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A path integral formulation is developed for thedynamic Casimir effect. It allows us to study
arbitrary deformations inspace and timeof the perfectly reflecting (conducting) boundaries of
cavity. The mechanical response of the intervening vacuum is calculated to linear order i
frequency–wave-vector plane. For a single corrugated plate we find a correction to mass a
frequencies, and an effective shear viscosity at high frequencies, both anisotropic. For two
there is resonant dissipation forall frequenciesgreater than the lowest optical mode of the cavit
[S0031-9007(97)03143-8]
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The standard Casimir effect [1] is a macroscopic ma
festation of quantum fluctuations of vacuum. The mo
fied boundary conditions of the electromagnetic field in
space between two parallel conducting plates change
point vacuum fluctuations, resulting in an attractive for
between the plates, which has recently been experim
tally measured to high precision [2]. Thus, by observi
the mechanical force between macroscopic bodies, i
in principle, possible to gain information about the beha
ior of the quantum vacuum. Although less well know
than its static counterpart, the dynamical Casimir effe
describing the force and radiation from moving mirrors h
also garnered much attention [3–9]. This is partly due
connections to Hawking and Unruh effects (radiation fro
black holes and accelerating bodies, respectively), sugg
ing a deeper link between quantum mechanics, relativ
and cosmology [10].

The creation of photons by moving mirrors was first o
tained by Moore [3] for a 1-dimensional cavity. Fullin
and Davies [4] demonstrated that there is a correspo
ing force, even for a single mirror, which depends on
third time derivative of its displacement. These compu
tions take advantage of conformal symmetries of the 1
dimensional space-time, and cannot be easily genera
to higher dimension. Furthermore, the calculated fo
0031-9007y97y78(18)y3421(5)$10.00
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has causality problems reminiscent of the radiation rea
tion forces in classical electron theory [5]. It has bee
shown that this problem is an artifact of the unphysica
assumption of perfect reflectivity of the mirror, and ca
be resolved by considering realistic frequency depende
reflection and transmission from the mirror [5].

Another approach to the problem starts with the fluc
tuations in the force on a single plate. The fluctuation
dissipation theorem is then used to obtain the mechani
response function [6], whose imaginary part is related
the dissipation. This method does not have any causal
problems, and can also be extended to higher dimensio
(The force in 1+3 dimensional space-time depends on t
fifth power of the motional frequency.) The emission o
photons by a perfect cavity, and the observability of th
energy, has been studied by different approaches [7–
The most promising candidate is the resonant production
photons when the mirrors vibrate at the optical resonan
frequency of the cavity [10]. A review, and more exten
sive references, are found in Ref. [11]. More recently, th
radiation due to vacuum fluctuations of a collapsing bubb
has been proposed as a possible explanation for the intri
ing phenomenon of sonoluminescence [12,13].

In this Letter we present a path integral formulation
applicable to all dimensions, for the problem of perfectl
© 1997 The American Physical Society 3421
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reflecting mirrors that undergo arbitrary dynamic defo
mations [14,15]. We calculate the frequency–wave ve
tor dependent mechanical response function, defined
the ratio between the induced force and the deformati
field, in the linear regime. From the response function w
extract a plethora of interesting results, some of whi
we list here for the specific example of lateral vibra
tions of uniaxially corrugated plates: (1) A single plat
with corrugations of wave numberk, vibrating at frequen-
ciesv ø ck, obtainsanisotropiccorrections to its mass.
(2) For v ¿ ck, there is dissipation due to a frequenc
dependent anisotropic shear viscosity. (3) A second pl
at a separationH modifies the mass renormalization b
a function of kH, but does not change the dissipatio
for frequenciesv2 , sckd2 1 spcyHd2. (4) For all fre-
quencies higher than this first optical normal mode of th
cavity, the mechanical response is infinite, implying th
such modes cannot be excited by any finite external for
This is intimately connected to the resonant particle cr
ation reported in the literature [7–10]. (5) A phase ang
u between two similarly corrugated parallel plates resu
in Josephson–like effects: There is a static force prop
tional to sinsud, while a uniform relative velocity results
in an oscillating force. (6) We calculate a (minute) co
rection to the velocity of capillary waves on the surface
mercury due to a small change in its surface tension.

