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Nonlinear Optical Pulse Propagation in the Single-Cycle Regime
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A general three-dimensional wave equation first order in the propagation coordinate is derived
covering a broad range of phenomena in nonlinear optics. This equation provides an accurate
description of the evolution of the wave packet envelope down to pulse durations as short as one
carrier oscillation cycle. The concept of envelope equations is found to be applicable to the single-
cycle regime of nonlinear optics. [S0031-9007(97)02995-5]

PACS numbers: 42.65.—k, 31.15.—p

The propagation equation governing the evolution ofdoes not change the center frequensy = w,. That
the complex envelope of optical pulses plays a keyindeed applies to a high accuracy for pulse durations down
role in nonlinear optics. Owing to the assumption of ato 7, = Ty, as revealed by Fig. 1. The pulse width
slowly varying envelope, this partial differential equationis defined as the full width at half maximum (FWHM) of
contains only the first derivative with respect to the spatialA(r)|>. For shorter wave packets, the variationjofjives
coordinate along the propagation direction. Hence, itise to non-negligible changes of the spectral intensity at
can be solved with substantially smaller computationalow frequencies and results in the increased sensitivity
effort than Maxwell's wave equation, which is of secondof w( to . The invariance ofw, under a change af
order in the propagation coordinate. This benefit hagan be checked for arbitrary wave forms following the
been exploited in the investigation of a vast number oforocedure presented above. In conclusion, a physically
nonlinear optical phenomena [1-10]. meaningful envelope can be assigned to ultrashort light

The evolution of ultrashort pulse optics has now arrivedwvave packets that contain at least one carrier cycle within
at a point where light pulses with durations comparable taghe FWHM of their intensity envelope. At the 780 nm
the carrier oscillation cycle have become available [11]center wavelength of the Ti:sapphire laser this implies
This progress opens up new prospects in nonlinear optics, = 2.6 fs.
as well as strong-field physics and prompts the question of Our derivation of the envelope equation starts with
whether the first-order propagation equation is valid in thisdMaxwell’'s equations. For small transverse inho-
new and important regime of optics. The purpose of thisnogeneities of the medium polarization, the three-
Letter is to show that (i) the powerful concept of the enve-
lope can be extended to pulse durations equal to the car-

rier oscillation periodTy, and (ii) the validity of the 0.25

first-order envelope equation, commonly used to model sech

one-dimensional nonlinear pulse evolution, extends down 0.20 1

to pulse durations as short &. Furthermore, (iii) our s 015} gauss

approach leads, in a natural way, to a generalized, scalar, =

three-dimensional, first-order propagation equation, which 2 010}

obviates the need for the Maxwell equations in tackling a lorentz

number of problems, where transverse effects cannot be 0.05 |

neglected in the interaction of ultrashort light pulses with 0.00 )

matter. N _ _ , 0.0 0.5 1.0 1.5
A prerequisite for introducing an envelope equation

is the unambiguous definition of the envelope. To this ’Cp/To

end, the electric fieldE(r) = E(¢) + c.c. is represented G H q q ‘ or f A
by the complex electric field which is written @&(r) = ! '_1|' P a_seo ‘ependence 02 |t € carner reqtlﬁe @0/
At) expl—iwot + ip). Here, wy = [; w|E(0)Pdw/  oap, wo(y = 0) — wo(yp = m/2)|/wy versus the nor-

& 0* " » @0 (e } malized pulse duration for various analytic pulse shapes,
[y |E(w)|*dw is the carrier frequency; (w) is the Fourier — E(r) = A(r)sin(w.t + ¢); the envelopes are described by a
transform ofE(z), andy is defined such that the imaginary Gaussian, A,(r) = exd —(1.67¢/7,)’], a hyperbolic secant,
part of the complex envelop&(s) is zero att = 0. The  A:(r) = sech(L.76r/7,), and a Lorentzian.A,(r) = 1/[1 +
above definition ofA(¢) is only physically meaningful as (1-29¢/7,)"] pulse. The optical cycld = 27/w. = 2.67 fs

| th | .. iant und h f at a wavelength of 800 nm. Here, is the carrier frequency
ong as the envelope remaimariant under a change ot o e analytical pulse shape ang is the center of gravity of

. This condition is equivalent to the requirement thatthe spectrum, as defined in the text. For = T, the phase
a phase shift of the electric fiel#'(r) = E(r)exp(iAy)  sensitivity is negligible and. = wy.
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dimensional wave equation can be written as [1-7] z = 0 on the beam axix; = 0 as prescribed above.
1 ¢ Further, 89 = Re[k(wo)] = (wo/c)ng, wWhere k(w) =
(92 + V2)E(r,1) — —28,2[ dt'e(t — t)E(r,t") (w/c)\/Je(w) is the complex propagation constant and
¢ - ng is the refractive index of the medium at,. The
_ 4m 2P, (r, 1) 1) induced nonlinear polarization is written d@%,(r,?) =

B(r,,z,t,A)e!Boz=@itih) 4 cc. where the complex
amplitude B depends nonlinearly on the amplitude of
the electric field. The neglect of backward propagating
waves is consistent with the approximations that will be
made in the following derivation of the envelope equation
and will be commented on later.

