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Orbital Dependent Superconductivity in Sr2RuO4
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We show that for superconducting Sr2RuO4 any unconventional pairing in the part of the Ferm
surface with Ru4dxy orbital character is weakly coupled to that with Ruh4dxz , 4dyzj orbital character.
This naturally gives rise to two disparate energy scales in the superconducting state which lea
novel low temperature properties in a variety of thermodynamic and transport properties and w
would also account for the large residual density of states seen in specific heat and nuclear quad
resonance measurements. [S0031-9007(97)03076-7]

PACS numbers: 74.20.Mn, 71.27.+a, 74.25.Bt
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Sr2RuO4 provides the first example of a layered pe
ovskite material that exhibits superconductivity without t
presence of copper [1]. Even though there is a close st
tural similarity with the highTc materials, the electronic
properties are very different. While it is clear that electr
correlation effects are important in Sr2RuO4, the normal
state near the superconducting transition is well descri
by a quasi-2D Landau-Fermi liquid (e.g., the resistivity
all directions follows aT 2 behavior forT & 50 K and the
resistivity along and perpendicular to thec axis differ by a
factor of 850 [1]). Quantum oscillations show three Fer
surface sheets with a 2D topology that agrees well w
band structure calculations [2]. It has been pointed out
that the mass enhancement is similar to that of3He and that
there is a metallic ferromagnetic phase in SrRuO3 [4] (the
3D analog of Sr2RuO4). These observations indicate th
an odd-parity (l ­ 1) superconducting state is likely [3]
This is consistent with the lack of a Hebel-Slichter pe
in 1yT1 in nuclear quadrapole resonance (NQR) measu
ments [5]. A weak coupling analysis of the odd-parity sta
implies the gap should be of constant magnitude [3]. I
therefore surprising that specific heat [6] and NQR me
surements [5] reveal that approximately 0.6 of the norm
density of states remain in the superconducting phas
clean samples (those in which quantum oscillations w
observed). As a consequence it has been proposed
an exotic nonunitary superconducting state similar to
3He A1 phase is stabilized [7,8]. In this scheme, the n
mal state quasiparticle energy spontaneously splits into
branches (one for spin up and one for spin down) upon
tering the superconducting state. One of these branch
gapped while the other is not, leading to a residual den
of states that is half the normal density of states.

Here we propose an alternative explanation for the la
residual density of states. The electronic properties n
the Fermi surface of Sr2RuO4 are determined by Wannie
functions with Rudxy , dxz , anddyz orbital character [9,10].
We show that the quasi-2D nature of the electronic disp
sion implies that the bands are derived from either thexy
or thehxz, yzj Wannier functions and that the pair scatte
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ing amplitude between these two classes of bands will
significantly smaller than the intraclass pair scattering a
plitude for any unconventional superconducting order p
rameters. It can therefore be expected that the gap
bands from one class is substantially smaller than th
on bands from the other class. The presence of ess
tially gapless excitations for temperatures greater than
smaller gap will appear as a residual density of stat
Also, the two classes may favor different supercondu
ing symmetries in which case a second superconduct
transition will appear at low temperatures.

Band structure calculations [9,10] give the correct sha
of the Fermi surface, but predict an effective mass that i
factor of 4 smaller than that observed, indicating that stro
coupling effects are important [2]. These calculation
reveal that the density of states near the Fermi surface
due mainly to the four Ru4d electrons in thet2g orbitals.
There is a strong hybridization of these orbitals with th
O 2p orbitals giving rise to antibondingpp bands. The
resulting bands have three quasi-2D Fermi surface she
labeleda, b, andg (see Ref. [2]). The highly anisotropic
nature of the Fermi liquid and the superconducting sta
suggests that the superconductivity essentially arises fr
intraplanar interactions, so we consider a single RuO4
plane. The Hamiltonian describing the band structure o
plane is

H ­
X

n,n0,i,j,s

tn,n0 sRi 2 Rjdcy
n,i,scn0 ,j,s , (1)

wherecn,i,s destroys an electron with spins in the Wannier
function centered atRi that transforms as the Run orbital
(n ­ hxy, xz, yzj). Because of thesz reflection symmetry
about the center of the RuO4 planetxy,xzsRd ­ txy,yzsRd ­
0. This implies that theg sheet of the Fermi surface can
be attributed solely to thexy Wannier functions while the
a andb sheets are due to a hybridization of thehxz, yzj
Wannier functions. An effective Hamiltonian to describ
the superconductivity is
© 1997 The American Physical Society
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H ­
X
l,k,s

elskday
l,k,sal,k,s 1

X
l,l0,k,k0,s,s0

fVl,l0 sk, k0day
l,k,sa

y
l,2k,s0al0,2k0,s0al0,k0,s 1 H.c.g , (2)

whereal,k,s corresponds to the eigenoperators of Eq. (1) and

Vl,l0sk, k0d ­
Z

d3r d3r 0
X

j,j0 ,n,n0

eik?sRj2Rj0 dfp
l sr 2 Rjdfp

l sr0 2 Rj0 dUsr, r0deik0?sRn2Rn0 dfl0sr0 2 Rndfl0sr 2 Rn0d ,

(3)

whereUsr, r0d is an effective interaction and the spatial extent of the Wannier functions along thec axis restricts the
integrations alongz and z0 to lie near the RuO4 plane. For the matrix elementsVg,a and Vg,b the symmetry of the
Wannier functions undersz can be exploited to write