Our approach is a natural generalization of the path
tegral methods developed by Li and Kardar [16] to stud
fluctuation-induced interactions between deformed ma
folds embedded in a correlated fluid. Such interactions
sult from thermal fluctuationsof the fluid. These methods
are readily generalized to zero point quantum fluctuatio
of a field, taking advantage of the path integral quan
zation formalism. Since in the Euclidian path integra
formulation the space and time coordinates are equiv
lent, deformations of the boundaries in space and time
pear on the same footing. As is usual, we simplify th
problem by considering a scalar fieldf (in place of the
electromagnetic vector potential [17]) with the action

S ­
1
2

Z
ddX≠mfsXd≠mfsXd , (1)

where summation overm ­ 1, . . . , d is implicit. Follow-
ing a Wick rotation, imaginary time appears as another c
ordinateXd ­ ict in the d–dimensional space-time. We
would like to quantize the field subject to the constrain
of its vanishing on a set ofn manifolds (objects) defined
by X ­ Xasyad, whereya parametrize theath manifold.
Following Ref. [16], we implement the constraints usin
delta functions, and write the partition function as

Z ­
Z

D fsXd
nY

a­1

Y
ya

dffsssXasyaddddg exp

Ω
2

1
h̄

Sffg
æ

.

(2)

The delta functions are next represented by integr
over Lagrange multiplier fields. Performing the Gaussia
3422
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integrations overfsXd then leads to an effective action
for the Lagrange multipliers which is again Gaussian [16
EvaluatingZ is thus reduced to calculating the logarithm
of the determinant of a kernel. Since the Lagrange mu
tipliers are defined on a set of manifolds with nontrivia
geometry, this calculation is generally complicated. T
be specific, we focus on two parallel 2D plates embedde
in 3+1 space-time, and separated by an average dista
H along thex3 direction. Deformations of the plates are
parametrized by the height functionsh1sx, td andh2sx, td,
wherex ; sx1, x2d denotes the two lateral space coordi
nates whilet is the time variable. Following Ref. [16],
ln Z is calculated by a perturbative series in powers o
the height functions. The resulting expression for the e
fective action (in real time), defined bySeff ; 2ih̄ ln Z ,
after eliminatingh independent terms, is

Seff ­
h̄c
2

Z dvd2q
s2pd3 hA1sq, vdfjh1sq, vdj2 1 jh2sq, vdj2g

2 A2sq, vdfh1sq, vdh2s2q, 2vd

1 h1s2q, 2vdh2sq, vdgj 1 Osh3d . (3)

The kernelsA6sq, vd that are closely related to the me-
chanical response of the system (see below) are functio
of the separationH, but depend onq andv only through
the combinationQ2 ­ q2 2 v2yc2. The closed forms
for these kernels involve cumbersome integrals, and a
not very illuminating. Instead of exhibiting these formu-
las, we shall describe their behavior in various regions o
the parameter space. In the limitH ! `, A`

2sq, vd ­ 0,
and

A`
1sq, vd ­

(
2

1
360p2c5 sc2q2 2 v2d5y2, for v , cq ,

i
sgnv

360p2c5 sv2 2 c2q2d5y2, for v . cq ,

(4)

where sgnsvd is the sign function. While the effective
action is real forQ2 . 0, it becomes purely imaginary
for Q2 , 0. The latter signifies dissipation of energy
[6], presumably by generation of photons [9]. It agree
precisely with the results obtained previously [6] for the
special case of flat mirrorssq ­ 0d. (Note that dissipation
is already present for a single mirror.)

In the presence of a second plate (i.e., for finiteH),
the parameter space of the kernels subdivides into thr
different regions as depicted in Fig. 1. In region I (Q2 .

0 for any H), the kernels are finite and real, and henc
there is no dissipation. In region IIa, where2p2yH2 #

Q2 , 0, the H-independent part ofA1 is imaginary,
while the H-dependent parts of both kernels are rea
and finite. (This is also the case at the boundaryQ2 ­
2p2yH2.) The dissipation in this regime is simply the
sum of what would have been observed if the individua
plates were decoupled, and unrelated to the separationH.
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FIG. 1. Different regions of thesq, vd plane.

