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Thermodynamical Approach for Small-Scale Parametrization in 2D Turbulence
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We propose a model of turbulent viscosity which preserves all the known conservation laws of
the two-dimensional incompressible Euler equation, and is invariant by changes of reference frames.
This model is derived by a systematic procedure, using a principle of maximum entropy production.
[S0031-9007(97)02915-3]

PACS numbers: 47.27.Qb, 05.70.Ln, 47.10.+9, 92.90.+x

A fundamental difficulty in fluid turbulence is the de- necessary to introduce a physical viscosity (as long as the
velopment of motion at very small scales, down to theviscous dissipation scale is much below the cutoff for the
viscous dissipation scale, while computations can onlexplicit scales). The vorticity of each fluid particle is con-
provide locally averaged field, at the scale of the numeriserved, implying the conservation of thbal probability
cal mesh. The interaction of these explicit scales with thalistribution of vorticity y(o) (i.e., the total area fraction
subgrid scales must be modeled in a statistical sense. Vaccupied by each vorticity levet). The other conserved
ous forms ofturbulent viscosityhave been empirically in- quantities are the enerdgy = % [ w ¢d?r, and, in the in-
troduced for this purpose, modeling the energy transferfinite domain, the angular momentun= [ wr*d’r and
toward the subgrid scales. In two-dimensional (2D) tur-the impulseP = [r A w2d’r.
bulence, such energy cascade is forbidden by the conser-we are interested in the smoothed vorticity fieid
vation of vorticity of fluid particles. However, small scale obtained as a local average, over a cutoff saaleof
fluctuations are still produced in the vorticity field, and spe-the vorticity w. We also define the corresponding stream
cific models have been proposed [1], but they do not prefunction i, solution of —Ay = @, andu = —z A V.
serve all the conservation laws for 2D fluid motion. Applying local averaging to the Euler equation (1) leads

The goal of this paper is to derive, by a systematicto an equation of vorticity transport
procedure, an evolution equation for the explicit scales,
smoothing out the subgrid scales, wipleeserving all the Jw .
known co%servation Iagvs of the 2D gﬂler equa%ioﬁshe Y V-o@u)=-V-Jo, (2)
guiding idea is that turbulent diffusion is an irreversible )
process, producing disorder or entropy. Developments ofthere the fluxJ,, depends on the local fluctuationsand
a statistical equilibrium theory [2,3] for 2D perfect flu- @ (J» = i@ ), and must be obtained by a closure model.
ids support this view, and provide an explicit expressionlhe conservation laws for energy, angular momentum,
for the entropy. It has been proposed [4—6] that subgridnd impulse, respectively, lead to the constraints
fluctuationsdrive the system towards this statistical equi-
librium. The resulting relaxation equations preserve the E = /J(u “Vidr =0, (3)
conservation laws of the Euler equations (like energy), but
only asglobal constraints. Furthermore, these equations
are not invariant by all changes of reference frame (rotat- )
ing or translating), which is not satisfactory from a funda- L = f 2J, - rd’r =0, P = wa Azdr=0,
mental point of view, and may lead to practical flaws in
large systems. The purpose of the present paper is to de-

rive more general relaxation equations, preserving all the @
invariance properties and conservation laws of the Eulewhere we have neglected in (3) the eneegy- (1/2)&
equations in docal sense. of the local fluctuations. We can indeed estimate that
We start with the Euler equations describing 2D inviscidyy ~ @d?, so thate ~ @2d?, ande/E ~ (d/L)* < 1,
and incompressible flows whereL is a scale of motion.
dw In order to close (2), we need a statistical description of
T + V- (ou) =0, u=-zAVy, the subgrid-scale vorticity fluctuations. For that purpose,
we introduce a (time dependembcal probability density
w=—Ay, (1) (i.e., area proportiony (r, o) of finding the vorticity level

wherey is the stream function andz = V A u the vor- ¢ in a small neighborhood of the positi@n This density
ticity. This equation is known to have solutions for all satisfies the local normalization conditigip (r, 0)do =
times for any regular initial condition (but rapidly devel- 1; its first moment is the locally averaged vorticity, and
ops finer and finer vorticity filaments). Therefore it is notits second moment determines the mean squaref the
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vorticity fluctuations the form [7] of a Fokker-Planck equation, with an ordinary
. diffusive term [the first term in the bracket of (11)] and
o(r) = f p(r,o)oda, a systematic drift due to a “potential” gradiewity. The
(5) additional constraints (4) must be introduced when the
wy(r) = f pr,o)(c — @)do. boundary is invariant by a rotation or translation, apd
then becomes a stream function in a rotating or translating

The vorticity levelo of each fluid parcel is conserved, frame of reference.

