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Coexistence of Antiferromagnetism and Dimerization in a Disordered Spin-Peierls Model:
Exact Results
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A model of disordered spin-Peierls system is considered, where domain walls are randomly
distributed as a telegraph noise. For this realization of the disorder in anXX spin chain, we calculate
exactly the density of states as well as several thermodynamic quantities. The resulting physical
behavior should be qualitatively unchanged even for anXXZ chain, up to the isotropicXXX point.
For weak disorder, besides a high energy regime where the behavior of a pure spin-Peierls system is
recovered, there is a crossover to a low energy regime with singular thermodynamic properties and
enhanced antiferromagnetic fluctuations. These regimes are analyzed with the help of exact results, and
the relevant energy scales determined. We discuss the possible relevance of such a disorder realization
to the doped inorganic spin-Peierls compound CuGeO3. [S0031-9007(97)03045-7]
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One dimensional quantum spin systems in the presen
of randomness show unusual and intriguing properti
(see, e.g., Ref. [1], and references therein). For instan
it has been shown [1–3] that the ground state of th
Heisenberg antiferromagnet with random exchange co
stants can be interpreted as a random singlet state, wh
pairs of spins are coupled into singlets with an energ
gap to the triplet configuration which is weaker for widely
separated pairs. The uniform and staggered magnetic s
ceptibilities, x and xs, have a (Griffith’s-like) singular
behavior at low temperature,x , xs , 1ysT ln2 T d. In-
terestingly, in spite of the singlet nature of the groun
state, the spin-spin correlation functions are still lon
ranged. In fact,kSisrdSis0dl . 1yr2, for large r (i ­
x, y, z) [1]. These properties are not modified by spi
anisotropy if, on average,Jz # Jx ­ Jy. Notice that spin
anisotropy does not manifest itself in the spin-spin corr
lation function with different power law behavior ofi ­ z
with respect toi ­ x, y, contrary to the case in the ab-
sence of disorder. The behavior of the randomXXZchain
is, however, unstable towards a finite average dimeriz
tion, i.e., a finite average difference between the exchan
constants of the even bonds and of the odd bonds. T
case was recently analyzed by Hymanet al. [4] by means
of a real space renormalization group approach. For a
nite average dimerizationf, they find that the spin-spin
correlation functions decay exponentially with a correla
tion length j , jfj22, but the Griffith singularities re-
main, even if weaker. In particular, singularities of th
uniform susceptibilityx , T a21, and the specific heat
Cy , Ta , wherea ~ jfj, are found to persist [4].

The study of the role of disorder in a spin-Peierls sy
tem may be useful to understand the behavior upon do
ing of the inorganic spin-Peierls compound CuGeO3. The
pure compound is known to undergo a structural transitio
at 14 K [5], below which the CuO2 chains dimerize and
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a spin gap opens. However, upon substitution of a fe
percent of Cu with magnetic (Ni [6]) or nonmagnetic (Zn
[7,8]) impurities (as well as replacing Ge with Si [9]),
besides the structural transition, which still occurs clos
to 14 K, an antiferromagnetically ordered phase appea
below a lower temperatureTN , 4 K. Moreover, the es-
timated magnetic moment with4% of Zn is as high as
0.2mB [8]. This behavior is quite puzzling. First of all,
heuristically, one would expect a Néel temperature exp
nentially small in the ratio of the average distance be
tween the impurities to the spin-Peierls correlation lengt
lSP . At 4% doping, this would implyTN yTSP . 0.04,
inconsistent with the experiment. In addition, one woul
also expect a magnetic moment of the order of the dopin
concentration, not almost an order of magnitude larger,
seen experimentally.

In this Letter, we study a particular realization of a
disordered spin-Peierls system which does show a lar
enhancement of antiferromagnetic fluctuations, coexistin
on a lower energy scale with an underlying dimerization
Moreover, this model permits an exact calculation o
physical quantities for a wide range of temperature an
energy.

The Hamiltonian of each chain in the absence o
impurities is

Ĥ ­
X

i

f1 1 f0s21dig sSx
i Sx

i11 1 S
y
i S

y
i11 1 DSz

i Sz
i11d ,

(1)

wheref0 is the strength of the dimerization. We assum
that one impurity releases one spin-1y2 solitonic excita-
tion, connecting regions of different dimerization parity.

