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A path integral formulation is developed for tlynamic Casimir effect. It allows us to study
arbitrary deformations irspace and timeof the perfectly reflecting (conducting) boundaries of a
cavity. The mechanical response of the intervening vacuum is calculated to linear order in the
frequency—wave-vector plane. For a single corrugated plate we find a correction to mass at low
frequencies, and an effective shear viscosity at high frequencies, both anisotropic. For two plates
there is resonant dissipation fatl frequenciesgreater than the lowest optical mode of the cavity.
[S0031-9007(97)03143-8]
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The standard Casimir effect [1] is a macroscopic manihas causality problems reminiscent of the radiation reac-
festation of quantum fluctuations of vacuum. The modi-tion forces in classical electron theory [5]. It has been
fied boundary conditions of the electromagnetic field in theshown that this problem is an artifact of the unphysical
space between two parallel conducting plates change zeassumption of perfect reflectivity of the mirror, and can
point vacuum fluctuations, resulting in an attractive forcebe resolved by considering realistic frequency dependent
between the plates, which has recently been experimemeflection and transmission from the mirror [5].
tally measured to high precision [2]. Thus, by observing Another approach to the problem starts with the fluc-
the mechanical force between macroscopic bodies, it iduations in the force on a single plate. The fluctuation-
in principle, possible to gain information about the behav-dissipation theorem is then used to obtain the mechanical
ior of the quantum vacuum. Although less well known response function [6], whose imaginary part is related to
than its static counterpart, the dynamical Casimir effectthe dissipation. This method does not have any causality
describing the force and radiation from moving mirrors hasproblems, and can also be extended to higher dimensions.
also garnered much attention [3—9]. This is partly due tqThe force in 1+3 dimensional space-time depends on the
connections to Hawking and Unruh effects (radiation fromfifth power of the motional frequency.) The emission of
black holes and accelerating bodies, respectively), suggegthotons by a perfect cavity, and the observability of this
ing a deeper link between quantum mechanics, relativityenergy, has been studied by different approaches [7-9].
and cosmology [10]. The most promising candidate is the resonant production of

The creation of photons by moving mirrors was first ob-photons when the mirrors vibrate at the optical resonance
tained by Moore [3] for a 1-dimensional cavity. Fulling frequency of the cavity [10]. A review, and more exten-
and Davies [4] demonstrated that there is a correspondsive references, are found in Ref. [11]. More recently, the
ing force, even for a single mirror, which depends on theradiation due to vacuum fluctuations of a collapsing bubble
third time derivative of its displacement. These computahas been proposed as a possible explanation for the intrigu-
tions take advantage of conformal symmetries of the 1+1Ing phenomenon of sonoluminescence [12,13].
dimensional space-time, and cannot be easily generalized In this Letter we present a path integral formulation,
to higher dimension. Furthermore, the calculated forcepplicable to all dimensions, for the problem of perfectly
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reflecting mirrors that undergo arbitrary dynamic defor-integrations overg(X) then leads to an effective action
mations [14,15]. We calculate the frequency—wave vecfor the Lagrange multipliers which is again Gaussian [16].
tor dependent mechanical response function, defined d&svaluatingZ is thus reduced to calculating the logarithm
the ratio between the induced force and the deformationf the determinant of a kernel. Since the Lagrange mul-
field, in the linear regime. From the response function weipliers are defined on a set of manifolds with nontrivial
extract a plethora of interesting results, some of whiclgeometry, this calculation is generally complicated. To
we list here for the specific example of lateral vibra-be specific, we focus on two parallel 2D plates embedded
tions of uniaxially corrugated plates: (1) A single platein 3+1 space-time, and separated by an average distance
with corrugations of wave numbdr, vibrating at frequen- H along thex; direction. Deformations of the plates are
ciesw < ck, obtainsanisotropiccorrections to its mass. parametrized by the height functiohs(x, r) and i, (x, 1),

