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Quantum Monte Carlo Investigation of Exchange and Correlation in Silicon
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Realistic many-body wave functions for diamond-structure silicon are constructed for different values
of the Coulomb coupling constant. The coupling-constant-integrated pair correlation function, the
exchange-correlation hole, and the exchange-correlation energy density are calculated and compared
with those obtained from the local density and average density approximations. We draw conclusions
about the reasons for the success of the local density approximation and suggest a method for testing
the effectiveness of exchange-correlation functionals. [S0031-9007(97)02969-4]

PACS numbers: 71.15.Mb, 71.10.—w, 71.45.Gm

The standard computational tool of electronic-structureconstituent spin components
theory for solids is the local density approximation (LDA) ,
within density-functional theory [1,2]. This has been ap- g(r,r') = Z na(r)np(r') 7., 1) 3)
plied successfully to systems, including those with quite S nmn@) °F
rapidly varying densities, even though the LDA is based o _
on approximating the system as locally homogeneoug/ields an equation involving the many-electron wave
However, when discrepancies between experiment an@nctions,
theory in solids arise it is difficult to improve upon the

_ 1
LDA systematically, although several schemes have been §ag(r,r/) = M f dA f dxs---dxy
devised [3,4]. Since there is currently limited guidance na(r)np(r’) Jo
for making improvements, we have used coupling con- X [Wa(re,r'B,x3,...,xn)I% (4)

stant integration and variational quantum Monte Carlo
(VMC) techniques to calculate the quantities of centrawheren is the number of electrons,,(r) is the electronic
importance in density functional theory for a realistic in- density for spinx, andx; denotes théth electron’s spatial
homogeneous anisotropic solid. We have calculated th@nd spin components. In an lunpolarized system such
coupling-constant-integrated pair correlation function, theas silicon Eq. (3) reduces ®= 7>, s 2,5- Together
exchange-correlation hole, and the exchange-correlationgs. (1)—(4) specify the exact relationship betwegitr)
energy density of diamond-structure silicon. In this Letterand the many-body wave functions, and forms the basis
we describe our approach along with the insights gaine@f the calculations in this paper.
by comparing these quantities with those from the LDA For our calculations we used a simulation cell consist-
and the average density approximation (ADA) [3]. ing of 3 X 3 X 3 primitive fcc unit cells of the diamond

In Kohn-Sham density functional theory there is anlattice, and containing 216 valence electrons. A norm-
exact relationship [5] between the exchange-correlatiogonserving nonlocal LDA pseudopotential was used to
energy, E.., and the ground state many-electron wavemodel the core electrons. The electron-electron interac-
functions ¥, associated with the different values of the tion was modeled using the form described in Ref. [7],
Coulomb-coupling constana. The electronic density of which virtually eliminates the finite size effect arising
eachW¥, must equal the density at full couplifg = 1).  from the use of Coulomb interactions in periodic bound-
This condition can be ensured by adding an additiona@ry conditions. Slater-Jastrow wave functions containing
external potentiab,(r) to the many-body Hamiltonian in 22 free parameters were used fdy, and the Jastrow
which the electron-electron interaction is multiplied by  factors were constrained to obey thedependent cusp
The coupling-constant-integrated pair correlation functiorconditions. The single-particle orbitals in the Slater de-
g(r,r’), the exchange-correlation hofg.(r,r’), and the terminant were obtained from LDA calculations, and the
exchange-correlation energy densiéy.(r) are related Vvalues of the 22 parameters in the Jastrow factors were

by [6] optimized by minimizing the variance of the energy [8].
n(r) pre(r, ) A detailed description of this form of wave function can
exc(r) = > f dr’ ﬁ (1) be found in Ref. [9]. Our VMC calculations follow the
, . r/ r methodology described in Ref. [10]. Comparison with
pxe(r, ') = n(’)[g(r,x") — 1]. (2)  diffusion Monte Carlo results showed that our wave func-

The total exchange-correlation enerdy., is obtained by tion for A = 1 retrieves 85% of the fixed-node correlation
integratingex.(r) over all space. Writin@ in terms of its  energy.
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As an initial approximation fov, we used -28.0

