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A model of disordered spin-Peierls system is considered, where domain walls are randomly
distributed as a telegraph noise. For this realization of the disorder ¥XXaspin chain, we calculate
exactly the density of states as well as several thermodynamic quantities. The resulting physical
behavior should be qualitatively unchanged even forXa¢Z chain, up to the isotropicXXX point.
For weak disorder, besides a high energy regime where the behavior of a pure spin-Peierls system is
recovered, there is a crossover to a low energy regime with singular thermodynamic properties and
enhanced antiferromagnetic fluctuations. These regimes are analyzed with the help of exact results, and
the relevant energy scales determined. We discuss the possible relevance of such a disorder realization
to the doped inorganic spin-Peierls compound CuGeS0031-9007(97)03045-7]

PACS numbers: 75.10.Jm, 75.50.Ee

One dimensional quantum spin systems in the presenae spin gap opens. However, upon substitution of a few
of randomness show unusual and intriguing propertiepercent of Cu with magnetic (Ni [6]) or nonmagnetic (Zn
(see, e.g., Ref. [1], and references therein). For instanc§Z,8]) impurities (as well as replacing Ge with Si [9]),
it has been shown [1-3] that the ground state of thévesides the structural transition, which still occurs close
Heisenberg antiferromagnet with random exchange corto 14 K, an antiferromagnetically ordered phase appears
stants can be interpreted as a random singlet state, whebelow a lower temperaturEy ~ 4 K. Moreover, the es-
pairs of spins are coupled into singlets with an energgimated magnetic moment with% of Zn is as high as
gap to the triplet configuration which is weaker for widely 0.2u 5 [8]. This behavior is quite puzzling. First of all,
separated pairs. The uniform and staggered magnetic suseuristically, one would expect a Néel temperature expo-
ceptibilities, y and y,, have a (Griffith’s-like) singular nentially small in the ratio of the average distance be-
behavior at low temperature, ~ xs ~ 1/(TIn*T). In-  tween the impurities to the spin-Peierls correlation length
terestingly, in spite of the singlet nature of the groundisp. At 4% doping, this would implyTy/Tsp = 0.04,
state, the spin-spin correlation functions are still longinconsistent with the experiment. In addition, one would
ranged. In fact(S'(r)S'(0)) = 1/r?, for larger (i = also expect a magnetic moment of the order of the doping
x,v,z) [1]. These properties are not modified by spinconcentration, not almost an order of magnitude larger, as
anisotropy if, on averagd, = J, = J,. Notice that spin seen experimentally.
anisotropy does not manifest itself in the spin-spin corre- In this Letter, we study a particular realization of a
lation function with different power law behavior bf= z  disordered spin-Peierls system which does show a large
with respect toi = x,y, contrary to the case in the ab- enhancement of antiferromagnetic fluctuations, coexisting
sence of disorder. The behavior of the randéKZchain  on a lower energy scale with an underlying dimerization.
is, however, unstable towards a finite average dimerizaMoreover, this model permits an exact calculation of
tion, i.e., a finite average difference between the exchangehysical quantities for a wide range of temperature and
constants of the even bonds and of the odd bonds. Thisnergy.
case was recently analyzed by Hynetral. [4] by means The Hamiltonian of each chain in the absence of
of a real space renormalization group approach. For a fimpurities is
nite average dimerizatiogh, they find that the spin-spin
c_orrelatlon functions decay expon_e_ntlall_y with a correla- ff = Z[l + po(—1)1(STST,, + 878y, + ASISE)),
tion length ¢ ~ || 2, but the Griffith singularities re- ; (1)
main, even if weaker. In particular, singularities of the
uniform susceptibilityy ~ 7¢~!, and the specific heat whereg, is the strength of the dimerization. We assume
C, ~ T*, wherea « |¢|, are found to persist [4]. that one impurity releases one spifi2lsolitonic excita-