By contrast, in region IIb, whereQ2 , 2p2yH2, both
kernels diverge with infinite real and imaginary parts [18
This H-dependent divergence extends all the way to t
negativeQ2 axis, where it is switched off by a1yH5

prefactor.
As a concrete example, let us examine the late

vibration of plates with fixed roughness, such as tw
corrugated mirrors. The motion of the plates ente
through the time dependencesh1sx, td ­ h1sssx 2 rstdddd
andh2sx, td ­ h2sxd; i.e., the first plate undergoes latera
motion described byrstd, while the second plate is
stationary. The lateral force exerted on the first pla
is obtained from fistd ­ dSeffydristd. Within linear
response, it is given by

fisvd ­ xijsvdrjsvd 1 f0
i svd , (5)

where the “mechanical response tensor” is

xijsvd ­ h̄c
Z d2q

s2pd2 qiqj

Ω
fA1sq, vd 2 A1sq, 0dgjh1sqdj2

1
1
2

A2sq, 0dfh1sqdh2s2qd 1 h1s2qdh2sqdg
æ

,

(6)

and there is a residual force

f0
i svd ­ 2

h̄c
2

2pdsvd
Z d2q

s2pd2 iqiA2sq, 0d

3 fh1sqdh2s2qd 2 h1s2qdh2sqdg . (7)

For a single corrugated plate with a deformatio
hsxd ­ d cosk ? x, we can easily calculate the respons
tensor using the explicit formulas in Eq. (4). In th
limit of v ø ck, expanding the result in powers
of v gives xij ­ dmijv2 1 Osv4d, where dmij ­
Ah̄d2k3kikjy288p2c can be regarded as corrections
the mass of the plate. (Cut-off dependent mass corr
tions also appear, as in Ref. [11].) Note that these m
corrections areanisotropicwith dmk ­ Ah̄k5d2y288p2c
and dm' ­ 0. Parallel and perpendicular componen
are defined with respect tok, andA denotes the area of the
plates. The mass correction is inherently very small: F
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a macroscopic sample withd ø l ­ 2pyk ø 1 mm,
density ø15 gycm3, and thicknesst ø 1 mm, we find
dmym , 10234. Even for deformations of a microscopic
sample of atomic dimensions (close to the limits of th
applicability of our continuum representations of th
boundaries),dmym can only be reduced to about10210.
While the actual changes in mass are immeasurably sm
the hope is that itsanisotropymay be more accessible
say, by comparing oscillation frequencies of a plate in tw
orthogonal directions.

For v ¿ ck the response function is imaginary
and we define a frequency dependent effective sh
viscosity byxijsvd ­ 2ivhijsvd. This viscosity is also
anisotropic, with hksvd ­ h̄Ak2d2v4y720p2c4, and
h'svd ­ 0. Note that the dissipation is proportional t
the fifth time derivative of displacement, and there is n
dissipation for a uniformly accelerating plate. Howeve
a freely oscillating plate will undergo a damping of it
motion. The characteristic decay time for a plate
massM is t ø 2Myh. For the macroscopic plate of the
previous paragraph, vibrating at a frequency ofv ø 2ck
(in the 1012 Hz range), the decay time is enormou
t , 1018 s. However, since the decay time scales as t
fifth power of the dimension, it can be reduced to10212 s,
for plates of an order of 10 atoms. However, the requir
frequencies in this case (in the1018 Hz range) are very
large. Also note that, for the linearized forms to rema
valid in this high frequency regime, we must require ve
small amplitudes, so that the typical velocities involve
y , r0v, are smaller than the speed of light. Thes
difficulties can be somewhat overcome by consideri
resonant dissipation in the presence of a second plate.

With two plates at an average distanceH, the results
are qualitatively the same for frequencies less than
natural resonance of the resulting cavity. There is
renormalization of mass in region I, and dissipatio
appears in region IIa, of Fig. 1. However, the ma
renormalization at low frequenciessv ø ckd is now a
function of bothk andH, with a crossover from the single
plate behavior forkH , 1. In the limit of kH ø 1,
we obtaindmk ­ h̄ABk2d2y48cH3 and dm' ­ 0, with
B ­ 20.453. Compared to the single plate, there is a
enhancement by a factor ofskHd23 in dmk. The effective
dissipation in region IIa is simply the sum of those due
individual plates, and contains noH dependence.

There are additional interesting phenomena result
from resonances. We find that both real and imagina
parts ofA6sq, vd diverge forv2yc2 . q2 1 p2yH2. In
the example of corrugated plates, we replaceq by k to
obtain a continuous spectrum of frequencies with diver
ing dissipation. Related effects have been reported
the literature for 1+1 dimensions [7–10], but occurrin
at a discreteset of frequenciesvn ­ npcyH with inte-
ger n $ 2. These resonances occur when the frequen
of the external perturbation matches the natural norm
modes of the cavity, thus exciting quanta of such mod
3423
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In one space dimension, such modes are characterize
a discrete set of wave vectors that are integer multip
of pyH. The restriction ton $ 2 is a consequence of
quantum electrodynamics being a “free” theory (quadra
action): Only two-photon states can be excited subje
to conservation of energy. Thus the sum of the freque
cies of the two photons should add up to the external f
quency [9].

