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Quantum Monte Carlo Investigation of Exchange and Correlation in Silicon
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Realistic many-body wave functions for diamond-structure silicon are constructed for different values
of the Coulomb coupling constant. The coupling-constant-integrated pair correlation function, the
exchange-correlation hole, and the exchange-correlation energy density are calculated and compar
with those obtained from the local density and average density approximations. We draw conclusion
about the reasons for the success of the local density approximation and suggest a method for testin
the effectiveness of exchange-correlation functionals. [S0031-9007(97)02969-4]
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The standard computational tool of electronic-structu
theory for solids is the local density approximation (LDA
within density-functional theory [1,2]. This has been a
plied successfully to systems, including those with qu
rapidly varying densities, even though the LDA is base
on approximating the system as locally homogeneo
However, when discrepancies between experiment a
theory in solids arise it is difficult to improve upon th
LDA systematically, although several schemes have be
devised [3,4]. Since there is currently limited guidanc
for making improvements, we have used coupling co
stant integration and variational quantum Monte Car
(VMC) techniques to calculate the quantities of centr
importance in density functional theory for a realistic in
homogeneous anisotropic solid. We have calculated
coupling-constant-integrated pair correlation function, t
exchange-correlation hole, and the exchange-correlat
energy density of diamond-structure silicon. In this Lett
we describe our approach along with the insights gain
by comparing these quantities with those from the LD
and the average density approximation (ADA) [3].

In Kohn-Sham density functional theory there is a
exact relationship [5] between the exchange-correlat
energy, Exc, and the ground state many-electron wav
functionsCl associated with the different values of th
Coulomb-coupling constant,l. The electronic density of
eachCl must equal the density at full couplingsl ­ 1d.
This condition can be ensured by adding an addition
external potentialylsrd to the many-body Hamiltonian in
which the electron-electron interaction is multiplied byl.
The coupling-constant-integrated pair correlation functi
gsr, r0d, the exchange-correlation holerxcsr, r0d, and the
exchange-correlation energy densityexcsrd are related
by [6]

excsrd ­
nsrd

2

Z
dr0 rxcsr, r0d

jr 2 r0j
, (1)

rxcsr, r0d ­ nsr0d fgsr, r0d 2 1g . (2)

The total exchange-correlation energy,Exc, is obtained by
integratingexcsrd over all space. Writingg in terms of its
50 0031-9007y97y78(17)y3350(4)$10.00
re
)
-

te
d

us.
nd

en
e
n-
lo
al
-
the
e

ion
er
ed
A

n
on
e

e

al

n

constituent spin components

gsr, r0d ­
X
a,b

nasrdnbsr0d
nsrdnsr0d

gabsr, r0d (3)

yields an equation involving the many-electron wave
functions,

gabsr, r0d ­
NsN 2 1d

nasrdnbsr0d

Z 1

0
dl

Z
dx3 · · · dxN

3 jClsra, r0b, x3, . . . , xN dj2, (4)

whereN is the number of electrons,nasrd is the electronic
density for spina, andxi denotes theith electron’s spatial
and spin components. In an unpolarized system su
as silicon Eq. (3) reduces tog ­

1
4

P
a,b gab . Together

Eqs. (1)–(4) specify the exact relationship betweenexcsrd
and the many-body wave functions, and forms the bas
of the calculations in this paper.

For our calculations we used a simulation cell consis
ing of 3 3 3 3 3 primitive fcc unit cells of the diamond
lattice, and containing 216 valence electrons. A norm
conserving nonlocal LDA pseudopotential was used t
model the core electrons. The electron-electron intera
tion was modeled using the form described in Ref. [7]
which virtually eliminates the finite size effect arising
from the use of Coulomb interactions in periodic bound
ary conditions. Slater-Jastrow wave functions containin
22 free parameters were used forCl, and the Jastrow
factors were constrained to obey thel-dependent cusp
conditions. The single-particle orbitals in the Slater de
terminant were obtained from LDA calculations, and the
values of the 22 parameters in the Jastrow factors we
optimized by minimizing the variance of the energy [8].
A detailed description of this form of wave function can
be found in Ref. [9]. Our VMC calculations follow the
methodology described in Ref. [10]. Comparison with
diffusion Monte Carlo results showed that our wave func
tion for l ­ 1 retrieves 85% of the fixed-node correlation
energy.
© 1997 The American Physical Society
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As an initial approximation foryl we used

ylsrd ­ s1 2 ld
Z

dr0 nsr0d
jr 2 r0j

1 yLDA
xc,l­1sssnsrdddd

2 yLDA
xc,l sssnsrdddd,

which would ensure that the density was independent
l in an LDA calculation. The value ofyLDA