This assumption is, in fact, more appropriate to describ
the effect of Cu substitution by Zn or Ni doping. An
analysis of a model for Si doping has been given i
Ref. [10], leading to results similar to those we are goin
© 1997 The American Physical Society



VOLUME 78, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 28 APRIL 1997

s
of
or
r
ly
e,
e
as
s

ar
te

ty

d

th

of

ns
ap

in
in

d.
er
e

n a

on
to present here [11]. The role of the interchain coupling
to provide a confining potential to the soliton, which wil
be trapped within some distance from the impurity [12
Moreover, the weak link connecting the impurity neare
neighbors (which would be, for instance, generated
a next-nearest-neighbor exchange) is approximated to
equal to the weak bonds in (1). Therefore, the effecti
Hamiltonian, defined now on a chain of one site les
remains the same apart from the presence of a dom
wall. For a finite numbernimp of randomly distributed
impurities, the effective model will therefore be assume
to consist of a chain withnimp sites less, described
by the same Hamiltonian Eq. (1), but in the presen
of randomly distributed domain walls. This amount
to take a site dependentfsid, which takes alternatively
two values6f0, jumping from one to the other at the
(random) position of the antiphase walls. We will sho
that it is possible to calculate many physical properti
of the soliton band which is created by disorder insid
the spin-Peierls gap, without the precise knowledge of t
soliton wave functions. In Eq. (1),D ­ 0 corresponds
to the XX chain, while D ­ 1 is the isotropic XXX
model. On the basis of the analyses of Refs. [1,3,
we expect that the behavior at0 , D # 1 should be
similar to that atD ­ 0, therefore we will only study
the latter case, which is much simpler. We believ
that this approximation gives qualitatively good resul
for all the range0 # D # 1, especially in view of our
particular choice of the disorder. By means of a Jorda
Wigner transformation, the model can be mapped onto
model of disordered spinless fermions. By linearizing th
spectrum around the Fermi energy, introducing the rig
and left moving components of the fermion field, an
then taking the continuum limit, the diagonalization o
the Hamiltonian amounts to solve the following couple
differential equations:

7i≠xxRsLdesxd 1 ffsxd 6 ihsgxLsRdesxd ­ exRsLdesxd ,

wherexRsLdesxd is the eigenfunction of energye on the
right (left) moving field, and we have also considered fo
later convenience a uniform staggered magnetic fieldhs in
the z direction. The dimerization fieldfsxd corresponds
to that introduced in Eq. (1), apart from an appropria
normalization factor. The equations can be decoupled
the following transformation:

u1s2desxd ­ 6xRsLdesxd 1 ixLsRdesxd .

These two functions are solutions of the Schroedinger-li
equations

f2≠2
x 1 f2sxd 1 s2df0sxdgu1s2desxd ­ Eu1s2desxd ,

whereE ­ e2 2 h2
s should be greater than zero. In th

following, we will often use the integrated density o
states as a function ofE, which we will define asNsEd.
In terms of this function, the density of states of th
is
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fermionic model is

rsed ­ 2e
≠NsEd

≠E

Ç
E­e22h2

s

. (2)