The substitution of the above expression&f, r) and
Pu(r, 1) in Eq. (1), Fourier transform of the integral term
with respect to the time coordinate and the subsequent
aylor-expansion ofk(w) about w, followed by an
inverse Fourier transform yields

where V2 = 42 + 93 is the transversal Laplace oper-
ator, d;—., ., stands for the respective partial deriva-
tives, £(r) = Qm)" ! [T dwe(w)e ', slw)=1+
47 y(w), and y(w) is the linear electric susceptibility.
The electric fieldE propagates along the direction.
Both E and the nonlinear polarizatioR,; are polarized
parallel to thex axis.

In order to introduce a first-order propagation equatio
for the wave packet envelope defined above, we use th
ansatz E(r,t) = A(r,,z,t)e'Poz=@r+) + cc.. where
wo and ¢ are determined at the input reference plape

477'(»3 <
c2

2 . 2

(—B3 + 2iBod. +a§+Vi)A+<BO+i%+iﬁlat+[)>A= 1 +La,>B. )
wo

Here we assumed’,; to be a small perturbation to the linear polarization, again, in conformance with later

approximations, the dispersion operafois given by
A a Z By tian/2 . m
D=—718,+ Z—B : / (i0,)", (3)
m=2 m:

and B8,, = Re(0"k/0w™)y,] and a,, = 9 IM[(0"k/dw™)s,]. In the moving reference frame =1+ — Bz, £ =z
Eq. (2) can be written as

(1 + Lm)[(ag + % - iD)A + 277/30(1 + L )B} +Loga
0

w0 ing w 2i Bo

,80 wOBl) i < Qg .A) 1 < 2 2 a(2) >
~ (= P ) + = — — + - = _ 4
< . . 87- ag iD]A ; 0 d D ao,@laT A, ( )

whereD is obtained by replacing, with 9, in (3). The | vides a powerful means of describing light pulse propa-

terms on the right side are small as compared with the lefgation in dispersive nonlinear media. In the specific case

side if of one-dimensional propagation (i.e., with the diffrac-
tion term discarded) withyg = 0 and D~ —(B2/2)9?

l0:Al < BolAl (5a) Eq. (6) reduces to aonlinear Schrodinger equation
which has been widely used to describe ultrashort pulse
propagation in Kerr mediaB(« |E|?) [1,3,5].

10,4 < wolAl (5b) From the solutionA(r ., &,7) of Eq. (6) the electric
field can be reconstructed as

and

or
E(r,,&,7) = Ae 10HV&) 4 ¢ ¢

If either (5a) and (5b) or (5a) and (5c) are satisfied, (4) V&) = do + (Bo =~ woB)é
simplifies to These equations describe the evolution of light wave
. . —1 packets in terms of éixed carrier frequencyw, defined
0¢A = — LA +iDA + — <1 + LaT> V2 A at ¢ = 0, the entrance of the propagation medium, and
2 0 @o an evolving complex envelopeA(r,, &,7) and phase
.27 Bo i ¥ (£), which determines the “position” of the carrier
T <1 + =4 )B (6)  wave relative to the envelope. The complex envelope
A(ry, &, 7) evolves due to absorption (or gain), dispersion,
where [1 + (i/wo)d,]”! can be evaluated in the fre- diffraction, and nonlinearities, whereaﬁ{f) evolves due
quency domain. This generic nonlinear envelope equatioto a difference between group velocitg; ') and phase
(NEE) first-order in the propagation coordinaté pro-  velocity in the propagation medium.

’ Bo— @B | oy (5¢)

(7)

no
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Traditionally, specific forms of the NEE such as theequations numerically for a Kerr medium characterized
nonlinear Schrodinger equation have been derived by the constitutive lawB = (27) 'ngns|A|*A, wheren,
making use of thelowly-varying-envelope approximation is the nonlinear index of refraction [1] and|? is nor-
(SVEA), [0.A] = |90:.A — B19,A| < BolAl. This condi- malized to give the intensity. For simplicity, we con-
tion can be decomposed into (5a) and (5b) by utilizingsidered one-dimensional propagation, assumed the Kerr
Bo/B1 = wo, which impose distinctly different require- response to be instantaneous [1], and neglected the emer-
ments on the physical system. The former, “nonlocal’gence of harmonic radiation [10]. A sech-shaped pulse
part of the SVEA requires that the complex amplitudewith an FWHM duration ofr, = 2.67 fs, which corre-
does not excessively changkiring propagation a re-  sponds to one optical cycle at the carrier wavelength of
quirement whose violation was previously shown to resuly).8 xm, was propagated through a hypothetical dielectric
in the emergence of a backward propagating wave [2]Jmedium with3, = 0.0385 fs>/um (8,, = 0 for m > 2)