4Usr', z; r0
', z0d ­ 2Usr', z; r0

', z0d 2 Usr', 2z; r0
', z0d 2 Usr', z; r0

', 2z0d . (4)
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The z dependence of thexy Wannier functions limits the
integrations along thez direction in theVg,a and Vg,b
matrix elements to a distance on the order ofly7 [11] where
l is the distance between two neighboring Ru ions. A
a consequence, the lowest order term in a Taylor ser
expansion of Eq. (4) inzyjr'j and z0yjr0

'j will give the
largest contribution toVg,a and Vg,b for all but the on-
site portion (Rj ­ Rj0 ­ Rm ­ Rm0) in Eq. (3). The
lowest nonzero term is of second order in this expansio
Since the on-site contribution is independent ofk andk0

it does not contribute to the effective coupling consta
for any unconventional gap functions. It is therefor
expected that the pair scattering amplitude between
g sheet and theha, bj sheets is significantly smaller
than the intrasheet pair scattering amplitude (see Fig.
Furthermore, since the Wannier functions forming the tw
classes of bands are of different symmetry, the intrash
pair scattering amplitudes will in general be different. W
assume that the superconducting state is odd parity
to the considerations of Ref. [3]. Note that the simple
tight binding approximation to the band structure (in whic
the Ruhdxz , dyzj orbitals overlap only with neighboring O
p-p orbitals [9]) indicates that the gaps on thea andb

sheets are the same magnitude for odd-parity pairing a
we therefore assume that the gaps within this class h
the same magnitude.

We consider a model in which the three Fermi su
face sheets have densities of states as in Ref. [2].

FIG. 1. The vertex leading to the pair scattering amplitud
between theg sheet and the other two sheets of the Ferm
surface. The effective interaction for any unconventional g
symmetry due to this vertex is small in relation to intrashe
interactions.
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use a weak coupling approach and in accordance
the above considerations takeVl,l0sk, k0d ­ Ul,l0k ? k0y
skk2

x llkk2
xll0d1y2, wherekk2

i ll is the average ofk2
i on sheetl

and

U ­

0B@ uxy um um

um u u
um u u

1CA , (5)

where the matrixU operates on a basis with compone
that correspond to the Fermi surface sheetsg, a, b, respec-
tively. Introducing the gap matrix

Ds1,s2sl, kd ­
X
k0,l0

Vl,l0sk, k0dFs1,s2 sl
0, k0d , (6)

where Fs1,s2 sl, kd ­ kal,k,s1 al,2k,s2 l gives rise to a mea
field Hamiltonian that is diagonal in the band index. F
an odd-parity interaction the gap can be expresse
D̂sl, kd ­ ifdlskd ? s gsy [12]. For unitary states (th
case considered here) the quasiparticle excitations
given byEl,k ­ se2

l,k 1 jdlskdj2d1y2 and the gap equatio
is given by

dlskd ­
X
k0,l0

Vl,l0sk, k0ddl0 sk0d
2El0,k0

tanhsbEl0,k0y2d . (7)

Within weak coupling the transition temperature isTc ­
1.13ec expf21ylmaxg, wherelmax is the largest eigenvalu
of the matrix with componentsUl,l0sNlNl0d1y2 andNl is the
density of states of sheetl. It has been assumed that t
cutoff frequencyec is the same for all three bands.

The superconducting order parameter isdlskd ­P
i,j cl,i,jki x̂jyk2k2

i ll , which has a six fold degeneracy th
is broken by spin-orbit coupling. The phases stabili
within weak coupling for the single band version
this model are the planar and the axial phases; both
degenerate within the approximations made above [7
Spin-orbit coupling will prefer one of these two phas
and will fix the spin orientation of this phase to the cr
tallographic axes, leading to the classification in Ref.
The quasiparticle excitation spectra for the possible ph
3375
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are described by a gap of constant magnitude, so ma
properties will be correctly described by assuming th
any one of these phases is stabilized. We assume that
A1u phase, for whichdlskd ­ clsx̂kx 1 ŷkydyk2k2

x l1y2, is
stabilized. The resulting gap equation for thehclj then
has the same form as that for isotropic superconduct
generalized to include the presence of three bands [14]

