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Is Quantum Bit Commitment Really Possible?

Hoi-Kwong Lo* and H. F. Chali

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
(Received 8 March 1996

We show that all proposed quantum bit commitment schemes are insecure because the sender, Alice,
can almost always cheat successfully by using an Einstein-Podolsky-Rosen—type of attack and delaying
her measurement until she opens her commitment. [S0031-9007(97)02967-0]

PACS numbers: 89.70.+c, 03.65.Bz, 89.80.+h

Work on quantum cryptography was started by Wiesner Let us first introduce bit commitment. A bit commit-
in a paper written in about 1970, but remained unpublishednent scheme generally involves two parties, a sender,
until 1983 [1]. Recently, there have been lots of renewedhlice, and a receiver, Bob. Suppose that Alice has a bit
activities on the subject. The most well-known application(b = 0 or 1) in mind, to which she would like to be com-
of quantum cryptography is the so-called quantum key dismitted towards Bob. That is, she wishes to provide Bob
tribution (QKD) [2—4], which is useful for making com- with a piece of evidence that she has already chosen the
munications between two users totally unintelligible to anbit and that she cannot change it. Meanwhile, Bob should
eavesdropper. QKD takes advantage of the uncertaintyot be able to tell from that evidence whitis. At a
principle of quantum mechanics: Measuring a quantumater time, however, it must be possible for Alicedpen
system in general disturbs it. Therefore, eavesdropping otihe commitment. In other words, Alice must be able to
a quantum communication channel will generally leave unshow Bob which bit she has committed to and convince
avoidable disturbance in the transmitted signal which camim that this is indeed the genuine bit that she had in mind
be detected by the legitimate users. Besides QKD, othevhen she committed.
guantum cryptographic protocols [5] have also been pro- A concrete example of an implementation of bit com-
posed. In particular, it is generally believed [4] that quan-mitment is for Alice to write down her bit on a piece of
tum mechanics can protect private information while it ispaper, which is then put in a locked box and handed over
being used for public decision. Suppose Alice has a secréd Bob. While Alice cannot change the value of the bit
x and Bob a secret. In a “two-party secure computa- that she has written down without the key to the box, Bob
tion” (TPSC), Alice and Bob compute a prescribed func-cannot learn it himself. At a later time, Alice gives the
tion f(x,y) in such a way that nothing about each party’skey to Bob, who opens the box and recovers the value
input is disclosed to the other, except for what followsof the committed bit. This illustrative example of imple-
logically from one’s private input and the function’s out- mentation is, however, is inconvenient and insecure. A
put. An example of the TPSC is the millionaires’ problem:locked box may be very heavy and Bob may still try to
Two persons would like to know who is richer, but neitheropen it by brute force (e.g., with a hammer).
wishes the other to know the exact amount of money he/ What do we mean by cheating? As an example, a
she has. cheating Alice may choose a particular valuebofluring