In the case in whichfsxd is a white noise, these equation
have been analyzed quite in detail in the context
disordered one-dimensional Fermi systems [13,14],
classical diffusion of a particle in a random medium (fo
a review see, e.g., Ref. [15]). An interesting anoma
of this problem is that, for a zero-average white nois
the E ­ 0 state is extended [14,16,17], and both th
localization length and the density of states diverge
e ! 0. Quite recently, Comtet, Desbois, and Monthu
(CDM) [18] specialized those equations for a particul
disorder, for which they have been able to calcula
exactly the integrated density of statesNsEd and the
localization lengthlsEd. Specifically, they assumed a
random potentialfsxd which takes alternatively two
values f0 and f1 at intervals whose lengthsl $ 0
are randomly distributed according to the probabili
densitiesf0sld ­ n0 exps2n0ld andf1sld ­ n1 exps2n1ld
(see also Ref. [16]). This choice offsxd is particularly
suited for studying our problem of randomly distribute
domain walls. In particular, our case corresponds tof1 ­
2f0 , 0, and n0 ­ n1, i.e., to an average dimerization
f ­ sf0n1 1 f1n0dysn0 1 n1d ­ 0. Nevertheless, we
will also discuss the more general situationn0 fi n1, in
which casef is finite. Moreover, we start by taking
hs ­ 0. In the model there are three relevant leng
scales,lSP ­ 1yf0, l0 ­ 1yn0, and l1 ­ 1yn1. lSP is
the correlation length of the system in the absence
disorder, which is the case if, for instance,l0yl1 ! `. In
this case, the spectrum of the single-particle excitatio
(which is symmetric around zero energy) shows a g
2f0, and the density of statesrsed has an inverse square
root singularity ate ­ 6f0. For genericl0 and l1, the
density of states can still be exactly calculated with
the phase formalism approach [18], and expressed
terms of integrals which have to be numerically evaluate
Essentially, the method consists in writing the mast
equation for the joint probability distribution of the phas
of the wave function andfsxd, and solving for the
stationaryx-independent solution. In particular, ifl0 and
l1 are much longer thanlSP , i.e., if the gap has the time
to develop in a region of constantfsxd, the density of
states still shows a peak at6f0, even though states are
created inside the gap. These states accumulate, i
singular manner, ase ! 0. In particular, the density of
states around zero energy goes likersed , e2m21, where
m ­ sn1 2 n0dys2f0d is finite. In Fig. 1, we drawrsed
for e . 0, f0 ­ 1, and variousn0 and n1. For m ­ 0,
rsed , 1yje ln3 ej. The key feature of our choice for the
random potential is that, even if the average dimerizati
f ­ 0, i.e., if n0 ­ n1 ­ n, the density of states shows
a pseudogap iff0 ¿ n (see Fig. 1), totally absent for a
white noise process [19].
3383
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FIG. 1. Density of states forf0 ­ 1 and n0 ­ n1 ­ 0.3
(dotted line), n0 ­ n1 ­ 0.1 (full line), n0 ­ 0.1, n1 ­ 0.3
(dashed line). Also shown in the inset is the low energ
behavior.

To be more precise, from our numerical results we fin
similarly to CDM, that the integrated density of state
NsEd for weak disorder (i.e., bothn0 andn1 much smaller
than f0) saturates below the pseudogapf0 to a value
Np , n0n1ysn0 1 n1d, which is of the order of half the
average number per unit length of steps of the rando
potential. The saturation occurs at an energy scaleEp

which can be identified as the typical effective bandwid
of those midgap excitations. This result physically im
plies that, for weak disorder, the number of states gen
ated inside the gap is of the order of the average numb
of domain walls. From the analytical expression ofNsEd,
we obtain that lnsEpyf

2
0 d , 22f0ysn0 1 n1d, i.e., Ep is

exponentially small in the inverse of the disorder strengt
In addition, it is also possible to calculate the localiza
tion lengthlsEd. In particular, forf fi 0, ls0d ­ 1yf,
which implies that the localized wave functions insid
the gap have a much longer localization length than t
spin-Peierls correlation lengthlSP . More interesting, for
f ­ 0, which is relevant for our disorder modelization
lsEd , j ln Ej, so that the states close toE ­ 0 are
almost delocalized.

More generally, our model at low temperature and e
ergy is equivalent to the models analyzed in Ref. [1] an
in Ref. [4], for f ­ 0 and f fi 0, respectively. The
analogy can be expected by the following arguments. F
e # f0 and n0 ­ n1 ø f0, the problem reduces to a
model of weakly coupled spins localized close to eac
domain wall. As a first approximation, only the exchang
coupling between two successive spins can be retain
which is given by Jsrd . f0 exps2rf0d, r being the
random distance between two domain walls distribute
according to n exps2rnd. Thus the model is indeed
equivalent to an Heisenberg chain with randomly dis
tributed exchange constants. The probability distributio
of J at energy scales# f0 can be readily found to be

PsJd ­ usf0 2 Jd
µ

n

f
2
0

∂ µ
f0

J

∂12nyf0

,
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and it has to be used as the starting point of the
renormalization group flow equations of Ref. [1]. In this
way, it is possible to recover the same results that we
obtain by exploiting the exact solvability of our model,
thus showing not only that the two models are equivalent
but also that spin anisotropy does not really matter [20].
For n0 fi n1, the same analogy works now with the model
of Ref. [4]. More rigorously, the above conjectured
equivalence can be proven by showing that the model
have the same low temperature thermodynamic properties

In our model, we can, in fact, calculate exactly many
thermodynamic quantities and find not only the low tem-
perature but also the intermediate (T , f0) temperature
behavior. For instance, the uniform magnetic susceptibil-
ity is given by

xsT d ­ b
Z `

0
dE

≠N
≠E

1

2 cosh2sb
p

Ey2d
,

and is plotted in Fig. 2 for the same values off0, n0, and
n1 as in Fig. 1.