The study of the role of disorder in a spin-Peierls systion, connecting regions of different dimerization parity.
tem may be useful to understand the behavior upon dop- This assumption is, in fact, more appropriate to describe
ing of the inorganic spin-Peierls compound CuGeOQhe the effect of Cu substitution by Zn or Ni doping. An
pure compound is known to undergo a structural transitiomnalysis of a model for Si doping has been given in
at 14 K [5], below which the Cu®chains dimerize and Ref. [10], leading to results similar to those we are going
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to present here [11]. The role of the interchain coupling isfermionic model is
to provide a confining potential to the soliton, which will IN(E)
be trapped within some distance from the impurity [12]. ple) =2 ——— .
: : : ; oE E=¢€*—h?
Moreover, the weak link connecting the impurity nearest g
neighbors (which would be, for instance, generated byn the case in whickb(x) is a white noise, these equations
a next-nearest-neighbor exchange) is approximated to beave been analyzed quite in detail in the context of
equal to the weak bonds in (1). Therefore, the effectivadisordered one-dimensional Fermi systems [13,14], or
Hamiltonian, defined now on a chain of one site lessglassical diffusion of a particle in a random medium (for
remains the same apart from the presence of a domagn review see, e.g., Ref. [15]). An interesting anomaly
wall. For a finite numbem;,, of randomly distributed of this problem is that, for a zero-average white noise,
impurities, the effective model will therefore be assumedhe E = 0 state is extended [14,16,17], and both the
to consist of a chain withn;,, sites less, described localization length and the density of states diverge as
by the same Hamiltonian Eq. (1), but in the presence — 0. Quite recently, Comtet, Desbois, and Monthus
of randomly distributed domain walls. This amounts (CDM) [18] specialized those equations for a particular
to take a site depender(i), which takes alternatively disorder, for which they have been able to calculate
two values=* ¢y, jumping from one to the other at the exactly the integrated density of statdBgE) and the
(random) position of the antiphase walls. We will showlocalization lengthA(E). Specifically, they assumed a
that it is possible to calculate many physical propertiesandom potential¢(x) which takes alternatively two
of the soliton band which is created by disorder insidevalues ¢, and ¢; at intervals whose lengthg = 0
the spin-Peierls gap, without the precise knowledge of thare randomly distributed according to the probability
soliton wave functions. In Eqg. (1)A = 0 corresponds densitiesfo(I) = no exp(—nol) andfi(I) = ny exp(—nyl)
to the XX chain, while A = 1 is the isotropic XXX (see also Ref. [16]). This choice @f(x) is particularly
model. On the basis of the analyses of Refs. [1,3,4]suited for studying our problem of randomly distributed
we expect that the behavior &< A =< 1 should be domainwalls. In particular, our case correspondé to=
similar to that atA = 0, therefore we will only study —¢y < 0, andny = ny, i.e., to an average dimerization
the latter case, which is much simpler. We believe¢ = (don; + ¢1ng)/(ng + n;) = 0. Nevertheless, we
that this approximation gives qualitatively good resultswill also discuss the more general situation # 7, in
for all the range0 = A = 1, especially in view of our which case¢ is finite. Moreover, we start by taking
particular choice of the disorder. By means of a Jordans; = 0. In the model there are three relevant length
Wigner transformation, the model can be mapped onto acales,Asp = 1/¢q, lp = 1/ng, andl; = 1/n1. Asp is
model of disordered spinless fermions. By linearizing thethe correlation length of the system in the absence of
spectrum around the Fermi energy, introducing the rightlisorder, which is the case if, for instanég/l/; — . In
and left moving components of the fermion field, andthis case, the spectrum of the single-particle excitations
then taking the continuum limit, the diagonalization of (which is symmetric around zero energy) shows a gap
the Hamiltonian amounts to solve the following coupled2¢,, and the density of statgs(e) has an inverse square

()

differential equations: root singularity ate = =¢y. For genericly and!;, the
. L B density of states can still be exactly calculated within
Fid xrwex) + [() = ihxrwe(x) = exrwex),  the phase formalism approach [18], and expressed in

where yzr()(x) is the eigenfunction of energy on the terms of integrals which have to be numerically evaluated.

right (left) moving field, and we have also considered forEssentially, the method consists in writing the master
later convenience a uniform staggered magnetic figlith equation for the joint probability d|str|but|on_ of the phase
the z direction. The dimerization fields (x) corresponds ©f the wave function andg(x), and solving for the
to that introduced in Eq. (1), apart from an appropriatétatlonaryx—lndependent SO|l'J'[I0n'. In particular, if and
normalization factor. The equations can be decoupled b§i &€ much longer thanse, i.., if the gap has the time

the following transformation: 0 develop in a region of constari(x), the density of
states still shows a peak at¢,, even though states are
Ur(—)e(x) = Exre)e(x) + ixLwe(x). created inside the gap. These states accumulate, in a

) ) ) . singular manner, as — 0. In particular, the density of

Thesg two functions are solutions of the Schroedinger-lik&;ates around zero energy goes like) ~ €21, where
equations w = (n1 — no)/(2¢y) is finite. In Fig. 1, we drawp (e)

a2 2 N _ for € > 0, ¢9 = 1, and variousny andn;. For u = 0,

[0+ 700 + (¢ Whrelx) = Eurye(x), p(e) ~ 1/|eIn®€|. The key feature of ourchoige for the
whereE = €? — h? should be greater than zero. In the random potential is that, even if the average dimerization
following, we will often use the integrated density of ¢ = 0, i.e., if ng = n; = n, the density of states shows
states as a function df, which we will define asV(E).  a pseudogap ifhy > n (see Fig. 1), totally absent for a
In terms of this function, the density of states of thewhite noise process [19].
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and it has to be used as the starting point of the

4 Fos| renormalization group flow equations of Ref. [1]. In this
- \ way, it is possible to recover the same results that we

3 N obtain by exploiting the exact solvability of our model,
<~ 00.\01?‘-2 thus showing not only that the two models are equivalent,
o S but also that spin anisotropy does not really matter [20].

