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Nonlinear Optical Pulse Propagation in the Single-Cycle Regime
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A general three-dimensional wave equation first order in the propagation coordinate is derived
covering a broad range of phenomena in nonlinear optics. This equation provides an accurate
description of the evolution of the wave packet envelope down to pulse durations as short as one
carrier oscillation cycle. The concept of envelope equations is found to be applicable to the single-
cycle regime of nonlinear optics. [S0031-9007(97)02995-5]
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The propagation equation governing the evolution
the complex envelope of optical pulses plays a ke
role in nonlinear optics. Owing to the assumption of
slowly varying envelope, this partial differential equatio
contains only the first derivative with respect to the spat
coordinate along the propagation direction. Hence,
can be solved with substantially smaller computation
effort than Maxwell’s wave equation, which is of secon
order in the propagation coordinate. This benefit h
been exploited in the investigation of a vast number
nonlinear optical phenomena [1–10].

The evolution of ultrashort pulse optics has now arrive
at a point where light pulses with durations comparable
the carrier oscillation cycle have become available [11
This progress opens up new prospects in nonlinear op
as well as strong-field physics and prompts the question
whether the first-order propagation equation is valid in th
new and important regime of optics. The purpose of th
Letter is to show that (i) the powerful concept of the env
lope can be extended to pulse durations equal to the c
rier oscillation periodT0, and (ii) the validity of the
first-order envelope equation, commonly used to mod
one-dimensional nonlinear pulse evolution, extends do
to pulse durations as short asT0. Furthermore, (iii) our
approach leads, in a natural way, to a generalized, sca
three-dimensional, first-order propagation equation, whi
obviates the need for the Maxwell equations in tackling
number of problems, where transverse effects cannot
neglected in the interaction of ultrashort light pulses wi
matter.

A prerequisite for introducing an envelope equatio
is the unambiguous definition of the envelope. To th
end, the electric fieldEstd ­ Ẽstd 1 c.c. is represented
by the complex electric field which is written as̃Estd ­
Astd exps2iv0t 1 icd. Here, v0 ­

R`
0 vjEsvdj2dvyR`

0 jEsvdj2dv is the carrier frequency,Esvd is the Fourier
transform ofEstd, andc is defined such that the imaginary
part of the complex envelopeAstd is zero att ­ 0. The
above definition ofAstd is only physically meaningful as
long as the envelope remainsinvariant under a change of
c . This condition is equivalent to the requirement th
a phase shift of the electric field̃E0std ­ Ẽstd expsiDcd
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does not change the center frequencyv
0
0 ­ v0. That

indeed applies to a high accuracy for pulse durations do
to tp ø T0, as revealed by Fig. 1. The pulse widthtp

is defined as the full width at half maximum (FWHM) o
jAstdj2. For shorter wave packets, the variation ofc gives
rise to non-negligible changes of the spectral intensity
low frequencies and results in the increased sensitiv
of v0 to c. The invariance ofv0 under a change ofc
can be checked for arbitrary wave forms following th
procedure presented above. In conclusion, a physica
meaningful envelope can be assigned to ultrashort lig
wave packets that contain at least one carrier cycle wit
the FWHM of their intensity envelope. At the 780 nm
center wavelength of the Ti:sapphire laser this impli
tp ­ 2.6 fs.

Our derivation of the envelope equation starts wi
Maxwell’s equations. For small transverse inho
mogeneities of the medium polarization, the thre

FIG. 1. Phase dependence of the carrier frequencyDv0y
v0 ­ jv0sc ­ 0d 2 v0sc ­ py2djyv0 versus the nor-
malized pulse duration for various analytic pulse shap
Estd ­ Astd sinsvct 1 cd; the envelopes are described by
Gaussian, Agstd ­ expf2s1.67tytpd2g, a hyperbolic secant,
Asstd ­ sechs1.76tytpd, and a Lorentzian,Alstd ­ 1yf1 1
s1.29tytpd2g pulse. The optical cycleT0 ­ 2pyvc ­ 2.67 fs
at a wavelength of 800 nm. Here,vc is the carrier frequency
of the analytical pulse shape andv0 is the center of gravity of
the spectrum, as defined in the text. Fortp $ T0 the phase
sensitivity is negligible andvc ø v0.
© 1997 The American Physical Society
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s≠2
z 1 =2

'dEsr, td 2
1
c2

≠2
t

Z t

2`

dt0´st 2 t0dEsr, t0d

­
4p

c2 ≠2
t Pnlsr, td , (1)

where =
2
' ­ ≠2

x 1 ≠2
y is the transversal Laplace oper

ator, ≠i­x,y,z,t stands for the respective partial deriva
tives, ´std ­ s2pd21

R`
2` dv´svde2ivt , ´svd ­ 1 1

4pxsvd, and xsvd is the linear electric susceptibility.
The electric fieldE propagates along thez direction.
Both E and the nonlinear polarizationPnl are polarized
parallel to thex axis.