like a “chemical” with concentratiorp, and satisfies a The MEPP is able to give the general form of the re-
transport equation laxation equations (it can be viewed as a variational for-
ap. LV () = -V -] ©6) mulqtion o_f ordinary linear .thermodyngmic_s) but cannot
ot ’ predict by itself the expression of the diffusion coefficient
with J - n = 0 at the fluid boundaries. This is an exact 2(r) [related to the unknown bound(r) for the diffu-

local expression for the conservation of the global probaSion currents]. However, diffusion is due to local velocity

bility y(o) = [p(r,o)d*r. The local normalization fluctuationsii ~ wé/zd over scaled, so dimensional ar-

condition and the conservation law (2) farimply guments lead to an expression
1/2
fJ(r, 0_) do_ — O, (7) D(I‘, t) - Kdzwz/ N (13)
with a nondimensional constait of order unity, which
Y= _ 8 can be specified by a simple stochastic model [5,7].
1 [ Y, 7)o do ® This system evolves toward equilibrium states, for
Using these expressions, the form (6) with constraints (3yhich the diffusion currents (11) vanish [4]. Then/if#
and (4) preserves all the conservation laws of the Eule®, (Vp)/p = —B(o — @)V, so that for two vorticity
equations. levels o and o', Vin[p(r,o)/p(r,d)] = V[-B(c —
In order to determine the diffusion currekswe now  ¢’)#]. Introducing a constant of integratian(o), and
define the entropy [2] using the local normalization condition, we gefrr, o) =
) exf—a(o) - Bop(r)]/ [exd—a(o’) — Bo'(r)]da’.
§=- f p(r,o)Inp(r,o)drdo, (9)  This is the expression for equilibrium states, obtained as

well by maximizing entropy with the constraints of the

which characterizes the “number” of possible vorticity ;onservation laws [2].8 is then interpreted as the inverse
fields (microscopic states) leading to a given densityy; 5 temperature. Notice, however, that the resulting

field p(r,o) (macroscopic state). After sufficient time gqyilibrium state is possibly restricted to a subregion of
the system has an overwhelming probability to reachynace surrounded by irrotational fluid (whese = 0 so
an equilibrium state, maximizing the entropy, with thenaipp — (). It may therefore differ from the global equi-
constraints imposed by the conserved quantities. Duringyrjym in the whole domain, and represents organization
the process of relaxathn toward equilibrium, we expectniq isolated vorticity structures [5,8].
that the entropy always increases In summary, the previous equations smooth the Euler
§ = — ] J-V(np)d*rdo > 0. (10) equation, \_Nhile preserving the constraints imposeq by
the dynamics. In particular, the energy and total circu-
Furthermore, this increase is likely to be maximum withlation [@ d’r are exactly conserved, and starting from
appropriate constraints. These are the conservation lawa, smooth initial conditionwy(r), the enstrophy must
and also kinematic constraints: the diffusion fluxes decrease (i.e.,/@>d’r = [w?>d’r), and maxw) =
cannot take arbitrary large values as they result from thenaXw,), min(@) = min(w,). The entropy increases
transport by the subgrid-scale velocity fluctuations. This igwith an optimal rate), leading to a (possibly restricted)
the maximum entropy production principle (MEPP) [4,5]: equilibrium state. This has been obtained at the price of a
for a given density fieldo(r, o), the system distributes new variable, the vorticity leval, but in the case of dis-
its currentsJ in order to maximize its rate of entropy crete vorticity levelsg;, i = 1, N, the system simplifies
productionS while satisfying the constraints (3) and (7) into a set ofN equations. As an alternative approach, we
and the inequality/(J?>/2p) do = C(r). This variational —can take the first moments () of (6) and (11), closing
problem yields optimal currents of the form [4] the resulting hierarchy by a maximum entropy hypothesis
J=-Dm®)[Vp + B(1)(c —@)pVy], (11) [Bl These relaxation equations, derived from the MEPP,
compete very well with direct Navier-Stokes simulations
ing to energy conservation, obtained by introducing thés] ?Ut’hOf COILJJI’SG, dergalnflj I_ess reso_lutlcl)n since thle small
condition (3) in (11), which yields [4] scales have been modeled in an optima (statistical) way.
However, these relaxation equations have a conceptual
B(t) = — f DV - deZr/f Dw,(Vip)*d*r. (12) drawback, as they do not respect the Galilean invariance:
the termV¢ is modified by a change of reference frame.
The evolution equation (6) is then fully determined; it hasFurthermore, energy is only conserved by the global
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integral relation (12), while for well separated activethe required invariance properties. Let us furthermore in-