The latter “local” contribution demands that the pulse du-andn, = 3 X 107! W/cn? (dn,/dw = 0), which cor-
ration must be much longer than the carrier oscillationrespond to the respective parameters of fused silica. In
period. The essential new finding from our derivationorder to simulate an extremely strong parametric interac-
[12] of the NEE is that this latter requirement may betion the peak intensity of the incident pulse was chosen as
dropped if (5¢) is satisfied. As a matter of fact, condi-|A(& = 0,7 = 0)|> = 4 X 10'* W/cn?, which is close
tion (5c¢) is met if the difference between group and phasé¢o the expected critical intensity level for optical damage
velocity relative to the latter is small compared to one,in fused silica and other dielectric materials. In advanc-
which is fulfilled in a wide range of propagation phe- ing the coupled Maxwell's equations, from which (1) has
nomena. Drawing on (7), condition (5c) can be reex-been derived, in space the leap frog method [14] was used.
pressed a$iy /€| < Bo. Consequently, (5a) and (5¢c) The time derivatives were evaluated in thespace using
can be merged into a single mathematical requirement a fast Fourier transform. The NEE was integrated by ap-
plying the split-step Fourier method [1].

l0¢El < BolEl, (8) In Fig. 2 the solutions of the Maxwell's equations and
which we refer to as thslowly-evolving-wave approxima- Eq. (6) as given by (7) are depicted for the casgBof=
tion (SEWA). The SEWA requires more from the propa- 0. In the absence of dispersion, self steepening due to the
gation medium than the SVEA: not only the envelope time derivative of the nonlinearity creates an optical shock
but also the relative carrier phagemust not significantly —at the trailing edge of the pulse. The critical distance
vary as the pulse covers a distance equal to the wavder self steepening [1] is given by, = 0.43L,woT =
length A\g = 27¢/wo. In return, it does not explicitly 23.36 um, which is close to the chosen propagation
impose a limitation on the pulse width. Therefoie, distance ofz = 20 um. Even along the shock front,
the frame of the SEWA the nonlinear envelope equatiowhere the change of the envelope is comparable to
accurately describes light pulse propagation down to thethe change of the carrier frequency, the two solutions
single cycle regime The region of validity of the are virtually identical. Figure 3 shows the electric field
SEWA can be easily assessed by introducing the charac-
teristic propagation lengthsL, = (277)*1|dn/d)l|;01,
over which ¢ is changed by 1, furtherL,, = 1
T;f’/laml(m =0,1,...), Lgm = Tg’/lﬁml(m =2,3,..),
and L, = Bows, and Ly = |A/Bl(n}/27B,), over
which the envelope is significantly modified due to
absorption () dispersion &,,m = 1; B,,m = 2),
diffraction, and nonlinearities, respectively. Herg is
the pulse durationy, is the beam radius at the beam
waist for a hypothetical linear propagation, whergasnd
B are the respective field amplitudes at an arbitrary instant
and position. The SEWA is applicable as long as each
of these characteristic length scales meets the condition
BoLchar > 1. Careful inspection of the parameters of 95 100 105
various nonlinear media yields the remarkable finding t[fs]
that these conditions are well satisfied for a wide range
of phenomena in the parametric regime (i.@q is far  FIG. 2. Shows the electric field strength and the field enve-
off resonances) below the ionization threshold. Strondope in arbitrary units versus propagation time. The electric

resonant coupling may, however, in specific cases givée|ds obtained by the solution of the Maxwell equation and of

; ; ; i Eqg. (4) are depicted by the full line and by the open circles, re-
rise to extremely ShOrLy.q 5., Violating the condition spectively; the initial pulse has a sech-shape and the parameters

for the SEWA [13]. . are, I =4 x 108 W/en?, n, =3 X 107" cm? W', wy =
The validity of the NEE down to the single-cycle 235 fs! (0.8 um), 7, = 2.671s,ny = 1.45, dn/dw | », =0

regime has been tested by solving (6) and the Maxwells (no dispersion), and a propagation distancg = 20 um.
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1 . . of parametric processes in which all waves propagate
in the same direction. The condition is clearly violated
in processes such as Brillouin scattering [2,3], where
the pulses propagate in opposite directions. Therefore
Brillouin scattering can be addressed using the NEE only
in the frame of the SVEA, i.e., for pulse durations much
longer than the optical cycle.

In conclusion, the concept of the envelope in the de-
scription of nonlinear light wave propagation has been
extended to a regime, where the pulse duration is com-
parable to the carrier oscillation cycle. Drawing on this

Electric Field [a.u.]
o

-1 : - concept, a three-dimensional first-order envelope propaga-
380 390 400 410 tion equation has been derived, which, in the perturbative
t [fs] limit of small population transfer, provides an accurate de-

o _ ) ) scription of the propagation of ultrashort light transients in
FIG. 3. The same as in Fig. 1, with agropagapon distancg,gnlinear media.
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