(2) For w > ck, there is dissipation due to a frequency wherex = (x, x,) denotes the two lateral space coordi-
dependent anisotropic shear viscosity. (3) A second plateates whiler is the time variable. Following Ref. [16],

at a separatiorf modifies the mass renormalization by In Z is calculated by a perturbative series in powers of
a function of kH, but does not change the dissipationthe height functions. The resulting expression for the ef-
for frequenciesw? < (ck)> + (wc/H)>. (4) For all fre-  fective action (in real time), defined g = —ifiln Z,
quencies higher than this first optical normal mode of theafter eliminating: independent terms, is

cavity, the mechanical response is infinite, implying that

such modes cannot be excited by any finite external force. ic [ dwd*q

This is intimately connected to the resonant particle creSetr = —- W{fh(é], o)[lhi(q, 0)I* + |hy(q, 0)I*]
ation reported in the literature [7—10]. (5) A phase angle

6 between two similarly corrugated parallel plates results — A_(q, w)[hi(q, ®)ha(—q, —w)

in Josephson-like effects: There is a static force propor- + hi(—q, —0)ha(q, )]} + O(13). 3)

tional to sin@), while a uniform relative velocity results

in an oscillating force. (6) We calculate a (minute) Cor-The kernelsA (¢, ») that are closely related to the me-

rection to the velocity of caplllary waves on the sur face Ofchanical response of the system (see below) are functions
mercury due to a small change in its surface tension.

0 hi wural lizati f th i of the separatioi?, but depend oy andw only through
) ulr ap[;;ozc dIS alna udrab gﬁneraalzKa '(()jn 016etpat ('jnfhe combinationQ? = ¢> — w?/c%. The closed forms
egral methods developed by Li and Kardar [16] to stu Yor these kernels involve cumbersome integrals, and are

fluctuation-induced interactions between deformed mani- . L oo
) ; ) . not very illuminating. Instead of exhibiting these formu-
folds embedded in a correlated fluid. Such interactions r Y 9 9

sult fromthermal fluctuation®f the fluid. These methods Tas, we shall describe their behavior in various regions of

are readily generalized to zero point quantum quctuationthe parameter space. In the linift — e, AZ(¢, @) = 0,
of a field, taking advantage of the path integral quanti-

zation formalism. Since in the Euclidian path integral _360717205 (c2q? — 0252, for w < cq,

formulation the space and time coordinates are equived’ (¢, ®) = 1. 3% (02 — A2 forw >
lent, deformations of the boundaries in space and time ap- P 3607 W0 T T @ = cq
pear on the same footing. As is usual, we simplify the (4)

problem by considering a scalar fiell (in place of the
electromagnetic vector potential [17]) with the action wheresgn(w) is the sign function. While the effective

1 action is real forQ? > 0, it becomes purely imaginary
§S=3 f d'X0,¢(X)0,b(X), (1) for Q? < 0. The latter signifies dissipation of energy
[6], presumably by generation of photons [9]. It agrees
where summation oves = 1,...,d is implicit. Follow-  precisely with the results obtained previously [6] for the

ing a Wick rotation, imaginary time appears as another cospecial case of flat mirrofg = 0). (Note that dissipation
ordinateX,; = ict in the d—dimensional space-time. We is already present for a single mirror.)
would like to quantize the field subject to the constraints In the presence of a second plate (i.e., for firfifg,
of its vanishing on a set of manifolds (objects) defined the parameter space of the kernels subdivides into three
by X = X.(y«), Wherey, parametrize therth manifold.  different regions as depicted in Fig. 1. In regiorg?(>
Following Ref. [16], we implement the constraints using0 for any H), the kernels are finite and real, and hence
delta functions, and write the partition function as there is no dissipation. In region lla, wherer?/H? =<
n 1 Q% < 0, the H-independent part oA, is imaginary,
Z =f DoX) [ T16l¢Xa(ya))] exH’—E S[d)]}- while the H-dependent parts of both kernels are real
a=1l Ya and finite. (This is also the case at the bound@ry=
(2)  —#2/H%) The dissipation in this regime is simply the
The delta functions are next represented by integralsum of what would have been observed if the individual
over Lagrange multiplier fields. Performing the Gaussiarplates were decoupled, and unrelated to the separation

