlrd]. Here h  sn3ykeld1y4 is the
Kolmogorov dissipation length. In the inset we show the sca
spectrum compared with Oboukov’s25y3 law for the inertial
range scaling.

2kDursDTrd2lyrkNl as functions ofr . It is seen that
both quantities show a narrow inertial scaling range (le
than one decade and they are also displaced with res
to each other). On the other hand, although DNS w
carried out at moderate Reynolds numbers, the values
the dimensionless constants agree well with theoreti
predictions (4y5 and 4y3 for velocity and passive scalar
respectively). It was reported in Ref. [22] that thes
dimensionless constants were smaller in the experime
measurements (for a circular jet withRl  220 and
the atmospheric surface layer withRl  7200) than the
theoretical values. In the inset, we show the passive sc
spectrumEpskd as a function of the wave numberk. The
inertial range with a slope slightly less than25y3 [7]
could be identified. This smaller than25y3 exponent
was previously observed experimentally [23]. A bum
between the inertial and dissipation ranges perhaps
associated with the “bottleneck effect” [24].

In Fig. 2, we plot structure functionskjDTr j
pl as

functions of r for p  2, 4, 6, and 8. The power law
inertial range can be identified for0.2 # r # 1. From
data analysis we notice that in fact the passive sca
increment displays a better scaling relation than t
velocity increment [18], and therefore it is not necessa
to invoke the extended-self-similarity (ESS) techniqu
[25]. As a matter of fact, we have tried ESS b
plotting kjDTr j

pl as a function ofkDursDTr d2l. The error
bar for the extracted scaling exponents in the inert
range seems bigger than the result using the origi
structure functions. In inset 2(a), we show the loc
slope zpsrd  d logSpsrdyd logr as a function ofr for
the samep in the structure function. The local slope
3460
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FIG. 2. The structure functionSpsrd as a function ofr. In
inset (a) we show the local slopezpsrd as a function ofr, and
in inset (b) we present the two-point correlation function of th
passive scalar dissipation.

was calculated using a least squares fit to a power
for every three neighboring points. A flat region fo
eachp can be seen forzpsrd, supporting the existence
of inertial scaling range. In inset 2(b), we prese
the two point correlation function of the passive sca
dissipation functionkNsxdNsx 1 rdl as a function ofr.
Again a scaling relation for the dissipation correlatio
is found: kNsxdNsx 1 rdl , r2m with m ø 0.25. The
intermittency parameterm agrees well with previous
experimental results [17].

In Fig. 3, we show the normalized probability densi
function (PDF),kDlPsDd, as a function of the normalized

FIG. 3. Normalized PDF,kDlPsDd as a function of the
normalized dissipation. HereD is the dissipation function (the
solid line is for the scalar dissipation and the dot-dashed l
for the velocity dissipation). The dotted line is for the scal
dissipation function with Gaussian statistics. In the inset
present the flatness of the scalar increment (h) and the velocity
increment (3) as a function ofr (lattice unit).
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fluctuation dissipation:DykDl, whereD is the dissipation
function. It is clear that both the velocity dissipatio
and the scalar dissipation fields are strongly intermitt
[26]. We have also compared the PDFs with the lo
normal distribution by looking at the statistics ofwD 
sln D 2 kln Dldyksln D 2 kln Dld2l1y2. It is found that
while low order moments of both fields are quite clo
to the log-normal values, the scalar dissipation seem
little more intermittent. From the plot, we also note th
the PDF of the scalar dissipation has a wider tail th
that of the velocity dissipation, indicating that spatial
there are more large amplitude events in the pass
scalar dissipation than the velocity dissipation. In t
inset we show the flatness of the passive scalar increm
and the longitudinal velocity increment as functions
the separation. It is seen that the flatness of the sc
increment is larger than that of the longitudinal veloci
increment, except whenr is in the large scale region
where both fields are essentially Gaussian and th
flatnesses approach the Gaussian value of3. In particular,
when r is in the dissipation range, the flatness of t
passive scalar increment is significantly larger than t
of the velocity increment, in agreement with the PDFs.

