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Thermodynamical Approach for Small-Scale Parametrization in 2D Turbulence
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We propose a model of turbulent viscosity which preserves all the known conservation laws of
the two-dimensional incompressible Euler equation, and is invariant by changes of reference frames
This model is derived by a systematic procedure, using a principle of maximum entropy production.
[S0031-9007(97)02915-3]
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A fundamental difficulty in fluid turbulence is the de
velopment of motion at very small scales, down to th
viscous dissipation scale, while computations can on
provide locally averaged field, at the scale of the nume
cal mesh. The interaction of these explicit scales with t
subgrid scales must be modeled in a statistical sense. V
ous forms ofturbulent viscosityhave been empirically in-
troduced for this purpose, modeling the energy transfe
toward the subgrid scales. In two-dimensional (2D) tu
bulence, such energy cascade is forbidden by the con
vation of vorticity of fluid particles. However, small scale
fluctuations are still produced in the vorticity field, and sp
cific models have been proposed [1], but they do not p
serve all the conservation laws for 2D fluid motion.

The goal of this paper is to derive, by a systemat
procedure, an evolution equation for the explicit scale
smoothing out the subgrid scales, whilepreserving all the
known conservation laws of the 2D Euler equations.The
guiding idea is that turbulent diffusion is an irreversibl
process, producing disorder or entropy. Developments
a statistical equilibrium theory [2,3] for 2D perfect flu
ids support this view, and provide an explicit expressio
for the entropy. It has been proposed [4–6] that subg
fluctuationsdrive the system towards this statistical equ
librium. The resulting relaxation equations preserve th
conservation laws of the Euler equations (like energy), b
only asglobal constraints. Furthermore, these equatio
are not invariant by all changes of reference frame (rot
ing or translating), which is not satisfactory from a funda
mental point of view, and may lead to practical flaws i
large systems. The purpose of the present paper is to
rive more general relaxation equations, preserving all t
invariance properties and conservation laws of the Eu
equations in alocal sense.

We start with the Euler equations describing 2D invisc
and incompressible flows

≠v

≠t
1 = ? svud ­ 0, u ­ 2z ^ =c ,

v ­ 2Dc , (1)

wherec is the stream function andvz ­ = ^ u the vor-
ticity. This equation is known to have solutions for a
times for any regular initial condition (but rapidly devel
ops finer and finer vorticity filaments). Therefore it is no
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necessary to introduce a physical viscosity (as long as
viscous dissipation scale is much below the cutoff for th
explicit scales). The vorticity of each fluid particle is con
served, implying the conservation of theglobalprobability
distribution of vorticity gssd (i.e., the total area fraction
occupied by each vorticity levels). The other conserved
quantities are the energyE ­

1
2

R
v cd2r, and, in the in-

finite domain, the angular momentumL ­
R

vr2d2r and
the impulseP ­

R
r ^ vẑd2r.

We are interested in the smoothed vorticity fieldv,
obtained as a local average, over a cutoff scaled, of
the vorticity v. We also define the corresponding strea
function c, solution of2Dc ­ v, and u ­ 2z ^ =c.
Applying local averaging to the Euler equation (1) lead
to an equation of vorticity transport

≠v

≠t
1 = ? sv ud ­ 2= ? Jv , (2)

where the fluxJv depends on the local fluctuationsũ and
ṽ sJv ­ ũṽ d, and must be obtained by a closure mode
The conservation laws for energy, angular momentu
and impulse, respectively, lead to the constraints

ÙE ­
Z

Jv ? =c d2r ­ 0 , (3)

ÙL ­
Z

2Jv ? r d2r ­ 0, ÙP ­
Z

Jv ^ z d2r ­ 0 ,

(4)

where we have neglected in (3) the energye ­ s1y2dc̃ṽ

of the local fluctuations. We can indeed estimate th
c̃ , ṽd2, so thate , ṽ2d2, and eyE , sdyLd2 ø 1,
whereL is a scale of motion.

In order to close (2), we need a statistical description
the subgrid-scale vorticity fluctuations. For that purpos
we introduce a (time dependent)local probability density
(i.e., area proportion)rsr, sd of finding the vorticity level
s in a small neighborhood of the positionr. This density
satisfies the local normalization condition

R
rsr, sdds ­

1; its first moment is the locally averaged vorticity, an
its second moment determines the mean squarev2 of the
© 1997 The American Physical Society
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vorticity fluctuations

vsrd ­
Z

rsr, sds ds ,

v2srd ­
Z

rsr, sd ss 2 vd2 ds .
(5)

The vorticity levels of each fluid parcel is conserved
like a “chemical” with concentrationr, and satisfies a
transport equation

≠r

≠t
1 = ? srud ­ 2= ? J , (6)

with J ? n ­ 0 at the fluid boundaries. This is an exac
local expression for the conservation of the global prob
bility gssd ­

R
rsr, sd d2r. The local normalization

condition and the conservation law (2) forv implyZ
Jsr, sd ds ­ 0 , (7)

Jv ­
Z

Jsr, sds ds . (8)

Using these expressions, the form (6) with constraints
and (4) preserves all the conservation laws of the Eu
equations.