subparts, we expect energy to be conserved in eadhoduce the decompositiohl;; = S;; + A;; + 7 ;; in-

subpart (with its own temperatuj®), rather than globally. volving a symmetric traceless tensdg;(= S;; andS;; =
The aim of the present paper is to cure these problem8), and an antisymmetric tensot;; = —Aj;), so that the

by reformulating the MEPP in a fully local form. We local constraints (16), (17), and (18) become

introduce currents of energy., angular momentung,,

1 —
and impulsell;; (in the j direction) and rewrite the AiSij + 33y - Vo =V - I, (20)
constraints (3) and (4) as . )
Jo VG =Y. 14) (AR @D
J, r=V-J,, (15) Joi = aj(Sij + Aij + 776ij)~ (22)
The optimal currents are then determined by maxi-
Joi = 9,11, (16) mizing the rate of entropy production (10) under these

with the conditions that the normal components of theséonstraints (20)—(22), the normalization condition (7),
; : . o 2 2

currents vanish at the boundaries. At this stage this ignd the inequalitie§ (/2/2p)do = C(r), Jex = Cea(r),

equivalent to the global constraints (3) and (4), but theS;;S;; = Cs(r), A;;A;; = Ca(r), and 5 = C,(r) pre-

novelty will arise by bounding these currents. venting the diffusion currents from taking arbitrarily large
However, there is an immediate difficulty, as these newalues. This variational problem is treated by introduc-

fluxes are clearly not invariant by a change of referencéng Lagrange multipliersg, v, n, &, 1/D, 1/x¢, 1/xa,

frame. In fact, there is no reason to bouhdJ,, andII;; 1/xs, 1/xa, 1/ x» for each constraint. The resulting op-

rather than any linear combination of them. The choicdimal currents are

will be dictated by considerations of symmetry, as we want .

our relaxation equations to satisfy the invariance proper- J = =D[Vp + plo = @)n], (23)

ties of the Euler equations, that is, (i) the invariance by

translation of the coordinates, (i) the invariance by ro- J. = —xVB, (24)

tation of the coordinates, (iii) the invariance by gauge

transformationy — ¢ + C, (iv) the Galilean invariance , B

W —  + U,x;, and (v) the invariance by rotation of the = XA[VV - 7%)] (25)
referentialyy — ¢ + Q.r2. (This is specific to 2D in-

compressible flows, for which the Coriolis and centrifugal T =—xs2y +V-19)), (26)

forces are exactly balanced by pressure forces.) i . {
Relation (16) satisfies these properties, while (15)Sij = XS[—,BAU — _<% + ﬂ) + 5V . ,,51.]},

depends on the coordinate origin, but the currgpt= 2\0x; 9
Jyj — x;11;; satisfies the invariant relation (27)
_ _yv. an;  om
M ==V I (17) Ay = - %(ai _ ﬂ)_ (28)
Xj ax,-

(with summation over repeated indices), obtained by

combining (15) and (16). Relation (14) is clearly notThese relations express that the fluxes must be linear func-

invariant by changes of reference frame, but this propertyions of the density and the “thermodynamic potentials”

IS recovered for the new curredf; = Je; — ;0 — gy, andn,. The latters appeared as Lagrange multi-

Q(Ac,//)Jgj, which satisfies pliers in the MEPP, and do not correspond to any local
Y | PRI T - _v. v equilibrium, unlike in usual thermodynamics (in particu-

Aijlly =30y - V(Aag) =V - I, (18) lar, we have no local internal energy).
obtained by combining (14), (16), and (17), and denoting Substituting these expressions (23)—(28) into (20)-—
B S P (22), we obtain a system of four equations determining
Aij = =050 + 2AY8;. (19) the four potentials;;, y, andB. With the particular (and
Under the form (16), (17), and (18) the constraints onconvenient) choices = xs andy, = xs/2, this system
energy, angular momentum, and impulse now satisfy|ali;implifies into

dj(xsdjmi) — Dwym; + dj(xsAijB) + di(xsy) = D@,

V(xeVB) — [XsAiinj + %(Vﬁ)z}ﬁ - %Aij(ajﬂi + dimj) + %Va -Vy =0,

V0aTy) - 2xsy x5V m - V(Xpva) — 0. (29)
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For given diffusion coefficients, these are linear eIIipti—pIiesa?jcﬁo = 0, and the only solution of the Laplace equa-
cal equations for each of the four unknown (with ad-tion satisfying this condition iy, = Kr. We can relabel
ditional crossed terms involving first order derivatives).the constant§’ andK by C = —gQ andK = gB(z A V),
The boundary conditions correspond to vanishing normaso that the conditios = 0 finally implies

currents, related to the unknown by (24)—(28). Defining

th_e cpordinate$)(,§) tangential and normal to the wall, n = -V, b = _,3<$ + ﬂrz — (VA r)z>‘

this yields 2

B _, 0y _Biw (33)
ac a2 ol Therefore the expression faf reduces to (11), in a

on, 9 on; ot B referenge fra.me rotating with an_gular velocify and
e B YR _’Ba— + 7(» -y, translating with velocityV. As discussed before, the
4 4 ¢ 4 condition J = 0 leads then to an equilibrium state in

