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Anomalous Size Dependence of Relaxational Processes
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We consider relaxation processes that exhibit a stretched exponential behavior. We find that in those
systems, where the relaxation arises from two competing exponential processes, the size of the system
may play a dominant role. Above a crossover timethat dependsogarithmically on the size of the
system, the relaxation changes from a stretched exponential to a simple exponential decay, where the
decay rate also depentisgarithmically on the size of the system. This result is relevant to large-scale
Monte Carlo simulations and should be amenable to experimental verification in low-dimensional and
mesoscopic systems. [S0031-9007(97)02972-4]

PACS numbers: 64.60.—i, 64.70.Pf

In recent years it has become clear that many relaxa- Usually, in the case of a stretched exponential behavior,
tional processes in macroscopic systems can be charactab{(n) is assumed to behave dgn) ~ exp(—an®), while
ized by a relaxation functio® (z) that exhibits a stretched Q(n,r) decays exponentially with time a@(n,r) ~

exponential behavior exp(—bt/n?). A number of dynamical models that yield
8 a stretched exponential decay can be formulated in terms
0(t) ~ Q(0)exd—(¢/7)"], (1) of Eq. (2). These include the long-time behavior in the

where0 < 8 < 1. Examples include viscoelastic relaxa- faPping problem [8], the target problem [18], direct
tion [1], dielectric relaxation [2], glassy relaxations [3— €Neray transfer [18], hierarchically constrained dynamics
5], relaxation in polymers [6,7], and long-time decay in[14] and others. We now concentrate on two examples:
trapping processes [8]. Many more examples [9_13]'I'he first example is a particle diffusing irdadimensional
suggest that Eq. (1) is common to a very wide range ofYStém Wlt.h randomly dlstrlbuteq. traps, where we are
phenomena and macroscopic materials. interested in the survival probabilit9(s) of a particle.

The origin of the stretched exponential is not alwaysHere the state represents a particle in a trap-free region
clear. In many systems it is assumed to be the resuff inear sizen; ®(n) is the probability for the occurrence
of a competition between two exponential processes. 1f @ Sizén trap-free region, and(n,1) is the survival
some cases, e.g., trapping processes at long times, tmgqbabmty of th(_e particle in this region [8]. The exponent
assumption is well established, while in others, suctf IS the dimensior/ of the system, and = 2 due to the
as relaxation in glassy materials, this assumption haglfoSIonal motion. _The second example is hierarchically
been controversially discussed [14,15] and alternativ€onstrained dynamics, a model that has been proposed to
models have been also suggested [10,16-18]. Less account for glagsy relaxation [14]. This model assumes
known, both experimentally and theoretically, on thethat the relaxation of levet populated by spins occurs
corresponding behavior in mesoscopic systems where w8 Stages, and the constraintimposed by a faster degree of
expect the relaxation to depend on the system size. freedom must relax before a slower degree of freedom can

In this Letter we argue that if the stretched exponen-relax- This implies that the time scale of relaxation in one

tial is due to two competing exponential processes, therl¢Vel is subordinated to the relaxation below. A possible
exists a characteristic time,, which depends logarithmi- €alization considered in [14] and here is a system with a
cally on the size of the system, above which there is ighsprete series of levels vv_here the relaxation time of level
crossover to an exponential decay. Thus, by varying th& 1S 7. ~ n” [corresponding to the exponential form of
size of the system this crossover time changes. This cad(-?) in Eq. (2)], and the weight factor of level is
serve as an experimental test for identifying the origin of®(?) ~ " [12], corresponding tox = 1. The first
the mechanism leading to stretched exponential decay. &XPonential in Eq. (2) is, accordingly, the probability to
We assume that the relaxation function of the wholeCcupy leveln and the second exponential represents the

system can be represented by an integration over aflecay of that level.

possible states, namely, We can evaluate the long-time behavior of the integral
% in Eq. (2) using the method of steepest descent. The

o) = ] d(n)Q(n,t)dn. (2)  main contribution to the integral arises from the maximum

