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Spectral Analysis of Time Correlation Function for a Dissipative Dynamical System
Using Filter Diagonalization: Application to Calculation of Unimolecular Decay Rates

Vladimir A. Mandelshtam* and Howard S. Taylor
Department of Chemistry, University of Southern California, Los Angeles, California 90089
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The filter-diagonalization method of Wall and Neuhauser for harmonic inversion of a complex time
signal,Cstd 

P
k dke2itvk , is simplified by introducing a different boxlike filter and is reformulated to

the case of a signal given on a sparse equidistant time grid. The method is applied to the large scale
quantum dynamics problem of extracting hundreds of (narrow and overlapping) resonances of theH1

3

molecular ion directly from a single signal,cn  sssF0, TnsĤdF0ddd, generated by the dynamical system
governed by a modified Chebyshev recursion. [S0031-9007(97)03023-8]

PACS numbers: 34.10.+x, 31.70.Hq, 63.20.Dj
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The knowledge of the vibrational spectra for variou
physical systems such as molecules, clusters, glas
crystals, etc., can provide an important insight into the
dynamics. In particular, the density of states for larg
species can be used to calculate their thermodynam
properties. When the system of interest is dissipative (
example, if it is a small part of a larger system consi
ered as a bath), its spectrum can often be represented
set of complex frequencies (energies)vk whose negative
imaginary parts characterize the decay rates. In this c
text, relaxation rates of excited local modes in a large m
ecule or the unimolecular decay rates (resonance widt
of an excited quantum scattering system can be recall
Such spectra can often be computed by diagonalizing
Hamiltonian matrix, say, in the case of quantum dynam
ics, or the Hessian matrix if the normal modes of a cla
sical system are of interest. On the other hand, a tim
signalCstd generated by the underlying dynamical syste
often carries adequate information relevant to the spe
trum of the corresponding Hamiltonian or the evolutio
operator. Recently, Wall and Neuhauser [1] have devis
an approach, filter diagonalization, for extracting high
resolved spectra for large and complex species with hi
densities of states by analyzing such a signal in an
ficient manner. The method has been applied to extr
a limited number of resonances in molecular structu
[2] and a large number of instantaneous normal mod
in classical molecular dynamics simulation [3]. The tim
signal to be analyzed could be either measured experim
tally or it could be obtained in a numerical experimen
Such calculations (measurements) can be very accurat
they can introduce some “noise” (e.g., caused by the n
merical errors). Because of various theoretical or practic
reasons, the signalCstd might be available only on a short
time segment or on a small set of sample pointst  tn.
This makes it impossible to use a standard Fourier ana
sis, which in such a case can provide one with only “lo
resolution” results. From an informational point of view
if the number of sample points is larger than the numb
of unknown frequenciesvk and amplitudesdk contribut-
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Cstd 
X

k

dke2itvk , (1)

one should be able, at least in principle, to extract the
unknowns. This is a fundamental problem in physics a
many other diverse fields. It has a long history which w
will not discuss here. The interested reader is referred
Refs. [4–7] where the various “high resolution” method
(such as Prony’s method, MUSIC, maximum entrop
method, ESPRIT, etc.) of spectral analysis of time sign
relevant to the present approach are discussed. In
work we formulate the filter-diagonalization method b
introducing a new and simple filter so that it applie
rigorously to a signal defined on a finite discrete time gr
(i.e., avoiding continuous integrals over the time variable
Although the formalism is very much akin to the work o
Ref. [1], we present it in detail due to the simplicity of th
final formulas and to the fact that they allow us the use
a very efficient method for extracting a high number
many (narrow and overlapping) resonances in large sc
quantum simulations.

The crucial idea is, following the work of Wall and
Neuhauser [1], to associate the time signalCstd of the
form of Eq. (1) with a time correlation function generate
by a suitable dynamical system (or vice versa),

cn ; Cstnd  sF0, ÛnF0d ; sF0, e2intV̂F0d , (2)

where s?, ?d defines a complex symmetric inner produ
(no complex conjugation); the complex symmetric evol
tion operatorÛ is defined implicitly by

Û 
X

k

ukFksFk , ?d , (3)

where the set of eigenvectorshFkj is associated with an
arbitrary orthonormal basis set, the eigenvalues ofÛ are
uk ; e2itvk (or equivalently the eigenvalues of̂V are
vk), and the initial wave functionF0 is defined by its
projectionssFk , F0d2  dk . The use of the discrete dy-
namics instead of a continuous one allows us to analy
© 1997 The American Physical Society
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a signal cn ; Cstnd given on an equidistant time grid
tn  nt, which only has to be dense enough to s
isfy tjvkj , p . The “dissipative dynamics” means tha
Im vk # 0, which is equivalent to having all the eigen
values of the evolution operator̂U inside the unit circle in
the complex plane,juk j # 1. According to Ref. [1], this
construction establishes an equivalence between the p
lem of extracting spectral information from a time sign
with the one of diagonalizing the evolution operatorÛ
(or the HamiltonianV̂) of the underlying dynamical sys
tem. To show this, let us assume for a moment that
can diagonalize the operatorÛp by (i) picking a basis set
hCjj, j  1, 2, . . . , Nwin, then (ii) evaluating in this basis
the matrix,