The scaling exponentzp as a function of the order
indexp is shown in Fig. 4. The≤ symbol is for the result
from DNS measurement and theh symbol for the result
from the experiment by Antoniaet al. [17]. The solid line
is from a bivariate log-Poisson model in [15] assumi
that the correlation coefficient between velocity field a
the passive scalar field is zero. The DNS scaling ex
nents are obtained using the flat region in the local slo
plot as shown in the inset (a) of Fig. 2. Some typic
scaling exponents and the corresponding errors are li

FIG. 4. The scaling exponentzp as a function ofp. The ≤
symbol is for DNS and theh symbol is for the experiment
data in [17]. The solid line is for a bivariate log-Poisson mod
in [15]. In the inset we show the scaling exponents at t
different time steps without using time averaging. The d
from [14] are represented by the¶ symbol.
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here: z0.5  0.165 6 0.007, z1  0.354 6 0.012, z2 
0.606 6 0.019, z3  0.794 6 0.025, z4  0.943 6 0.030,
z6  1.180 6 0.041, z8  1.376 6 0.050, and z10 
1.546 6 0.063. It is noticed that the second order scalin
exponent deviates from Obukhov’s2y3 law by 15%.
This result agrees well with previous experimental resu
[14,17,23]. The fourth order scaling exponent in DN
also agrees quite well with the theoretical predictio
z4  2z2 2 m in [4], a result primarily for the white and
Gaussian velocity. In general, all scaling exponents fro
DNS coincide well with the phenomenological theor
[15] and the real-life experiment [17].

We point out that the DNS results shown in Fig. 4 we
obtained using a spatial averaging over the whole simu
tion domain (5123) and a long-time averaging (,10 large-
eddy turnover times). In fact, the scaling exponent for ea
single time frame displays intense fluctuation with tim
much larger than the fluctuation of the exponents for t
velocity increment [18] using a spatial averaging of th
same size. To demonstrate this fluctuation, in the inset
Fig. 4, two typical scaling exponents without time avera
ing are shown. The time difference between two frames
about 0.2 large-eddy turnover time. Although the curv
for p # 4 agree quite well, they are qualitatively differen
for largerp. A large variation of the corresponding PDF
with time has also been observed. One set of the scal
exponents (h) clearly establishes a saturation whenp $ 7,
indicating a possible upper bound for the most intensi
events. The saturation of scaling exponents for the p
sive scalar has been observed in [14] (shown also in
inset by the¶ sign) and [27]. The scaling exponents i
another group (3) are larger than the time-averaged va
ues in Fig. 4 forp $ 5. Such strong fluctuations could
be a reason for the saturation displayed in [14] where t
results were obtained based on 1D cuts through the fi
and may not capture the strongest events with a limit
sample. On the other hand, the experimental scaling
ponents were obtained through the RSH, and it cannot
ruled out that the saturation could be due to shortcomin
of the RSH at high values ofp.

To understand the physics behind the large time fluctu
tion of the scaling exponent, we have studied the interm
tency structures of the passive scalar field, in particular t
large amplitude events of the dissipation function and t
scalar derivative. The latter is directly associated wi
the scalar incrementDTr 

Rr
0 ≠sTy≠xd dx. Using the

visualization technique, we find that with increasing o
amplitude, the isosurface of the scalar dissipation chan
from fragmentlike to sheetlike (shown in Fig. 5). The dy
namical evolution of the sheetlike structures, such as f
mation and annihilation, clearly plays a key role in th
time dependence of the scaling exponents, simply beca
the large amplitude events are the predominate effe
on the high order scalar increments and their exponen
From the structure stability point of view, we suspe
that the sheetlike structure is more unstable to perturb
tions, such as forcing, than the filamentlike structure [28
3461
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FIG. 5. Isosurface of the scalar dissipation at the valueN 
10kNl. The resolution of the plot is643 and the data shown
represent the neighborhood of the overall maximum of sc
dissipation.

which is a characteristic vortex structure for large amp
tude events in 3D turbulence. This agrees with the ob
vation that the velocity scaling exponent seems to be
time dependent. The instability of the sheetlike structu
possibly causes the annihilation of the very high int
mittency structures at a specific time, leading to a satu
tion of the scaling exponents. In addition, we know fro
Fig. 3 that spatially there are more high amplitude eve
in the scalar field than in the velocity field, indicating th
the generation and the annihilation of the sheetlike str
ture is more frequent and causes intense fluctuations in
statistics of the scalar field.

The current finding of the time dependence of the sca
exponents might connect with the idea of the nonuniv
sality of scaling exponents for the passive scalar sys
[29] in the sense that the detailed intermittency struct
strongly affects the exponents. On the other hand, littl
known so far about how the velocity stretching affects
dynamical evolution of the sheetlike structure in the sca
field. We feel that the fundamental physics of the scal
dynamics for the passive scalar turbulence is still miss
and a more detailed and careful study is much needed

We thank R. Kraichnan, C. Meneveau, M. Nelki
Z.-S. She, K. R. Sreenivasan, and G. Stolovitzky
useful discussions. Numerical simulation was carried
at the Advanced Computing Laboratory at Los Alam
National Laboratory.
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