0 of the integrand in (2), which is obtained from the

Here, ®(n) is the probability that state is occupied and minimum of the function—an® — bt/n” appearing in
Q(n, 1) is the dynamic relaxation of theth state. the exponent. This yields that the main contribution to
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(2) comes from tial [Eq. (1)] to an exponential [Eq. (7)] can be estimated
from the conditiom™ = nnyay, from which follows
n' = (7bt/aa)1/(“+7), (3) aal/InN I+y/a
tx = —<—> . (8)
vyb\ a

leading to Eq. (1) with8 = a/(a + y) <1, andr =

- 1 L o : N
(a/by)a™"*ly/(y + a@)]'*7/*. The striking point in Eg. (8) is the logarithmic depen-
However, as we show below, these arguments are valigance onn, which putszx in the range of observable
only in the thermodynamic limit where the system sizejne scales measurable in mesoscopic systems. Indeed,

is inf!nite._ For a.finite system With.a finite numbeN_ _ the corresponding relaxation val@zy) scales as
of spins (in the hierarchical constraint system) or a finite

numberN of traps (in the trapping system), the relaxation
function depends explicitly o®v. Since our discussion
is quite general for systems described by Eg. (2), in wh
follows we refer to spins and traps in the above exampl
as elements.

For a single finite system consisting 8felements, the

relaxation functionQ(r) represents an average quantity _
over theN elements Q(1x)/Q(0) ~ N~4/2, (10)

Q(1x) ~ N~ @/7, 9)

:ltndependent of the microscopic parameterand b. In
the case of the trapping relaxation mechanism where
a = d andy = 2 we obtain

1 x 0) ~ N~4/2_while in the hi hical traint
0(r) = < {z}:m(n)Q(rz,t), @) gy%a%%é ) while in the hierarchical constrain

where the sum is over all possible staiesnd m(n) is 0(1x)/0(0) ~ N~'/7. (11)

the number of elements at staie with >, m(n) = N. _ , o
Since the sum in (4) is over exponential functions, thdt is known [8(e)] that in both examples, for an infinite
value ofQ(¢) will fluctuate for different sets av. There System, the stretched exponential behavior of Eq. (1) sets
will be a distribution ofQ(z), and we are interested in the in only at very long times. Thus we expect that in
typical Q(¢), which is around the peak of this distribution. the finite 'system, the crossover will mask the stretched-

In the thermodynamic limitv — o, all statesn are ~ €xponential pattern.

occupied, m(n)/N can be identified with®(n), and To test our analytical approach, we performed Monte
Eq. (2) follows. ForN finite, in contrast, there exists Carlo simulations on both the trapping model and the
a characteristic “maximum” state = ny.x (N), and this hierarchical constraint model. In the trapping model,

nmax Should replace the upper limie} in Eq. (2), we consider one- and two-dimensional systems with a
Hmax fixed concentrationr = 0.5 of randomly distributed traps
(1) =[ ®(n)Q(n,t)dn . (5) and vary the sizeN/c of the system. We calculated
0

numerically the survival probabiliyQ(s) of a particle
To estimate how:ya depends oV, we note that the as a function oft and N. In the hierarchical model
typical number of states in a sample ofV elements is we have chosenr, ~ n, i.e., y = 1. We calculated
Z(n) = N®(n) = Nexp(—an®). States withZ(n) < 1  the relaxation function for system sizes varying from
will not occur in a typical system a¥ elements, and this N = 102 to N = 10°.

yields As mentioned earlier, the relaxation function fluctuates
NN\ e for different sets of N.  For obtaining the typical

Rmax = <—> . (6) behavior of O(z), we have considered therefore the
a “typical” average Q(1)y, = expInQ(¢))), where the

o _ brackets denote an average over many sef$ efements
If n* < nmax, the upper limit in (2) can be approxi- [19]. For simplicity, we shall drop the index “typ” in the
mated by infinity and thus leads to Eq. (1). However, iffonowing_
n* > Nmax the main contribution to Eq (5) will not be Figure 1 shows-— |n[Q(t)/Q(O)] as a function of in a
from the maximum of the integrand, which is outside theqgyple logarithmic plot for (a) the trapping modeldn=
range of integration, but frommax. Thus, forn™ > nmax 1 andd = 2, and (b) the hierarchical constraint model,
we expect both for several system sizes. In all cases, a crossover
, from an exponenp < 1 (at smallz) towardsB = 1 (at
o) = Q(O)e’b’/”max, (7) larger) can be easily recognized. The crossover time
shifts towards larger values wh@hincreases.
where the time constant of the relaxatiomx, scales as To study the crossover behavior in a more quantitative
(InN)?/#. The crossover time from a stretched exponenmanner, we have plotted in Fig. 2 the local exponghts
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In the following we discuss the relevance of our results
to Monte Carlo simulations and experiments. There exists
a long standing puzzle in Monte Carlo simulations of
102 the trapping problem il = 2 and 3, that the predicted
stretched exponential could not be observed [8], even for
survival probabilitiesQ(r)/Q(0) down to107%! ind = 2
[8(b)] and10~ % in d = 3 [8(g)].