In order to introduce a first-order propagation equati
for the wave packet envelope defined above, we use
ansatz Esr, td ­ Asr', z, tdeisb0z2v0t1c0d 1 c.c., where
v0 and c0 are determined at the input reference pla
l

-

-
-

n
the

z ­ 0 on the beam axisr' ­ 0 as prescribed above.
Further, b0 ­ Refksv0dg ­ sv0ycdn0, where ksvd ­
svycd

p
´svd is the complex propagation constant and

n0 is the refractive index of the medium atv0. The
induced nonlinear polarization is written asPnlsr, td ­
Bsr', z, t, Adeisb0z2v0t1c0d 1 c.c., where the complex
amplitude B depends nonlinearly on the amplitude of
the electric field. The neglect of backward propagatin
waves is consistent with the approximations that will be
made in the following derivation of the envelope equation
and will be commented on later.

The substitution of the above expressions ofEsr, td and
Pnlsr, td in Eq. (1), Fourier transform of the integral term
with respect to the time coordinate and the subseque
Taylor-expansion ofksvd about v0 followed by an
inverse Fourier transform yields
later
s2b2
0 1 2ib0≠z 1 ≠2

z 1 =2
'dA 1

µ
b0 1 i

a0

2
1 ib1≠t 1 D̂

∂2

A ­
4pv

2
0

c2

µ
1 1

i
v0

≠t

∂2

B . (2)

Here we assumedPnl to be a small perturbation to the linear polarization, again, in conformance with
approximations, the dispersion operatorD̂ is given by

D̂ ­ 2
a1

2
≠t 1

X̀
m­2

bm 1 iamy2
m!

si≠tdm , (3)

and bm ­ Refs≠mky≠vmdv0 g and am ­ ≠ Imfs≠mky≠vmdv0 g. In the moving reference framet ­ t 2 b1z, j ­ z,
Eq. (2) can be written asµ

1 1
i

v0
≠t

∂ ∑µ
≠j 1

a0

2
2 iD̂

∂
A 1

2pb0

in2
0

µ
1 1

i
v0

≠t

∂
B

∏
1

1
2ib0

=2
'A

.
µ

b0 2 v0b1

b0

∂
i

v0
≠t

µ
≠j 1

a0

2
2 iD̂

∂
A 2

1
2ib0

µ
≠2

j 1 D̂2 2
a

2
0

4
2 a0b1≠t

∂
A , (4)
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whereD̂ is obtained by replacing≠t with ≠t in (3). The
terms on the right side are small as compared with the
side if

j≠jAj ø b0jAj (5a)

and

j≠tAj ø v0jAj (5b)

or Ç
b0 2 v0b1

b0

Ç
ø 1 . (5c)

If either (5a) and (5b) or (5a) and (5c) are satisfied, (
simplifies to

≠jA ­ 2
a0

2
A 1 iD̂A 1

i
2b0

µ
1 1

i
v0

≠t

∂21

=2
'A

1 i
2pb0

n2
0

µ
1 1

i
v0

≠t

∂
B , (6)

where f1 1 siyv0d≠tg21 can be evaluated in the fre
quency domain. This generic nonlinear envelope equat
(NEE) first-order in the propagation coordinatej pro-
ft

)

on

vides a powerful means of describing light pulse prop
gation in dispersive nonlinear media. In the specific ca
of one-dimensional propagation (i.e., with the diffrac
tion term discarded) witha0 ø 0 and D̂ ø 2sb2y2d≠2

t

Eq. (6) reduces to anonlinear Schrödinger equation,
which has been widely used to describe ultrashort pu
propagation in Kerr media (B ~ jEj2) [1,3,5].