In higher dimensions, the appropriate parameter is
combinationv2yc2 2 q2. From the perspective of the
excited photons, conservation of momentum requires t
their two momenta add up toq, while energy conservation
restricts the sum of their frequencies tov. The in-plane
momentumq, introduces a continuous degree of freedom
The resonance condition can now be satisfied for
continuous spectrum, in analogy with optical resonato
In Ref. [9], the lowest resonance frequency is found
be 2pcyH which seems to contradict our prediction
However, the absence ofv1 ­ pcyH in 1+1 D is due
to a vanishing prefactor [9], which is also present
our calculations. However, in exploring the continuou
frequency spectrum in higher dimensions, this single po
is easily bypassed, and there is a divergence for
frequencies satisfyingv2yc2 . q2 1 p2yH2, where the
inequality holds in its strict sense.

Resonant dissipation has profound consequences
motion of plates. It implies that, due to quantum fluctu
ations of vacuum,components of motion with frequencie
in the range of divergences cannot be generated by a
finite external force. The imaginary parts of the kernels
are proportional to the total number of excited photo
[9]. Exciting these degrees of motion must be accomp
nied by the generation of an infinite number of photon
requiring an infinite amount of energy, and thus impos
ble. However, as pointed out in Ref. [9], the divergen
is rounded off by assuming finite reflectivity and transmi
sivity for the mirrors. Hence, in practice, the restrictio
is softened and controlled by the degree of ideality of t
mirrors in the frequency region of interest.

We shall next examine the constant term
Eq. (7). For two plates corrugated at the same wav
length, with deformationsh1sxd ­ d1 cossk ? xd and
h2sxd ­ d2 cossk ? x 1 ad, there is a (time independent
lateral force,

Fdc ­
h̄cA

2
A2sk, 0dkd1d2 sina , (8)

which tends to keep the plates180± out of phase,
i.e., mirror symmetric with respect to their midplane
The dependence on the sine of the phase mismatch
reminiscent of the dc Josephson current in supercondu
junctions, the force playing a role analogous to th
current in superconductor-insulator-superconductor (S
junctions. There is also an analog for the ac Joseph
effect, with velocity (the variable conjugate to force
playing the role of voltage: Consider two corrugate
3424
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plates separated at a distanceH, described byh1sx, td ­
d1 coshk ? fx 2 rstdgj andh2sx, td ­ d2 cosfk ? xg. The
resulting force at a constant velocityfrstd ­ vtg,

Fac ­
h̄cA

2
A2sk, 0dkd1d2 sinfsk ? vdtg , (9)

oscillates at a frequencyv ­ k ? v . Actually both
effects are a consequence of the attractive nature of
Casimir force. It would be difficult to separate them
from similar forces resulting from, say, van der Waal
attractions.

As a final example, we study the capillary waves o
the surface of mercury, with a conducting plate placed
a separationH above the surface. The low frequency–
wave-vector expansion of the kernel due to quantum flu
tuations in the intervening vacuum starts with quadrat
formsq2 andv2. These terms result in corrections to the
(surface) mass density bydr ­ h̄By48cH3, and to the
surface tension byds ­ h̄cBy48H3. The latter correc-
tion is larger by a factor ofscycsd2, and changes the ve-
locity cs of capillary waves bydcsyc0

s ­ h̄cBy96sH3,
wheres is the bare surface tension of mercury. Takin
H , 1 mm ands , 500 dynycm, we find another very
small correction fordcsyc0

s , 10219.
In summary, we have developed a path integral fo

mulation for the study of quantum fluctuations in a cav
ity with dynamically deforming boundaries. As oppose
to previous emphasis on spectra of emitted radiatio
we focus on the mechanical response of the vacuu
Most of the predicted phenomena, while quite intrigu
ing theoretically, appear to be beyond the reach of cu
rent experiment: The most promising candidates are t
anisotropy in mass and resonant dissipation. The pa
integral method is quite versatile, and future extension
could focus on nonlinear response, other geometries (e
wires), the gauged electromagnetic field, and calculatio
of emitted spectra using correlation functions.
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