In order to determine the diffusion currentsJ, we now
define the entropy [2]

S ­ 2
Z

rsr, sd ln rsr, sd d2r ds , (9)

which characterizes the “number” of possible vorticit
fields (microscopic states) leading to a given dens
field rsr, sd (macroscopic state). After sufficient time
the system has an overwhelming probability to rea
an equilibrium state, maximizing the entropy, with th
constraints imposed by the conserved quantities. Dur
the process of relaxation toward equilibrium, we expe
that the entropy always increases

ÙS ­ 2
Z

J ? =sln rd d2r ds . 0 . (10)

Furthermore, this increase is likely to be maximum wit
appropriate constraints. These are the conservation la
and also kinematic constraints: the diffusion fluxesJ
cannot take arbitrary large values as they result from t
transport by the subgrid-scale velocity fluctuations. This
the maximum entropy production principle (MEPP) [4,5
for a given density fieldrsr, sd, the system distributes
its currentsJ in order to maximize its rate of entropy
production ÙS while satisfying the constraints (3) and (7
and the inequality

R
sJ2y2rd ds # Csrd. This variational

problem yields optimal currents of the form [4]
J ­ 2Dsrdf=r 1 bstd ss 2 vdr=c g , (11)

wherebstd is the (global) Lagrange multiplier correspond
ing to energy conservation, obtained by introducing th
condition (3) in (11), which yields [4]

bstd ­ 2
Z

D=c ? =vd2ry
Z

Dv2s=cd2 d2r . (12)

The evolution equation (6) is then fully determined; it ha
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the form [7] of a Fokker-Planck equation, with an ordinar
diffusive term [the first term in the bracket of (11)] an
a systematic drift due to a “potential” gradient=c. The
additional constraints (4) must be introduced when t
boundary is invariant by a rotation or translation, andc

then becomes a stream function in a rotating or translat
frame of reference.

The MEPP is able to give the general form of the r
laxation equations (it can be viewed as a variational fo
mulation of ordinary linear thermodynamics) but cann
predict by itself the expression of the diffusion coefficie
Dsrd [related to the unknown boundCsrd for the diffu-
sion currents]. However, diffusion is due to local velocit
fluctuationsũ , v

1y2
2 d over scaled, so dimensional ar-

guments lead to an expression

Dsr, td ­ Kd2v
1y2
2 , (13)

with a nondimensional constantK of order unity, which
can be specified by a simple stochastic model [5,7].

This system evolves toward equilibrium states, f
which the diffusion currents (11) vanish [4]. Then, ifD fi

0, s=rdyr ­ 2bss 2 vd=c , so that for two vorticity
levels s and s′, = lnfrsr, sdyrsr, s 0dg ­ =f2bss 2

s0dcg. Introducing a constant of integrationassd, and
using the local normalization condition, we getrsr, sd ­
expf2assd 2 bscsrdgy

R
expf2ass0d 2 bs0csrdg ds0.

This is the expression for equilibrium states, obtained
well by maximizing entropy with the constraints of th
conservation laws [2].b is then interpreted as the invers
of a temperature. Notice, however, that the resulti
equilibrium state is possibly restricted to a subregion
space, surrounded by irrotational fluid (wherev2 ­ 0 so
thatD ­ 0). It may therefore differ from the global equi-
librium in the whole domain, and represents organizati
into isolated vorticity structures [5,8].

In summary, the previous equations smooth the Eu
equation, while preserving the constraints imposed
the dynamics. In particular, the energy and total circ
lation

R
v d2r are exactly conserved, and starting from

a smooth initial conditionv0srd, the enstrophy must
decrease (i.e.,

R
v2 d2r #

R
v0

2 d2r), and maxsvd #

maxsv0d, minsvd $ minsv0d. The entropy increases
(with an optimal rate), leading to a (possibly restricte
equilibrium state. This has been obtained at the price o
new variable, the vorticity levels, but in the case of dis-
crete vorticity levels,ai, i ­ 1, N, the system simplifies
into a set ofN equations. As an alternative approach, w
can take the first moments (ins) of (6) and (11), closing
the resulting hierarchy by a maximum entropy hypothe
[5]. These relaxation equations, derived from the MEP
compete very well with direct Navier-Stokes simulation
[5] but, of course, demand less resolution since the sm
scales have been modeled in an optimal (statistical) wa

However, these relaxation equations have a concep
drawback, as they do not respect the Galilean invarian
the term=c is modified by a change of reference fram
Furthermore, energy is only conserved by the glob
3303
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integral relation (12), while for well separated activ
subparts, we expect energy to be conserved in e
subpart (with its own temperatureb), rather than globally.