From the asymptotic behavior ofNsEd for small E,
we find that, at low T , xsT d , T2m21, for m fi 0,
and ,1ysT ln2 T d for m ­ 0. The latter is exactly the
result for the randomXXZ Heisenberg model. Our
model thus belongs, at low energy and form ­ 0, to
the same universality class. For allm’s smaller than
1y2, the magnetic susceptibility still diverges at low
temperature. Analogously, the specific heat vanishe
as Cy , T 2m (Cy , 1yj ln3 T j, for m ­ 0), which is
compatible with the result of Ref. [4] with2m ­ a, thus
showing the equivalence with our model atm fi 0. In
addition, we obtain the full behavior ofx at intermediate
temperatures, as shown in Fig. 2. We see that, atT ,
f0, the susceptibility decreases as if a spin-Peierls gap
were present, even though it finally diverges at lowT .
Moreover, for Ep , T , f0, we predict a Curie-like
behavior, with a Curie constant~Np.

The behavior of the staggered part of the spin-spin cor
relation functionxssxd can be deduced by the analogies
with the models analyzed in Refs. [1,4]. In particular,
for f fi 0, xssxd decays exponentially with a correlation

FIG. 2. Uniform magnetic susceptibility at zero staggered
magnetic field, for the same cases as in Fig. 1.
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length ~ s1ymd2 [4]. On the contrary, for the case rele
vant to our model, which corresponds tof ­ 0, xssxd
decays as a power law,1yx2 [1]. At finite temperature
and m ­ 0, ln xssx, T d , 2xsy ln2sTyf0d [1], where
s ­ 2f

2
0ysn0 1 n1d. This expression suggests a new en

ergy scaleEc, which can be identified as the coherenc
energy for the antiferromagnetic fluctuations. In fac
whenT $ Ec, the correlation function should behave lik
exps22xf0d, which leads to lnsEcyf

2
0d , 2

p
syf0, that

is, to a coherence energy exponentially small in the i
verse square root of the disorder strength, but still mu
bigger thanEp. The appearance of an energy scale go
erning the spin-spin correlation function, which differ
from that entering the average density of states, is n
unexpected in the presence of disorder, which introduc
basic differences between average and typical behavi
[21]. On the other hand, form fi 0, below another en-
ergy scaleEm, we should recover the result of Ref. [4]
which sets lnsEmyf

2
0d , 21ym.

We also exactly calculate the staggered susceptibil
xssT d. By means of Eq. (2) we find that

xssT d ­
Z `

0
dE

≠N
≠E

tanh

µ
b

p
E

2

∂
1

p
E

. (3)

For m , 1y2, this susceptibility diverges at lowT like
the uniform susceptibility. However, while the integra
over E in the uniform susceptibility is cut off byT2,
the contribution to the singular behavior of the stagger
susceptibility comes from allE up to approximatelyEp.
Moreover, all higher energies also contribute to the sta
gered susceptibility with a finite term asT ! 0. There-
fore, while the singular behavior deriving from alle ­p

E , T can be ascribed to local excitations, that derivin
from e . T is solely due to longer range antiferromag
netic fluctuations [1]. The rapid enhancement of antiferr
magnetic fluctuations that we find is extremely suggesti
in the light of that recently observed in CuGeO3, as pre-
viously discussed (see also Ref. [10], for the Si-dopin
case). In fact, our model for a disordered spin-Peierls s
tem clearly shows a coexistence of dimerization with lon
range antiferromagnetic fluctuations, the latter existing
energy scales lower than the pure spin-Peierls gap. Th
fluctuations may induce a magnetic ordering via the inte
chain coupling, below some Néel temperatureTN . The
magnetic susceptibility would then still show the dro
at the Peierls transition, but the low temperature dive
gence would finally be cut off byTN , below whichxsT d
would exponentially vanish, compatibly with the exper
mental evidences (see, e.g., Ref. [8]). Moreover, on t
basis of the previous discussion, we expect that the N
temperature is related to the energy scale governing
spin-spin correlation function, that is toEc, which is ex-
ponentially small in

p
lylSP , and therefore larger than the

typical bandwidth of the low energy excitationsEp, which
is exponentially small inlylSP . This difference might be
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the explanation of the relatively large Néel temperature
found in the doped CuGeO3.
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