Forny # ny, the same analogy works now with the model
B of Ref. [4]. More rigorously, the above conjectured
1 equivalence can be proven by showing that the models
have the same low temperature thermodynamic properties.
In our model, we can, in fact, calculate exactly many
0 05 1 1.5 2 thermodynamic quantities and find not only the low tem-
€ perature but also the intermediatE ¢ ¢,) temperature
FIG. 1. Density of states forp, = 1 and ny = n, = 0.3 behavior. For instance, the uniform magnetic susceptibil-
(dotted line), ng = n; = 0.1 (full line), ny = 0.1, n; = 0.3 ity is given by
(dashed line). Also shown in the inset is the low energy -
behavior. ¥(T) = ’Bj;) dE

To be more precise, from our numerical results we find
similarly to CDM, that the integrated density of states
N(E) for weak disorder (i.e., bothy andn; much smaller

than ¢) saturates below the pseudogsap to a value we find that, at lowT, y(T) ~ T2#1, for u # 0,

Nu ~ noni/(ng + 1), which is of the order of half the and ~1/(TIn>T) for w = 0. The latter is exactly the
average number per unit length of steps of the randonpesult for the randomXXZ Heisenberg model. Our
potential. The saturation occurs at an energy sdale model thus belonas. at low enerav and f r=b o
which can be identified as the typical effective bandwidth elongs, gy and ‘ar= o
X o . . .~ the same universality class. For al’'s smaller than

of those midgap excitations. This result physically im- : . T
plies that, for weak disorder, the number of states generl-/z’ the magnetic susceptibility still diverges at low

o ) ' temperature. Analogously, the specific heat vanishes
ated inside the gap is of the order of the average numbea[S C, ~ T2 (C, ~ 1/[IT|, for u = 0), which is
of domain walls. From the analytical expressiomdt), v ible with Uh | fé f 4'“ ith T h
we obtain that I6E./¢2) ~ —2d0/(no + m), i.e., Ex is compatible with the result of Ref. [4] witbu = «, thus

exponentially small in the inverse of the disorder stren thShOWing the equivalence with our model at# 0. In
ponentially s . '9 addition, we obtain the full behavior gf at intermediate
In addition, it is also possible to calculate the localiza-

. ; temperatures, as shown in Fig. 2. We see thafl at

tion lengthA(E). In particular, for¢p # 0, A(0) = 1/¢, o . : ;

which i%plie(s )that Phe localized Q:)Nave fu(ncztions/i?\side(bo’ the susceptibility decreases as if a spin-Peierls gap
S were present, even though it finally diverges at I&w

the gap have a much longer localization length than th oreover, for E, < T < ¢, we predict a Curie-like

spin-Peierls correlation lengthsp. More interesting, for ’ p 0 P

¢ = 0, which is relevant for our disorder modelization, be?ﬁgg:;&?o?gliﬂg gfanSt:':Zg*' art of the SDIN-spin cor-
AME) ~ |InE|, so that the states close B = 0 are 99 P pin-sp

almost delocalized relation functiony,(x) can be deduced by the analogies
’ with the models analyzed in Refs. [1,4]. In particular,

More generally, our model at low temperature and ens ; ; :
ergy is equivalent to the models analyzed in Ref. [1] anJor ¢ # 0, x:(x) decays exponentially with a correlation

in Ref. [4], for ¢ = 0 and ¢ # 0, respectively. The
analogy can be expected by the following arguments. For
€ = ¢o and ny = n; <K ¢y, the problem reduces to a
model of weakly coupled spins localized close to each
domain wall. As a first approximation, only the exchange
coupling between two successive spins can be retained,
which is given byJ(r) = ¢oexp(—r¢o), r being the
random distance between two domain walls distributed
according tonexp(—rn). Thus the model is indeed
equivalent to an Heisenberg chain with randomly dis-

03=_ML_.IJ_.I..J. IIIlIlIII

N !
dE 2cosR(BVE/2)’
and is plotted in Fig. 2 for the same valuesdaf, ny, and

np as in Fig. 1.
From the asymptotic behavior a¥(E) for small E,

tributed exchange constants. The probability distribution 0 0.5 1
of J at energy scales ¢, can be readily found to be T
1_
P(J) = 0(do — J)<i> <@> "/ FIG. 2. Uniform magnetic susceptibility at zero staggered
¢§ J ’ magnetic field, for the same cases as in Fig. 1.
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length « (1/x)? [4]. On the contrary, for the case rele- the explanation of the relatively large Néel temperatures
vant to our model, which corresponds #@ = 0, x,(x) found in the doped CuGeQO

decays as a power law1/x? [1]. At finite temperature It is a pleasure to acknowledge useful discussions with
and u =0, Iny,(x,T) ~ —xo/In*(T/$o) [1], where A.O. Gogolin, A. A. Nersesyan, and Yu Lu. A particular
o = 2¢3/(ny + ny). This expression suggests a new en-thanks goes to E. Tosatti, who has been the source of
ergy scaleE,., which can be identified as the coherenceinspiration of this work. This work has been partly
energy for the antiferromagnetic fluctuations. In fact,supported by EEC under Contract No. ERB CHR XCT
whenT = E., the correlation function should behave like 940438, and by the INFM, Project HTSC.
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