3422



VOLUME 78, NUMBER 18 PHYSICAL REVIEW LETTERS 5 My 1997

QP=g2- o2 a macroscopic sample witld = A = 27 /k = 1 mm,
, density =15 g/cm?, and thickness = 1 mm, we find
! dm/m ~ 1073*. Even for deformations of a microscopic
! sample of atomic dimensions (close to the limits of the
; applicability of our continuum representations of the
! T2/H2 boundaries)dm/m can only be reduced to aboud~!°.
i While the actual changes in mass are immeasurably small,
' Ia the hope is that it@nisotropymay be more accessible,
' say, by comparing oscillation frequencies of a plate in two
- : 02 orthogonal directions.
i S 2 For o > ck the response function is imaginary,
C oI &% and we define a frequency dependent effective shear
viscosity byy;j(w) = —iwn;;j(w). This viscosity is also
FIG. 1. Different regions of thég, ) plane. anisotropic, with n(w) = hAk*’d*w*/7207%c*, and
n.1(w) = 0. Note that the dissipation is proportional to
the fifth time derivative of displacement, and there is no
By contrast, in region llb, wher@? < —x2/H?, both  dissipation for a uniformly accelerating plate. However,
kernels diverge with infinite real and imaginary parts [18].a freely oscillating plate will undergo a damping of its
This H-dependent divergence extends all the way to thenotion. The characteristic decay time for a plate of
negative 9 axis, where it is switched off by a/H> massM is r = 2M /7. For the macroscopic plate of the
prefactor. previous paragraph, vibrating at a frequencywof= 2ck
As a concrete example, let us examine the laterafin the 10'> Hz range), the decay time is enormous,
vibration of plates with fixed roughness, such as twor ~ 10'® s. However, since the decay time scales as the
corrugated mirrors. The motion of the plates enterdifth power of the dimension, it can be reducedi@ 2 s,
through the time dependencés(x,?) = h;(x — r(¢))  for plates of an order of 10 atoms. However, the required
andh,(x,t) = hy(x); i.e., the first plate undergoes lateral frequencies in this case (in th®'® Hz range) are very
motion described byr(s), while the second plate is large. Also note that, for the linearized forms to remain
stationary. The lateral force exerted on the first platevalid in this high frequency regime, we must require very
is obtained fromf;(t) = &Ses/8ri(t). Within linear  small amplitudes, so that the typical velocities involved,
response, it is given by v ~ row, are smaller than the speed of light. These
filw) = xij(@)r;(w) + w), (5) difficulties can b_e spmewhat overcome by considering
resonant dissipation in the presence of a second plate.
With two plates at an average distanke the results
are qualitatively the same for frequencies less than the
natural resonance of the resulting cavity. There is a
1 renormalization of mass in region |, and dissipation
+ —A_(q,0)[h(qQ)h(—q) + hl(—q)hz(q)]}, appears in region lla, of Fig. 1. However, the mass
2 (6) renormalization at low frequencidsw < ck) is now a
function of bothk andH, with a crossover from the single

where the “mechanical response tensor” is

2
(@) = e [ é‘#’)zqiqj{[A+<q,w>—A+<q,o>]|h1<q>|2

and there is a residual force plate behavior forkH ~ 1. In the limit of kH <« 1,
o, ke d*q . we obtaindmy = HABk*d?/48cH? and m, = 0, with
filo) = = B3 2m8(w) 27)> iqiA-(¢,0) B = —0.453. Compared to the single plate, there is an

enhancement by a factor 6fH) 3 in §m). The effective
X [h(@ha(=q) = h(=q)h(q)].  (7) dissipation in region lla is simply the sum of those due to
For a single corrugated plate with a deformationindividual plates, and contains i dependence.

h(x) = dcosk - x, we can easily calculate the response There are additional interesting phenomena resulting
tensor using the explicit formulas in Eq. (4). In the from resonances. We find that both real and imaginary
limit of o < ck, expanding the result in powers parts ofA-(q, w) diverge forw?/c*> > ¢*> + #*/H?. In
of o gives y;; = dm;jw? + O(w*), where dm;; =  the example of corrugated plates, we replacby & to
Ahd*k’k;k;/2887c can be regarded as corrections toobtain a continuous spectrum of frequencies with diverg-
the mass of the plate. (Cut-off dependent mass correéng dissipation. Related effects have been reported in
tions also appear, as in Ref. [11].) Note that these magbe literature for 1+1 dimensions [7—10], but occurring
corrections arenisotropicwith Sm = Alk>d*>/2887%c  at adiscreteset of frequencies, = nwc/H with inte-
and ém, = 0. Parallel and perpendicular componentsgern = 2. These resonances occur when the frequency
are defined with respect o, andA denotes the area of the of the external perturbation matches the natural normal
plates. The mass correction is inherently very small: Fomodes of the cavity, thus exciting quanta of such modes.