(30) this moving frame of reference. In a small domain,

. . . _the boundary conditions will enforce (33) even before
which fully determines the system (29). The rESUItIngequilibrium is reached, and we recover the relaxation

vectorn will specify the curreny by (23), determining o ations of Refs. [4,5], involving the current (11) with

the time evolution by (6), together with the boundaryyne giohal constraint (12) (in a domain without special

conditionJ - n = 0, i.e.,dp/d{ = —p(o — @), (and symmetry).

the impermeability conditiony = cte). To summarize, our relaxation equations conserve all the
The diffusivities are not given by the MEPP but must .., ,qtants of motion, respect all the invariance properties of

be positive in order to satisfy the increase of entropyne pyjer equations, increase the entropy with an optimal

Indeed, the rate of entropy production (10) can be pulyse yniil an equilibrium state is reached. These equations
under the form involve a diffusion flux for the local probability density

§ = f 2 ﬁda’ N J_’E2 4 ﬁ 4 S_,zj p. This is a usual diffusion flux irtVp, corrected by a
Dp Xe X Xs systematic drift, proportional to a vectg(r), determined
A2, 2 as a solution of the elliptic system (29) with boundary
+ 4 —:| (31)  conditions (30). In a strongly confined system, our model
XA Xw reduces to the previously obtained relaxation equations

The diffusivities must depend on local quantities, inde-[4.5], but it should also predict organization restricted to
pendent of the reference frame. The coefficincan ~ Several subregions of a large system, thanks to the local
still be estimated by (13), and it is reasonable to assumgharacter of all the conservation laws. The same methods
that all the other diffusivities are proportional @, as ¢an be applied to quasigeostrophic systems [9] or Vlasov
they represent constraints on the vorticity diffusion. Wegduations [7]. _
shall also assume that each coefficient depends only on its The authors acknowledge R. Robert for many discus-
conjugate Lagrange multiplier. Then dimensional analySions. The work has been supported by Grant Ng285
sis yields the following estimates Programme ATmosphere Océan a Moyenne échelle of
C.N.R.S. and IFREMER.
D D D
2 2

Xe ~ —>» XA~ 5 XsAzw ~ (32)
°op? y? Ty

providing a similar structure for the first term of each of ,
the three equations (29). Of course this determination is[t] C- Basdevant and R. Sadourny, [Special Issue on Two-
partly arbitrary, but the behavior of the system is probably dllgw8e§smnal Turbulence, J. Mec. Theor. Appl. 243-269
not very sensitive to these diffusivities, as checked in 2] |(:{. Ro)b]ért and J. Sommeria, J. Fluid Me@29, 291310
numerical computations [5,9]. (1991). T

Indeed the system tends to local equilibria, which are in- 31 3. wmiller, Phys. Rev. Lett65, 21372140 (1990).
dependent of the diffusivities, as discussed now. Suppos&4] R. Robert and J. Sommeria, Phys. Rev. Lé8, 2776—
the system reaches a steady state in some region of space 2779 (1992).
where w, # 0 (so thatD # 0). Then we haveS = 0, [5] R. Robert and C. Rosier, J. Stat. Phg§, 481 (1997).

and (31) implies that all the currents vanish. The con- [6] A similar idea has been proposed in the context of oceanic

dition (28) impliesV A = 0, so thatnp must be the modeling, using statistical equilibrium in the spectral
gradient of some functiony = —V¢. From (24) and ?fggcg) by G. Holloway, J. Phys. Oce&?, 1033-1046
(25), p must ]E)e uniform, an(?/ﬂ— 72§ = CI,_eV;hel’f(; IS [7] P.H. Chavanis, J. Sommeria, and R. Robert, Astrophys. J.
a constant of integration, while (26) impligs¢ = 2vy. 471, 385—-399 (1996).

Combining these re(ljations, we fintl(¢ + ﬁ‘ﬂ.) = 2¢C, [8] P.H. Chavanis and J. Sommeria (to be published).
so that¢ + By = 51> + ¢y, Where ¢, satisfies the  [9] E. Kazantsev, J. Sommeria, and J. Verron (to be
Laplace equatiold ¢, = 0. The conditionS;; = 0 im- published).

3305