The interaction parametersuxy , um, and u remain to
be specified. Earlier arguments implyum ø maxsuxy, ud
but the relation betweenuxy and u remains unknown.
Hund’s rule ferromagnetic correlations between the Rudxz

and dyz orbitals may give rise to an increased odd-pari
interaction for theha, bj Fermi surface sheets. Also, the
g sheet is more 2D than theha, bj sheets, so fluctuations
may lead to a greater reduction in theTc for the g than
for the ha, bj sheets. These considerations indicate th
u . uxy , so for illustration purposes we consider this t
be the case (though it cannot be ruled out thatuxy . u
without a more detailed microscopic model). To sho
the qualitative behavior of this above model we take th
density of states as measured in Ref. [2] (Na :Nb:Ng ­
0.15:0.3:0.55) and the following values for the interaction
matrix U: uxy :um:u ­ 0.09:0.09:1.0 with uNb ­ 0.630.
Using for the specific heatCes

Ces ­ 22kBb2
X
l,k

El,k
≠fsEl,kd

≠b
, (8)

and solving the gap equation yields the gaps and the s
cific heat shown in Fig. 2. The presence of the small g
for theg sheet gives rise to essentially gapless excitatio
for temperaturesT * jdgskdj and this can give rise to the
residual density of states observed experimentally. F
temperatures belowjdg j, this gap gives rise to the low tem-

FIG. 2. Specific heat, London penetration depth, and therm
conductivity as a function of temperature. The inset shows t
magnitude of the gapsdg anddha,bj as a function ofTyTc.
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perature exponential decay ofCesyT to zero. Note that the
density of states is split approximately evenly between t
g sheet and theha, bj sheets. Consequently, the smalle
gap lying in either theg or ha, bj sheets gives good agree
ment with the magnitude of the residual density of stat
seen experimentally. To show how the smaller gap ma
fests itself in other properties we have calculated the Lo
don penetration depth and the thermal conductivity in t
basal plane (shown in Fig. 2). The London penetrati
depth is

l22
' sT d ­

4pe2

c2

1
V

X
l,k

y2
',l,k

∑
≠fsel,kd

≠el,k
2

≠fsEl,kd
≠El,k

∏
,

(9)

which results from a simple extension of the standa
BCS expression to include many bands. The therm
conductivity in the single band case is derived in Ref. [1
and the suitable generalization to include many bands i

k'sTd ­ 22
X
l,k

E2
l,k

T
y2

',l,k
≠fsEl,kd

≠El,k
tl,k (10)

with tl,k ­ tN ,ljel,kjyEl,k wheretN is the normal state
relaxation time. This form is valid within the Born
approximation. It has been assumed that there is
interband scattering and thattN ,l ­ tN . Note thattl,k
does not have the same form as that for a conventio
isotropic superconductor due to the odd-parity coheren
factors [16,17]. In calculating these properties it has be
assumed that the density of states corresponds to that
clean system. However it may be the case that while
large gap will remain intact in the presence of impuritie
the smaller gap may be rendered gapless (though there
still be a coherent pairing amplitude on this Fermi surfa
sheet [12]).

We have considered a model in which all the Ferm
surface sheets favor the same superconducting symme
This model has two order parameters of the same sy
metry [one (c1) for the g and one (c2) for the ha, bj
sheets] and can in principle have a second transition fr
a state in whichsc1, c2d ­ eiusje1j, 6je2jd to a state
in which time reversal symmetry is broken:sc1, c2d ­
eiusje1j, eifje2jd wheref fi 0, p. An examination of the
Ginzburg-Landau coefficients found by a weak couplin
analysis shows that the broken time reversal symme
phase does not occur in this model. However, as w
considered by Leggett for the two band conventional s
perconductor [18] and more recently by Wu and Griffi
in bilayer highTc superconductors [19], there will exist a
collective excitation corresponding to fluctuations into th
broken time reversal symmetry phase (fluctuations of t
relative phase ofc1 andc2). If all orbitals favor the same
pairing symmetry then such a mode may appear below
single particle threshold. This mode is in addition to tho
that were predicted to exist due to the odd-parity symm
try in the presence of weak spin-orbit coupling [3]. It i
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also possible that due to the different symmetry properti
of the xy and thehxz, yzj Wannier functions theg and
ha, bj sheets may favor different superconducting sym
metries. In this case a second superconducting transit
(as opposed to the crossover behavior shown in Fig. 2)
likely to occur due to the smallness of the pair scatterin
amplitude between these two classes of sheets. A low te
perature broken time reversal symmetry phase is possi
within this scheme [12].

In conclusion, we have presented a model for the sup
conducting transition in Sr2RuO4 in which the supercon-
ductivity in the bands with Rudxy orbital character and
the bands with Ruhdxz , dyzj orbital character is weakly
coupled. This model attributes the large observed resid
density of states to thermal excitations across a second
gap that is smaller than the primary gap driving the supe
conducting transition. This secondary gap should reve
itself in a wide variety of low temperature experiments o
sufficiently clean samples. Also, within this model a sec
ond superconducting transition is possible. Experimen
at very low temperatures are desirable to examine the
possibilities.
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