() = (1 — )l)[ dr/% + vrPd (n(r) ‘
— v (),

-32.0

v (eV/atom)

xc

which would ensure that the density was independent of

Ain an LDA calculation. The value af,. ' (n) was ob-

tained from the exact scaling relation [1%]5:; (n) =

. . . . -36.0 .
v (n/A3). This approximation yielded charge den- 0.00 0.50 1.00
sities in close agreement with,—(r). This approxi- Iy

mation should be reliable for systems where the LDAFIG. 1. The exchange-correlation enerdy.., as a function

provides an accurate prediction of the ground state dersf the coupling constantd. The statistical error bars are
sity. This is the case in silicon, where the LDA chargesmaller than the symbols.

density agrees closely with experiment [12] and is indis-
tinguishable from the density we found with VMC. The
small residual deviations from the LDA density [13] were
reduced by iteratively modifying the, potentials and
lastly by making a very small adjustment to the one-body 740 + E. = T + U]

function in the Jastrow term of the wave functions, which

caused no discernible change in the total energy. The rog{as found to hold within 0.1%, wherg*=! is the fully
mean square deviation of the fing| from the LDA den-  jnieracting kinetic energy and*=° is the noninteracting

sity was less than 0.58% for all values Aof _ kinetic energy appearing in density functional theory.
To obtain the quantities Jn Egs. (1)—(4) requires angeyer than five values of was insufficient to satisfy
accurate representation qf,z throughoutall of the  this equation. Other quantities investigated such as the
six-dimensional space X r/, in contrast to previous jastrow term in the many-body wave function, arldh
calculations which obtaineg);' at only a few points displayed a smooth monotonic dependencelon
[14]. We have found that an efficient way to calculate Figures 2(a), 2(b), and 2(c) shogvwith electron po-
and store this information is to expand as a product  ition r fixed on the bond center andl ranging over
of symmetrized plane waves, (r), the (110) plane, for parallel and antiparallel spins in
N VMC, and the spin averaged form in the LDA [16],
gQB(r,r’) - mzn géﬁ’mn(ﬁm(r)d’"(r/)‘ respectively. Thg largest ?eatures are confined r[nai]nly

] o ) to the bonding region where the first electron is lo-
The number of independent coefficients was considerablysied.  This agrees qualitatively with the result found

reduced by using the full space group symmetry of thepreviously by Fahyet al.[14] for carbon atA = 1.
crystal. A plane wave cutoff of 23 Ry was used, cor-around all of the numerous points investigated: (1) the
responding to 82.61A6 independent coefficients. No Sigparaiel-spin correlation function exhibited little depen-
nificant changes iz, s were observed when this cutoff gence ony, indicating that exchange is the dominant in-
was increased to 38 Ry. At eaahall of the coefficients  teraction between parallel-spin electrons in silicon, (2) the
were accumulated simultaneously with the Monte Carlogptiparallel-spin correlation function systematically deep-
Metropolis method using approximatefy X 10° statis-  ened and enlarged with increasing a result solely
tically independent configurations. Far= 0, g,5 can  due to correlation, and (3) the antiparallel-spin correla-
be generated directly from the single-particle functionssion function was more isotropic than the parallel-spin
By comparing the Monte Carlo sampled and directly cal-correlation function. The two more distant local min-
culated functions we estimated the statistical errof 0 ja away from the bond in Fig. 2(a) result from an ex-
be between 1% and 6%. The noise was largest where thgyange effect, which can be traced to a simultaneous dip
electronic density takes its smallest value, and smallesh the single-particle density matrix, associated with the

where the electronic density was largest. We also used|ater determinant of the noninteracting= 0 system,
direct calculations to investigate the effects of the finitegng 5 decrease in the electronic density along[tHé]

size of the simulation cell og3°, which were found to  gjrection.