From the solutionAsr', j, td of Eq. (6) the electric
field can be reconstructed as

Esr', j, td ­ Ae2iv0t1icsjd 1 c.c.,

csjd ­ c0 1 sb0 2 v0b1dj .
(7)

These equations describe the evolution of light wa
packets in terms of afixed carrier frequencyv0 defined
at j ­ 0, the entrance of the propagation medium, a
an evolving complex envelopeAsr', j, td and phase
csjd, which determines the “position” of the carrie
wave relative to the envelope. The complex envelo
Asr', j, td evolves due to absorption (or gain), dispersio
diffraction, and nonlinearities, whereascsjd evolves due
to a difference between group velocitysb21

1 d and phase
velocity in the propagation medium.
3283



VOLUME 78, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 28 APRIL 1997

u
2
u

e

x
)

i
h

o

a

t

g

n
i

ed

-
err
er-

lse

of
ric

In
c-
as

e
c-
s
ed.

p-

d

the
ck
e

n
,

to
ns
d

e-
ric
of
e-
ters
Traditionally, specific forms of the NEE such as th
nonlinear Schrödinger equation have been derived
making use of theslowly-varying-envelope approximation
(SVEA), j≠zAj ­ j≠jA 2 b1≠tAj ø b0jAj. This condi-
tion can be decomposed into (5a) and (5b) by utilizin
b0yb1 ø v0, which impose distinctly different require-
ments on the physical system. The former, “nonloca
part of the SVEA requires that the complex amplitud
does not excessively changeduring propagation, a re-
quirement whose violation was previously shown to res
in the emergence of a backward propagating wave [
The latter “local” contribution demands that the pulse d
ration must be much longer than the carrier oscillatio
period. The essential new finding from our derivatio
[12] of the NEE is that this latter requirement may b
dropped if (5c) is satisfied. As a matter of fact, cond
tion (5c) is met if the difference between group and pha
velocity relative to the latter is small compared to on
which is fulfilled in a wide range of propagation phe
nomena. Drawing on (7), condition (5c) can be ree
pressed asj≠cy≠jj ø b0. Consequently, (5a) and (5c
can be merged into a single mathematical requirement

j≠jEj ø b0jEj , (8)

which we refer to as theslowly-evolving-wave approxima-
tion (SEWA). The SEWA requires more from the propa
gation medium than the SVEA: not only the envelopeA
but also the relative carrier phasec must not significantly
vary as the pulse covers a distance equal to the wa
length l0 ­ 2pcyv0. In return, it does not explicitly
impose a limitation on the pulse width. Therefore,in
the frame of the SEWA the nonlinear envelope equat
accurately describes light pulse propagation down to t
single cycle regime. The region of validity of the
SEWA can be easily assessed by introducing the char
teristic propagation lengthsLc ­ s2pd21jdnydlj

21
l0

,
over which c is changed by 1, furtherLa,m ­
tm

p yjamjsm ­ 0, 1, . . .d, Lb,m ­ tm
p yjbmjsm ­ 2, 3, . . .d,

and L' ­ b0w2
0 , and Lnl ­ jAyBjsn2

0y2pb0d, over
which the envelope is significantly modified due t
absorption (a0) dispersion (am, m $ 1; bm, m $ 2),
diffraction, and nonlinearities, respectively. Heretp is
the pulse duration,w0 is the beam radius at the beam
waist for a hypothetical linear propagation, whereasA and
B are the respective field amplitudes at an arbitrary inst
and position. The SEWA is applicable as long as ea
of these characteristic length scales meets the condi
b0Lchar ¿ 1. Careful inspection of the parameters o
various nonlinear media yields the remarkable findin
that these conditions are well satisfied for a wide ran
of phenomena in the parametric regime (i.e.,v0 is far
off resonances) below the ionization threshold. Stro
resonant coupling may, however, in specific cases g
rise to extremely shortLc ,a,b,nl, violating the condition
for the SEWA [13].

The validity of the NEE down to the single-cycle
regime has been tested by solving (6) and the Maxw
3284
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equations numerically for a Kerr medium characteriz
by the constitutive lawB ­ s2pd21n0n2jAj2A, wheren2

is the nonlinear index of refraction [1] andjAj2 is nor-
malized to give the intensity. For simplicity, we con
sidered one-dimensional propagation, assumed the K
response to be instantaneous [1], and neglected the em
gence of harmonic radiation [10]. A sech-shaped pu
with an FWHM duration oftp ­ 2.67 fs, which corre-
sponds to one optical cycle at the carrier wavelength
0.8 mm, was propagated through a hypothetical dielect
medium withb2 ­ 0.0385 fs2ymm (bm ­ 0 for m . 2)
andn2 ­ 3 3 10216 Wycm2 (dn2ydv ­ 0), which cor-
respond to the respective parameters of fused silica.
order to simulate an extremely strong parametric intera
tion the peak intensity of the incident pulse was chosen
jAsj ­ 0, t ­ 0dj2 ­ 4 3 1013 Wycm2, which is close
to the expected critical intensity level for optical damag
in fused silica and other dielectric materials. In advan
ing the coupled Maxwell’s equations, from which (1) ha
been derived, in space the leap frog method [14] was us
The time derivatives were evaluated in thev space using
a fast Fourier transform. The NEE was integrated by a
plying the split-step Fourier method [1].