xc,l snd was ob-
tained from the exact scaling relation [11],y

LDA
xc,l snd ­

l2y
LDA
xc,l­1snyl3d. This approximation yielded charge den

sities in close agreement withnl­1srd. This approxi-
mation should be reliable for systems where the LD
provides an accurate prediction of the ground state de
sity. This is the case in silicon, where the LDA charg
density agrees closely with experiment [12] and is indis
tinguishable from the density we found with VMC. The
small residual deviations from the LDA density [13] were
reduced by iteratively modifying theyl potentials and
lastly by making a very small adjustment to the one-bod
function in the Jastrow term of the wave functions, whic
caused no discernible change in the total energy. The ro
mean square deviation of the finalnl from the LDA den-
sity was less than 0.58% for all values ofl.

To obtain the quantities in Eqs. (1)–(4) requires a
accurate representation ofgl

ab throughout all of the
six-dimensional spacer 3 r0, in contrast to previous
calculations which obtainedgl­1

ab at only a few points
[14]. We have found that an efficient way to calculat
and store this information is to expandgl

ab as a product
of symmetrized plane wavesfmsrd,

gl
absr, r0d ­

X
m,n

gl
ab,mnfmsrdfp

nsr0d .

The number of independent coefficients was considerab
reduced by using the full space group symmetry of th
crystal. A plane wave cutoff of 23 Ry was used, cor
responding to 82 616 independent coefficients. No si
nificant changes ingl

ab were observed when this cutoff
was increased to 38 Ry. At eachl all of the coefficients
were accumulated simultaneously with the Monte Car
Metropolis method using approximately5.8 3 106 statis-
tically independent configurations. Forl ­ 0, gl

ab can
be generated directly from the single-particle function
By comparing the Monte Carlo sampled and directly ca
culated functions we estimated the statistical error ing to
be between 1% and 6%. The noise was largest where
electronic density takes its smallest value, and smalle
where the electronic density was largest. We also us
direct calculations to investigate the effects of the finit
size of the simulation cell ongl­0

ab , which were found to
be unimportant.

The integral overl in Eq. (4) was evaluated numeri-
cally using five values ofl: 0, 1

4 , 1
2 , 3

4 , and 1. With in-
creasingl the exchange-correlation energy,Ul

xc, where
Exc ­

R1
0 Ul

xc dl, was found to decrease smoothly an
monotonically as shown in Fig. 1, as has been predict
of
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FIG. 1. The exchange-correlation energy,Ul
xc, as a function

of the coupling constant,l. The statistical error bars are
smaller than the symbols.

by Levy and Perdew [15]. As a further test, the identity

Tl­0 1 Exc ­ T l­1 1 Ul­1
xc

was found to hold within 0.1%, whereTl­1 is the fully
interacting kinetic energy andT l­0 is the noninteracting
kinetic energy appearing in density functional theor
Fewer than five values ofl was insufficient to satisfy
this equation. Other quantities investigated such as
Jastrow term in the many-body wave function, andgl

ab

displayed a smooth monotonic dependence onl.
Figures 2(a), 2(b), and 2(c) showg with electron po-

sition r fixed on the bond center andr0 ranging over
the (110) plane, for parallel and antiparallel spins
VMC, and the spin averaged form in the LDA [16]
respectively. The largest features are confined main
to the bonding region where the first electron is lo
cated. This agrees qualitatively with the result foun
previously by Fahyet al. [14] for carbon at l ­ 1.
Around all of the numerous points investigated: (1) th
parallel-spin correlation function exhibited little depen
dence onl, indicating that exchange is the dominant in
teraction between parallel-spin electrons in silicon, (2) t
antiparallel-spin correlation function systematically dee
ened and enlarged with increasingl; a result solely
due to correlation, and (3) the antiparallel-spin correl
tion function was more isotropic than the parallel-sp
correlation function. The two more distant local min
ima away from the bond in Fig. 2(a) result from an ex
change effect, which can be traced to a simultaneous
in the single-particle density matrix, associated with th
Slater determinant of the noninteractingl ­ 0 system,
and a decrease in the electronic density along thef111g
direction.

The charge density which multipliesg in Eq. (2) can
have a profound effect on the shape ofrxc. Figures 3(a)
and 3(b) showg andrxc around the tetrahedral interstitia
site. The three local minima in Fig. 3(b) result from
the increase in the electronic density away from th
tetrahedral site. In the LDArxc is written in terms of
3351
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FIG. 2(color). The pair correlation function in the (110) plane for (a) parallel spin (VMC), (b) opposite spin (VMC), and (c)
averaged (LDA), with one electron at the bond center. The atoms and bonds are schematically represented for bond cha
the f111g direction.