Our finding of the logarithmic dependence @fz) on
: . . . . . the system siz&/ explains this puzzle. The Monte Carlo
10’ 10 10°  sx10°  2x10 10? 10° simulations ind =2 and 3 were typically performed

t t on 10 configurations with aboutl0* traps, which is
FIG. 1. Plot of —In[Q(1)/Q(0)] as a function ofs in a €quivalent to having a single system withi ~ 10’

double logarithmic presentation for (a) the trapping model intraps. Using Eq. (10), we expect fav = 107 traps
d=1andd =2, and (b) the hierarchical constraint model, Q(rx)/Q(0) = 1077 in d = 2. Indeed, for times above
for several system si32es. For the trappingsmodel, thelsyster)nX the exponents approaches unity as predicted by
g'zfsm%“?fg’penzué tlr(i)ang)lgsezr] ;qluo%re(zjngn lgovsﬂptiina%rlg)e)i’n our th_eory and as seen clearly in Fig. 2(a). Morgover,
d=1,andN =9 x 10° (full square),9 x 10* (full circle), ~ for this system sizeg never reaches the predicted
9 X 10° (full up triangle) ind = 2. For the hierarchical model, thermodynamic value3 = 0.5, the minimum value of
the system sizes aré = 10> (full square),10° (full circle), 10* g is about0.65. Ford = 3, Q(rx)/Q(0) = 10~ thus
(full up triangle), 10 (full down triangle). for smaller survival valuest(> tx) one again expects
increasing values oB approaching unity. This explains
the exponential decay found in the early Monte Carlo
simulations. Our results show that this is not an artifact
but due to the finite size of the system. Moreover, they
clearly indicate that the thermodynamic limit cannot even
be reached in one-dimensional macroscopic systems.

It would be of interest to test the above prediction experi-
4 Mmentally by preparing experimental realizations where size
effects can be controlled. Equations (8) and (10) suggest
'that the behavior around the crossover can be measured ex-
perimentally. For the trapping problem in linear systems,
which has been studied experimentally [20,21], we expect
for 10% sites and concentrations of trapsetween10*
and1072, thatQ(rx)/Q(0) ~ 1072-10"3, which is a sur-
vival range that can be detected experimentally. The same
o . . . . arguments are valid for the target problem and therefore a
the curves in .F'g' 2. The _regultlng straight lines are in fu"sirglgwilar crossover from stretchgd eF;ponentiaI to exponen-
agreement with the prediction of Eq. (8), supporting OUltial decay is expected in relaxation experiments in low-

analytical approach. dimensional geometries [22]. Mesoscopic systems such

1 (b)

-In[Q(t)/Q(0)]

_101

obtained from the local slopes of Fig. 1, as a function o
t. In both systems, for a fixed system sixge B first
decreases with, reaches a minimum value at a certain
time that can be identified withy, and then increases
monotonically with time towards@ = 1. The figure
shows that the minimum value ¢gf has not yet reache
its asymptotic value predicted for infinite systems, i.e.
B =1/3(d=1)andB = 1/2 (d = 2) for the trapping
system ang3 = 1/2 for the hierarchical system.

To show the dependence of the crossover timeon
the system siz&/ we have plotted, in Fig. 3, the values of

tg/(aw) as a function of Iiv. The crossover time was
obtained numerically from the position of the minima of
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FIG. 2. Plot of the local exponentg calculated from the a/(@ty)
successive slopes of the corresponding curves in Figs. 1(a), félG. 3. Plot of 1’ “ ' as a function of IV, for (a) the
the trapping model and 1(b) for the hierarchical model. Thetrapping model and (b) the hierarchical model. The straight
horizontal dashed lines represent the corresponding asymtotime supports Eq. (8). The crossover times were obtained
(N — oo, t — ) values of. from the positions of the minima of Fig. 2.
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