3423



VOLUME 78, NUMBER 18 PHYSICAL REVIEW LETTERS 5 My 1997

In one space dimension, such modes are characterized plates separated at a distande described by (x,t) =
a discrete set of wave vectors that are integer multipled; cogk - [x — r(s)]} andh,(x,7) = d>cogk - x]. The
of w/H. The restriction ton = 2 is a consequence of resulting force at a constant velocitg(r) = vz],
quantum electrodynamics being a “free” theory (quadratic eA

action): Only two-photon states can be excited subject F,. = — A_(k,0)kdd,sin(k - v)¢], 9
to conservation of energy. Thus the sum of the frequen- 2

cies of the two photons should add up to the external frepscillates at a frequencys = k - v. Actually both

quency [9]. effects are a consequence of the attractive nature of the
In higher dimensions, the appropriate parameter is th€asimir force. It would be difficult to separate them
combinationw?/c? — ¢*>. From the perspective of the from similar forces resulting from, say, van der Waals
excited photons, conservation of momentum requires thaittractions.
their two momenta add up @ while energy conservation  As a final example, we study the capillary waves on
restricts the sum of their frequenciesd¢o The in-plane  the surface of mercury, with a conducting plate placed at
momentumg, introduces a continuous degree of freedom:a separatior? above the surface. The low frequency—
The resonance condition can now be satisfied for &vave-vector expansion of the kernel due to quantum fluc-
continuous spectrum, in analogy with optical resonatorstuations in the intervening vacuum starts with quadratic
In Ref. [9], the lowest resonance frequency is found toforms¢? andw?. These terms result in corrections to the
be 27¢/H which seems to contradict our prediction. (surface) mass density b§yp = iB/48cH?, and to the
However, the absence @, = 7c/H in 1+1 D is due surface tension by = icB/48H>. The latter correc-
to a vanishing prefactor [9], which is also present intion is larger by a factor ofc/c,)?, and changes the ve-
our calculations. However, in exploring the continuousiocity ¢, of capillary waves bysc,/c? = ficB/960 H?,
frequency spectrum in higher dimensions, this single poinjvhere o is the bare surface tension of mercury. Taking
is easily bypassed, and there is a divergence for alj ~ | mm ando ~ 500 dyn/cm, we find another very
frequencies satisfying?/c*> > ¢* + #*/H?, where the  small correction fodc,/c® ~ 10717
inequality holds in its strict sense. In summary, we have developed a path integral for-
Resonant dissipation has profound consequences fefulation for the study of quantum fluctuations in a cav-
motion of plates. It implies that, due to quantum fluctu-jty with dynamically deforming boundaries. As opposed
ations of vacuumeomponents of motion with frequenciesto previous emphasis on spectra of emitted radiation,
in the range of divergences cannot be generated by anye focus on the mechanical response of the vacuum.
finite external force The imaginary parts of the kernels Most of the predicted phenomena, while quite intrigu-
are proportional to the total number of excited photonsng theoretically, appear to be beyond the reach of cur-
[9]. Exciting these degrees of motion must be accomparent experiment: The most promising candidates are the
nied by the generation of an infinite number of photonsanisotropy in mass and resonant dissipation. The path
requiring an infinite amount of energy, and thus impossiintegral method is quite versatile, and future extensions
ble. However, as pointed out in Ref. [9], the divergencecould focus on nonlinear response, other geometries (e.g.,
is rounded off by assuming finite reflectivity and transmis-wires), the gauged electromagnetic field, and calculations
sivity for the mirrors. Hence, in practice, the restriction of emitted spectra using correlation functions.
is softened and controlled by the degree of ideality of the R.G. acknowledges many helpful discussions with
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length, with deformationsh;(x) = d;codk - x) and |ran. M.K. is supported by the NSF Grant No. DMR-
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