be unimportant. . ~ The charge density which multiplieg in Eq. (2) can
The integral overt in Eq. (4) was evaluated numeri- have a profound effect on the shapesgf. Figures 3(a)
cally using five values of:: 0,7,3,3, and 1. With in-  and 3(b) shovg andp,. around the tetrahedral interstitial
creasingA the exchange-correlation energy;.., where site. The three local minima in Fig. 3(b) result from
Exc = f(l) Ul. dA, was found to decrease smoothly andthe increase in the electronic density away from the

monotonically as shown in Fig. 1, as has been predictetetrahedral site. In the LDAo,. is written in terms of

by Levy and Perdew [15]. As a further test, the identity
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FIG. 2(color). The pair correlation function in the (110) plane for (a) parallel spin (VMC), (b) opposite spin (VMC), and (c) spin
averaged (LDA), with one electron at the bond center. The atoms and bonds are schematically represented for bond chains along

the[111] direction.
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FIG. 3(color). The (a) spin-averaged pair correlation function (VMC), (b) exchange-correlation hole (VMC), and (c) exchange-
correlation hole (LDA), with one electron fixed at the tetrahedral interstitial site in the (110) plane. The atoms and bonds are
schematically represented for bond chains alond thé] direction.
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FIG. 4(color). Contour plots along the (110) plane for &Y' (r), (b) eYMC(r) — eLPA(r), and (c)eMC(r) — eAPA(r). (b) and
(c) have the same legend shown to the right of (c). The atoms and bonds are schematically represented for bond chains along the

[111] direction.
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¢ of a homogeneous electron gas, mainly to antiparallel electrons as seen gns. The
spatial dependence of the electronic density that multiplies
p)ECDA(r,r’) = n(r){g"™"(r — r'|,n(r)) — 1}. g can have a profound influence on the shape of the

exchange-correlation hole. The nonlocal nature of the

Note that the prefactor(r’) in Eqg. (2) is replaced with functionals smooths the LDA exchange-correlation energy
n(r) in the LDA to maintain the sum rule. This form density. In addition to previously documented [3] subtle
results in an LDA hole with a localized shape as showrcancellations between the exchange and correlation, and
in Fig. 3(c) with a minimum value 3 times smaller than the cancellations due to spherical averaging that occur
the VMC result. Around this interstitial point the LDA in the LDA, there is also a real-space cancellation
provides a better description of the shapegothan of of errors in the exchange-correlation energy density in
pxe —the quantity that occurs in the exchange-correlatiorsilicon. These and future calculations of exact exchange-
energy of Eq. (1). Note that only the spherical average otorrelation energydensitiesin real solids will make it
Pxe contributes tae,.(r) in Eq. (1). possible to carry out stringent tests of the effectiveness of

Figure 4(a) shows the VMC exchange-correlation enexisting exchange-correlation functionals and should aid
ergy density¢YMC(r), in the (110) plane calculated from in the search for better functionals. The available data is
Egs. (1) and (2) using the samplgdr,r’). The differ-  no longer limited to a few numbers such as total energies,
ence from the LDA,eyMC(r) — eLPA(r), is shown in cohesive energies, and bulk moduli.
Fig. 4(b). The largest errors in the LDA occur in the We thank M. Nekovee for helpful discussions. Fi-
bonding region where the electronic density is largeshancial support was provided under U.K. EPSRC Grants
and around the pseudoatoms where it is smallest. Thio. GR/K51198 and No. GRK21061, EU Contract
sharp features near the extrema of the electronic derNo. CHRX CT 94-0462, NSF Grant No. DMR-9157537,
sity in Fig. 4(b) result from the local nature efP(r). =~ DOE Grant No. DE-FG05-90ER45431, and NATO
The true nonlocal functional includes information on theCollaborative Research Grant No. CRG.951105. Our
charge density in the neighboring region which tends tacalculations are performed on the Cray-T3D at EPCC
smooth out such sharp features. For this reason the nonlander EPSRC Grant No. GRR42318, the Cray-T3D at
cal ADA yields a better overall agreement with our VMC PSC under Grant No. DMR-960004P, and the Hitachi
result, as is shown in the differena€MC(r) — ¢APA(r),  SR2001.
in Fig. 4(c). The root mean square deviation &f (r)
from eYMC(r) was 4.9% forey.(r) = eLPA(r) and 2.0%

XC
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