In classical cryptography, TPSC can be achieved eithethe commitment phase and tell Babnothervalue during
through trusted intermediaries or by invoking some un-the opening phase. A bit commitment scheme is secure
proven computational assumptions such as the hardneagainst a cheating Alice only if such a fake commitment
of factoring large integers. The great expectation is thatan be discovered by Bob. For concreteness, it is instruc-
quantum cryptography can get rid of those requirementsive to consider a simple QBC protocol due to Bennett and
and achieve the same goal using the laws of physics alonBrassard [2]. Its procedure goes as follows: Alice and
At the heart of such optimism has been the widespreadob first agree on a security parameter, a positive integer
belief thatunconditionally secure quantum bit commit- The sender, Alice, chooses the value of the committed bit,
ment (QBC) schemes exist [6]. Here we put such optib. If b = 0, she prepares and sends Bob a sequence of
mism into very serious doubt by showing tladitproposed s photons each of which is randomly chosen to be either
QBC schemes are insecure: A dishonest party can explditorizontally or vertically polarized. Of course, the value of
the nonlocal Einstein-Podolsky-Rosen—type correlation$ is kept secret during the commitment phase. Moreover,
[18] in quantum mechanics to cheat successfully. To dahe actual polarization of each photon chosen by Alice is
s0, she generally needs to maintain the coherence of hapt announced to Bob. Similarly, # = 1, she prepares
share of a quantum system by using a quantum computeaind sends Bob a sequencesgbhotons each of which is
We remark that all proposed QBC schemes contain amandomly chosen to be either 46r 135 polarized but
invalid implicit assumption that some measurements arence again the actual polarization of each photon is kept
performed by the two participants. This is why this EPR-secret by Alice. Bob chooses randomly between the recti-
type of attack was missed in earlier analysis. linear (horizontal and vertical) and diagonal {45 135’)
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bases to measure the polarization of each photon. Thiguantum communications.) More precisely, the general
completes the commitment phase. A simple calculatiorprocedure of any proposed QBC scheme can be rephrased
shows that the two density matrices describingstpho-  in the following manner.
tons corresponding tb = 0 andb = 1, respectively, are (1) Alice chooses the value of a hit to which she
exactly the same (and are proportional to the identity mawould like to be committed towards Bob. # = 0, she
trix). Consequently, Bob cannot learn anything about theprepares a state
value ofb.
At a later time, Alice mayopen her commitment by 0) = > ailei)a ® |di)s. ()
announcing the value df and the actual polarization of i
each of thes photons. Since Bob has chosen his basigvhere(e; | e;)4 = 8;; but the normalized statelgh;)z’s
(rectilinear or diagonal) of measurement randomly forare not necessarily orthogonal to each other. Similarly, if
each photon in the commitment phase, on average, only = 1, she prepares a state
half of the s photons have been measured by him in the , ,
correct basis. For those photons, Bob can verify that 1) = Z,B,,-Ie,)A ® |$))s, ()
Alice’s announced polarizations match his measurement /
results. Baring EPR attacks, a cheating Alice may, fowhere (¢} | e})A = §;; but Iqb]’->B’s are not necessarily
example, send rectilinear photons in the commitmenbrthogonal to each other.
phase (hence commits to= 0) but tell Bob that they are Both Alice and Bob are supposed to know the states
diagonal photons in the opening phase (hence announcé® and|1). This implies, in particular, that both of them
b = 1). This is cheating. Alice then has to make aknow the state$p;)s and|¢j>3.
random guess for the polarizations of the photons that Bob (2) An honest Alice is now supposed to make a
has measured along the diagonal basis. Since Bob, aneasurement on the first register and determine the value
average, measureg2 photons along the diagonal basis,of i if b =0 (jif b = 1).
Alice, with such a cheating strategy, has only a probability (3) Alice sends the second register to Bob as a piece of
of (1/2)*/2 for success. See [7] for details. evidence for her commitment.
A key weakness of Bennett and Brassard’'s scheme is (4) At a later time, Alice opens the commitment by
that Alice can always cheat successfully by using EPRleclaring the value af and ofi or j.
pairs. Alice can prepare EPR-pairs of photons and send (5) Bob performs measurements on the second register
a member of each pair to Bob during the commitmento verify that Alice has indeed committed to the genuine
phase. She skips her measurements and decides on thie More precisely, the data received from Alice (the
value of b only at the beginning of the opening phase.values of b and alsoi or j) should be correlated with
If she chooses the value df to be 0, she measures Bob’'s experimental results on the second register. If
the polarization of the photons in her share along thesuch expected correlations do appear, Bob accepts that
rectilinear basis. It is a standard property (the EPRAlice has executed the protocol honestly. Otherwise, Bob
paradox) of an EPR pair that Alice’s measurement resulsuspects that Alice is cheating.
on a photon will always be perpendicular to Bob’s result We emphasize that all proposed QBC schemes follow
on the other photon of the pair. Alice can, thereforethe five-step procedure described above. For instance,
proudly announce those polarizations. Similarly, forBennett and Brassard’s scheme described earlier falls into
b = 1, she simply measures along the diagonal basis anthis class if we give Bob the liberty to store up his photons
proceeds in a similar manner. There is no way for Bob taand measure them only after the opening (step 4) of the
detect this attack. commitment by Alice. But, if Alice can cheat against
Bennett and Brassard noted this weakness in theven such a powerful Bob, clearly she can cheat against
same paper in which they proposed their scheme [2]Bob who has no such storage capability.
Nonetheless, new QBC schemes have been proposed andOur proof of insecurity of QBC goes as follows: First
it has been generally accepted in the literature [4,7,8bf all, in order that Bob cannot tell whét is, the second
that they defeat an EPR-type of attack. Our goal here isegister (the quantum system that Bob receives during
to demonstrate that, contrary to popular belief, preciselyhe commit phase) must contain very little information
the same type of EPR attack defeats all proposed QB@bout which bit Alice has committed to. As a start, let
schemes. us consider thadeal case in which the second register
All proposed schemes involve only one-way commu-contains absolutely no information about the value of
nications from Alice to Bob. On the conceptual level, b. (Bennett and Brassard’s scheme [2] and Ardehali's
they all involve Alice sending two quantum systems toscheme [9] are ideal whereas Brassard and Crépeau’s
Bob, one during the commit phase and the other duringcheme [7] and the most well-known BCJL scheme [8]
the opening phase. (There is no loss of generality in ouare nonideal. We sill come to the nonideal case near the
analysis in considering quantum communications alonend of this Letter.) In the ideal case, to ensure that Bob
since classical communications is just a special case dfas no information about the committed bitthe density
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matrices describing the second register associated with thgrobability of distinguishing between the two states, the
bits 0 and 1 are the same, i.e., scheme will be unsafe against a cheating Bob. On the
Traloy(0l = p2 = p? = Tral1)(1]. (3)  other hand, if Bob has only a very small probability of
distinguishing between the two states, clearly the two
density matriceg$ andp? must be close to each other in
some sense and essentially the same physics should apply.
|0y = Z Ve ® 1dis. (4) Following Mayers [20], we now consider the nonideal
k case wherp§ # pt. The closeness between two states
and of B specified by the two density matricgg and p?
R is commonly described by the concdiaelity [21] which
1) => VAuepa © [di)s, (5)  can be defined in terms pirifications. Imagine a system
k . A attached to Bob’s syste®. There are many pure states
where{|e;)a}, {Ie1)a}, and{|$,)s} are orthonormal bases |y,) and|y,) on the composite system such that
of the corresponding Hilbert spaces ang’s are the B B
eigenvalues of the reduced density operatog|0pK0| = Tra(lgo) ol) = po - and i) (nl) = pi'. (6)
Tral1)(1]. Notice that ther,'s and|$y)s's are the same  The pure statelyo) and|y) are called the purifications
for the two states and the only difference lies in Alice’s o the density matricep? and p?. The fidelity can be
system [é)a’s VS |&;)4’s. Now consider the unitary gefined as
transformationl, which maps|é;), to |é;)4. It clearly
maps|0) to |1). Note that the transformatioti, acts on F(p§,pt) = max{go | o)l , (7)
Alice’s systemalone and yet rotate$0) to |1). That is,
Alice can applyU, without Bob’s help. Therefore, Alice
can cheat by changing = 0 to » = 1 in the opening
phase.