FIG. 3(color). The (a) spin-averaged pair correlation function (VMC), (b) exchange-correlation hole (VMC), and (c) exch
correlation hole (LDA), with one electron fixed at the tetrahedral interstitial site in the (110) plane. The atoms and bon
schematically represented for bond chains along thef111g direction.

FIG. 4(color). Contour plots along the (110) plane for (a)eVMC
xc srd, (b) eVMC

xc srd 2 eLDA
xc srd, and (c)eVMC

xc srd 2 eADA
xc srd. (b) and

(c) have the same legend shown to the right of (c). The atoms and bonds are schematically represented for bond chains
f111g direction.
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g of a homogeneous electron gas,

rLDA
xc sr, r0d ­ nsrd hghomsssjr 2 r0j, nsrdddd 2 1j .

Note that the prefactornsr0d in Eq. (2) is replaced with
nsrd in the LDA to maintain the sum rule. This form
results in an LDA hole with a localized shape as show
in Fig. 3(c) with a minimum value 3 times smaller tha
the VMC result. Around this interstitial point the LDA
provides a better description of the shape ofg than of
rxc —the quantity that occurs in the exchange-correlati
energy of Eq. (1). Note that only the spherical average
rxc contributes toexcsrd in Eq. (1).

Figure 4(a) shows the VMC exchange-correlation e
ergy density,eVMC

xc srd, in the (110) plane calculated from
Eqs. (1) and (2) using the sampledgsr, r0d. The differ-
ence from the LDA,eVMC

xc srd 2 eLDA
xc srd, is shown in

Fig. 4(b). The largest errors in the LDA occur in th
bonding region where the electronic density is large
and around the pseudoatoms where it is smallest. T
sharp features near the extrema of the electronic d
sity in Fig. 4(b) result from the local nature ofeLDA

xc srd.
The true nonlocal functional includes information on th
charge density in the neighboring region which tends
smooth out such sharp features. For this reason the no
cal ADA yields a better overall agreement with our VMC
result, as is shown in the difference,eVMC

xc srd 2 eADA
xc srd,

in Fig. 4(c). The root mean square deviation ofexcsrd
from eVMC

xc srd was 4.9% forexcsrd ­ eLDA
xc srd and 2.0%

for excsrd ­ eADA
xc srd. The statistical error on the VMC

evaluation ofeVMC
xc srd was estimated from a compariso

of the exactel­0
xc srd with the sampled form atl ­ 0

to have a root mean square deviation of 0.5%, an
der of magnitude smaller than the deviations observ
between the LDA and VMC and 4 times smaller tha
the deviations between the ADA and VMC. (Note tha
the same nonlocal LDA pseudopotential was used
all three schemes.) Real-space plots of the exchan
correlation energydensityare not provided here in the
generalized gradient approximation, since this functi
typically contains an unphysical quantity that does n
contribute to the total integrated energy in these a
proaches [17] (as in Perdew-Wang 91 [4]). The tot
integrated exchange-correlation energiesExc (eVyatom)
are232.73 6 0.01 (VMC), 232.75 (LDA), and 232.67
(ADA). The close agreement between the LDA and VM
exchange-correlation energies is due to a real-space c
cellation of the bonding regions with the region aroun
the pseudoatom and explains why the LDA does so w
in describing silicon.

The coupling constant integration technique is a fruitf
way to investigate the most relevant quantities in Koh
Sham density functional theory. It is demonstrated
this Letter that this can be achieved by using realis
many-body wave functions generated with VMC. I
silicon the principal effects of correlation are confine
n
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mainly to antiparallel electrons as seen ingab. The
spatial dependence of the electronic density that multiplie
g can have a profound influence on the shape of th
exchange-correlation hole. The nonlocal nature of th
functionals smooths the LDA exchange-correlation energ
density. In addition to previously documented [3] subtle
cancellations between the exchange and correlation, a
the cancellations due to spherical averaging that occ
in the LDA, there is also a real-space cancellation
of errors in the exchange-correlation energy density i
silicon. These and future calculations of exact exchange
correlation energydensitiesin real solids will make it
possible to carry out stringent tests of the effectiveness
existing exchange-correlation functionals and should ai
in the search for better functionals. The available data
no longer limited to a few numbers such as total energie
cohesive energies, and bulk moduli.
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