The aim of the present paper is to cure these proble
by reformulating the MEPP in a fully local form. We
introduce currents of energyJe, angular momentumJl,
and impulsePij (in the j direction) and rewrite the
constraints (3) and (4) as

Jv ? =c ­ = ? Je , (14)

Jv ? r ­ = ? Jl , (15)

Jvi ­ ≠jPij , (16)

with the conditions that the normal components of the
currents vanish at the boundaries. At this stage this
equivalent to the global constraints (3) and (4), but t
novelty will arise by bounding these currents.

However, there is an immediate difficulty, as these ne
fluxes are clearly not invariant by a change of referen
frame. In fact, there is no reason to boundJe , Jl, andPij

rather than any linear combination of them. The choi
will be dictated by considerations of symmetry, as we wa
our relaxation equations to satisfy the invariance prop
ties of the Euler equations, that is, (i) the invariance
translation of the coordinates, (ii) the invariance by r
tation of the coordinates, (iii) the invariance by gaug
transformationc ! c 1 C, (iv) the Galilean invariance
c ! c 1 Uixi , and (v) the invariance by rotation of the
referentialc ! c 1 Vpr2. (This is specific to 2D in-
compressible flows, for which the Coriolis and centrifug
forces are exactly balanced by pressure forces.)

Relation (16) satisfies these properties, while (1
depends on the coordinate origin, but the currentJ 0

lj ­
Jlj 2 xiPij satisfies the invariant relation

Pii ­ 2= ? J0
l (17)

(with summation over repeated indices), obtained
combining (15) and (16). Relation (14) is clearly no
invariant by changes of reference frame, but this prope
is recovered for the new currentJ 0

ej ­ Jej 2 Pij≠ic 2
1
2 sDcdJ 0

lj, which satisfies

LijPij 2
1
2 J0

l ? =sDcd ­ = ? J0
e , (18)

obtained by combining (14), (16), and (17), and denotin

Lij ; 2≠2
ijc 1

1
2 Dcdij . (19)

Under the form (16), (17), and (18) the constraints o
energy, angular momentum, and impulse now satisfy
3304
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the required invariance properties. Let us furthermore in
troduce the decompositionPij ­ Sij 1 Aij 1 pdij in-
volving a symmetric traceless tensor (Sij ­ Sji andSii ­
0), and an antisymmetric tensorsAij ­ 2Ajid, so that the
local constraints (16), (17), and (18) become

LijSij 1
1
2 J0

l ? =v ­ = ? J0
e , (20)

p ­ 2
1
2 = ? J0

l , (21)

Jvi ­ ≠jsSij 1 Aij 1 pdijd . (22)

The optimal currents are then determined by max
mizing the rate of entropy production (10) under thes
constraints (20)–(22), the normalization condition (7)
and the inequalities

R
sJ2y2rdds # Csrd, J2

e,l # Ce,lsrd,
SijSij # CSsrd, AijAij # CAsrd, and p2

2 # Cp srd pre-
venting the diffusion currents from taking arbitrarily large
values. This variational problem is treated by introduc
ing Lagrange multipliers,b, g, h, j , 1yD, 1yxe, 1yxl,
1yxS, 1yxA, 1yxp for each constraint. The resulting op-
timal currents are

J ­ 2Df=r 1 rss 2 vdhg , (23)

J0
e ­ 2xe=b , (24)

J0
l ­ xl

∑
=g 2

b

2
=v

∏
, (25)

p ­ 2xp s2g 1 = ? hd , (26)

Sij ­ xS

∑
2bLij 2

1
2

µ
≠hi

≠xj
1

≠hj

≠xi

∂
1

1
2

= ? hdij

∏
,

(27)

Aij ­ 2
xA

2

µ
≠hi

≠xj
2

≠hj

≠xi

∂
. (28)

These relations express that the fluxes must be linear fun
tions of the densityr and the “thermodynamic potentials”
b, g, and hi . The latters appeared as Lagrange mult
pliers in the MEPP, and do not correspond to any loca
equilibrium, unlike in usual thermodynamics (in particu-
lar, we have no local internal energy).