In Fig. 2 the solutions of the Maxwell’s equations an
Eq. (6) as given by (7) are depicted for the case ofb2 ­
0. In the absence of dispersion, self steepening due to
time derivative of the nonlinearity creates an optical sho
at the trailing edge of the pulse. The critical distanc
for self steepening [1] is given byzs ­ 0.43Lnlv0t ­
23.36 mm, which is close to the chosen propagatio
distance ofz ­ 20 mm. Even along the shock front
where the change of the envelope is comparable
the change of the carrier frequency, the two solutio
are virtually identical. Figure 3 shows the electric fiel

FIG. 2. Shows the electric field strength and the field env
lope in arbitrary units versus propagation time. The elect
fields obtained by the solution of the Maxwell equation and
Eq. (4) are depicted by the full line and by the open circles, r
spectively; the initial pulse has a sech-shape and the parame
are, I ­ 4 3 1013 Wycm2, n2 ­ 3 3 10216 cm2 W21, v0 ­
2.35 fs21 (0.8 mm), tp ­ 2.67 fs, n0 ­ 1.45, dnydv j v0 ­ 0
fs (no dispersion), and a propagation distancez, j ­ 20 mm.
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FIG. 3. The same as in Fig. 1, with a propagation distanc
z ­ 80 mm anddnydv j v0 ­ 5.776 3 1023 fs, which gives
b1 ­ 4.882 fsymm andb2 ­ 3.853 3 1022 fs2ymm.

for the case ofb2 . 0 and z ­ 80 mm. Dispersion
suppresses the formation of a shock front in this cas
Again, an excellent agreement between the solution
Maxwell’s equations and that of the NEE is found, which
has also been verified for longer propagation distances.

The NEE incorporates the “correction” operatorf1 1

siyv0d≠tg in the terms accounting for diffraction and
nonlinear effects when compared with the paraxial wav
equation describing the propagation of stationary or lon
pulse radiation [2–6]. Physically, the appearance of th
correction operator in the nonlinear term is responsib
for introducing a phase modulation if the nonlinearity
modulates primarily the amplitude in the long-pulse limi
(as is the case in a near-resonant interaction), and v
versa (e.g., self steepening versus self phase modulat
in the case of a Kerr nonlinearity). Mathematically
the correction operator becomes zero atv ­ 0 in the
frequency domain, frustrating the emergence of a d
component of the wave packet during propagation. Th
same operator in the denominator of the diffraction ter
in (6) accounts for an enhanced beam divergence at low
frequency components. Since this generalized diffractio
operator [15] has a singularity atv ­ 0 in the frequency
domain, the use of Eq. (6) is restricted to initial pulse
having a negligible dc spectral component, a requireme
which is consistent with the definition of the envelope.

So far, our discussion was confined to studying th
evolution of the incident wave packet carried atv0.
The nonlinear response of the medium may arise to t
emergence of waves at new (e.g., harmonic) frequenci
The concept of the SEWA can be extended to nonline
frequency mixing processes, such as harmonic generat
and parametric amplification, as long as the differenc
between phase and group velocities of the waves involv
in the interaction is small compared to the phase (
group) velocity of the fundamental pulse [13]. Far from
resonances, this requirement is fulfilled in the majorit
e
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of parametric processes in which all waves propagat
in the same direction. The condition is clearly violated
in processes such as Brillouin scattering [2,3], where
the pulses propagate in opposite directions. Therefor
Brillouin scattering can be addressed using the NEE onl
in the frame of the SVEA, i.e., for pulse durations much
longer than the optical cycle.

In conclusion, the concept of the envelope in the de
scription of nonlinear light wave propagation has been
extended to a regime, where the pulse duration is com
parable to the carrier oscillation cycle. Drawing on this
concept, a three-dimensional first-order envelope propag
tion equation has been derived, which, in the perturbativ
limit of small population transfer, provides an accurate de
scription of the propagation of ultrashort light transients in
nonlinear media.
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