More concretely, consider the following cheating
strategy: In the first step, Alice always prepan€s
corresponding tob = 0. She then skips the second e DT Y B
(measurement) step and sends the second register to ngla" probability for distinguishing betwees and pi
as prescribed in the third step. She decides on the valJgeans that [19]
of b to announce only in the beginning of the opening F(pE.ph)y=1-6 (8)
phase (step 4). Should she now chodsé¢o be zero,
she executes the protocol honestly. On the other handor some smalis > 0. It then follows from Egs. (7) and
if she now chooses to be one, she applies the unitary (8) that, for the sta%él) given in Eq. (2), there exists a
transformationU, to rotate|0) to |1) and executes the Purification|io) of py such that
protocol for b = 1 instead. Consequently, Alice can _ B By _ 1 _
always cheat successfully. Notice that Alice is able to ol DI = Flpy,pr) =1 6. ©)
cheat primarily because she cdelay her measurement  The strategy of a cheating Alice for a nonideal bit
until step four. To do so, Alice generally needs a quantuntommitment scheme is the same as before. She prepares
computer. While it is a challenging technological feat tothe statd0) corresponding t&é = 0 in the first step, skips
build a quantum computer, it is not forbidden by the lawsthe second (measurement) step, and sends the second
of quantum physics. The possibility of a dishonest Aliceregister to Bob as prescribed in the third step. She decides
skipping the second step (i.e., delaying her measurementsh the value ofb only in the beginning of the opening
was not considered in Ref. [8]. This was the chief reasomphase (step 4). If she now choosks= 0, she simply
why earlier researchers came to the erroneous conclusidallows the rule. If she chooses = 1, she applies a
that the BCJL scheme is provably unbreakable. unitary transformation to the quantum system on her share

In the above discussion, we have assumed the ide&b obtain the statgy,) which satisfies Eq. (9). Such a
situation in which Bob has absolutely no information unitary transformation exists because, as can be seen in
about the value ofb during the commitment phase the Schmidt decomposition [19], all purificatiohé ).z
and hence the density matrices describing the seconaf a fixed density matrixop are related to one another
register for the two case$ =0 and b = 1 are the by unitary transformations acting oh aloneandA is in
same. [See Eq. (3)]. However, Brassard and CrépeauAlice’s hands. Notice that if Alice had been honest, she
scheme [7] and the BCJL scheme [8] are nonideal irwould have preparedil) in the first step instead. [See
the sense that they violate Eq. (3) slightly and give BobEq. (2).] Nonetheless, sindg) and |1) are so similar
some probability of distinguishing betwegr§ and p?.  to each other [see Eq. (9)], Bob clearly has a hard time
Intuition seems to indicate that this is not going to changen detecting the dishonesty of Alice. Therefore, Alice can
our conclusion: On the one hand, if Bob has a largecheat successfully with a very large probability.

It then follows from the Schmidt decomposition [19]
that

where the maximization is over all possible purifications,
0=F=1. F=1ifandonlyifpf = p¥. We remark
that for any fixed purification op?, e.g.,|1) in Eq. (2),
there exists a maximally parallel purification @f which
satisfies Eq. (7).

For nonideal QBC schemes, the fact that Bob has a
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