Substituting these expressions (23)–(28) into (20)
(22), we obtain a system of four equations determinin
the four potentialshi, g, andb. With the particular (and
convenient) choicexA ­ xS andxp ­ xSy2, this system
simplifies into
≠jsxS≠jhid 2 Dv2hi 1 ≠jsxSLijbd 1 ≠isxSgd ­ D≠iv ,

=sxe=bd 2

∑
xSLijLij 1

xl

4
s=vd2

∏
b 2

xS

2
Lijs≠jhi 1 ≠ihjd 1

xl

2
=v ? =g ­ 0 ,

=sxl=gd 2 2xSg 2 xS= ? h 2 =

µ
xl

2
b=v

∂
­ 0 . (29)
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For given diffusion coefficients, these are linear ellipt
cal equations for each of the four unknown (with ad
ditional crossed terms involving first order derivatives
The boundary conditions correspond to vanishing norm
currents, related to the unknown by (24)–(28). Definin
the coordinatessx , z d tangential and normal to the wall
this yields

≠b

≠z
­ 0,

≠g

≠z
­

b

2
≠v

≠z
,

≠hx

≠z
­ b

≠uz

≠z
,

≠hz

≠z
­ 2b

≠ux

≠z
1

b

2
v 2 g ,

(30)

which fully determines the system (29). The resultin
vector h will specify the currentJ by (23), determining
the time evolution by (6), together with the boundar
conditionJ ? n ­ 0, i.e., ≠ry≠z ­ 2rss 2 vdhz (and
the impermeability conditionc ­ cte).

The diffusivities are not given by the MEPP but mu
be positive in order to satisfy the increase of entrop
Indeed, the rate of entropy production (10) can be p
under the form

ÙS ­
Z

d2r

"Z J2

Dr
ds 1

J02
e

xe

1
J2

l

xl

1
S2

ij

xS

1
A2

ij

xA
1

p2

xp

#
. (31)

The diffusivities must depend on local quantities, ind
pendent of the reference frame. The coefficientD can
still be estimated by (13), and it is reasonable to assu
that all the other diffusivities are proportional toD, as
they represent constraints on the vorticity diffusion. W
shall also assume that each coefficient depends only on
conjugate Lagrange multiplier. Then dimensional ana
sis yields the following estimates

xe ,
D
b2

, xl ,
D
g2

, xS,A,p̃ ,
D
h2

, (32)

providing a similar structure for the first term of each o
the three equations (29). Of course this determination
partly arbitrary, but the behavior of the system is probab
not very sensitive to these diffusivities, as checked
numerical computations [5,9].

Indeed the system tends to local equilibria, which are
dependent of the diffusivities, as discussed now. Supp
the system reaches a steady state in some region of s
where v2 fi 0 (so thatD fi 0). Then we haveÙS ­ 0,
and (31) implies that all the currents vanish. The co
dition (28) implies = ^ h ­ 0, so thath must be the
gradient of some function:h ­ 2=f. From (24) and
(25), b must be uniform, andg 2

b

2 v ­ C, whereC is
a constant of integration, while (26) impliesDf ­ 2g.
Combining these relations, we findDsf 1 bcd ­ 2C,
so that f 1 bc ­

C
2 r2 1 f0, where f0 satisfies the

Laplace equationDf0 ­ 0. The conditionSij ­ 0 im-
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plies≠
2
ijf0 ­ 0, and the only solution of the Laplace equa

tion satisfying this condition isf0 ­ Kr. We can relabel
the constantsC andK by C ­ 2bV andK ­ bsz ^ Vd,
so that the conditionÙS ­ 0 finally implies

h ­ 2=f, f ­ 2b

µ
c 1

V

2
r2 2 sV ^ rdz

∂
.

(33)
Therefore the expression forJ reduces to (11), in a
reference frame rotating with angular velocityV and
translating with velocityV. As discussed before, the
condition J ­ 0 leads then to an equilibrium state i
this moving frame of reference. In a small domai
the boundary conditions will enforce (33) even befo
equilibrium is reached, and we recover the relaxati
equations of Refs. [4,5], involving the current (11) wit
the global constraint (12) (in a domain without speci
symmetry).

To summarize, our relaxation equations conserve all
constants of motion, respect all the invariance properties
the Euler equations, increase the entropy with an optim
rate until an equilibrium state is reached. These equati
involve a diffusion flux for the local probability density
r. This is a usual diffusion flux in=r, corrected by a
systematic drift, proportional to a vectorhsrd, determined
as a solution of the elliptic system (29) with bounda
conditions (30). In a strongly confined system, our mod
reduces to the previously obtained relaxation equatio
[4,5], but it should also predict organization restricted
several subregions of a large system, thanks to the lo
character of all the conservation laws. The same meth
can be applied to quasigeostrophic systems [9] or Vlas
equations [7].
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