U
spd
jj0  sCj , ÛpCj0d , (4)

and then by solving the generalized eigenvalue problem
UspdBk  u

p
k SBk . (5)

Here, by bold charactersUspd and S ; Us0d, we defined
the corresponding complex symmetric matrices of the s
Nwin 3 Nwin. The eigenvectorsBk are then the column
vectors of sizeNwin 3 1, satisfying

Fk 
X

j

BjkCj . (6)
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To realize the outlined strategy we proceed by choosin
a Krylov-type basis defined as a finite-time Fourier basis

Cj ; Cszjd 
MX

n0

sÛyzjdnF0 , (7)

for a set of complex valueszj ; e2iwj , j  1, 2, . . . , Nwin
taken on the unit circle (i.e.,wj is real). As explained in
Ref. [1], one reason for choosing a Fourier-type basis
that for anyzj the functionCszjd will be dominated by
the eigenvectorsFk whose eigenvaluesuk are close tozj .
Another important reason for choosing the form of Eq. (7
is that as in [1] all the matricesUspd are now functionals
of only thehcnj sequence and do not depend explicitly o
either of the auxiliary objectŝU, Fk or F0. To show this,
let us insert Eq. (7) into Eq. (4) and use the symmet
propertysF0, ÛFd  sÛF0, Fd and the definition ofcn,
Eq. (2):

U
spd
jj0 

MX
n00

MX
n0

szj0 yzjdncn1n01pz
2sn1n0d
j0 . (8)

The substitutionl  n 1 n0 followed by summation over
n gives
U
spd
jj0 

1
zj 2 zj0

"
zj

MX
l0

cl1pz2l
j0 2 z2M

j

2MX
lM11

cl1pzM2l11
j0 2 zj0

MX
l0

cl1pz2l
j 1 z2M

j0

2MX
lM11

cl1pzM2l11
j

#
,

U
spd
jj 

2MX
l0

sM 2 jM 2 lj 1 1dcl1pz2l
j . (9)
t
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(Note that the evaluation ofUspd requires knowledge of
cn for n  p, p 1 1, . . . , 2M 1 p.)

Equation (9) with Eq. (5) are working expressions an
can be applied to a general signalcn directly as they
are. Notably and quite importantly, the matricesUspd

have a sinclike structure with large diagonal and rapid
decaying off-diagonal terms. It is this structure whic
justifies the procedure of filter diagonalization. Now
the eigenfrequenciesvk in a small frequency window
wminyt , Revk , wmaxyt can be obtained by solving
the generalized eigenvalue problem Eq. (5) in a basishCjj
constructed using a small set of valueswmin , wj ,

wmax, j  1, 2, . . . , Nwin, with Nwin being greater than
the number of eigenvaluesuk  e2itvk lying near the
corresponding segment of the unit circle in the compl
plane (see Fig. 1). Once we have the eigenvectorsBk the
amplitudesdk can [due to Eq. (6)] be obtained using [1]

d
1y2
k 

X
j

BjksCj , F0d 
X

j

Bjk

MX
n0

cnz2n
j . (10)

It has to be noted that in practice the basishCjj is
often close to linear dependent so that the matrixS has
some eigenvalues which are nearly zero. When solv
Eq. (5) this problem is overcome by using a singul
d

ly
h

ex

ing
ar

value decomposition ofS (see, e.g., Ref. [1]). If the basis
hCjj is not complete, which is usually the case,Uspd fi

Up . Only for converged eigenvaluesuk and eigenvectors
Bk will Eq. (5) yield the results that are independen
on the powerp. In other words, identification of the
converged eigenvalues can be done by solving Eq. (
simultaneously for two different values ofp (e.g.,p  1
and p  21) and then by comparing the results for the
eigenvaluesuk and the eigenvectorsBk .

Quantum dissipative dynamics: calculation of uni
molecular decay rates.—A quantum scattering system
dominated by long lived resonance states is a perfect e
ample of a dissipative dynamics. While, in principle, th
problem of extracting resonance parameters can efficien
be solved using our older version of the filter diagonaliza
tion method [8–10], for very large systems it might be
come unfeasible since it could require too large a stora
for the window basis functions.

In order to make the present approach applicable w
need to find, for a quantum scattering system, a suitab
signal cn which (i) would be easy to produce and (ii)
would contain the desired spectral information, such a
the energies and widths of the resonances. It mig
appear that the only natural choice here, as was used
3275
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FIG. 1. A schematic plot of eigenvalues of the operatorÛ, a
small portion of which (in the shadowed region) is extracted
the filter-diagonalization procedure.

Refs. [1,7], is the signalcn  Csntd obtained from a time
correlation function,

Cstd  sF0, e2itĤF0d , (11)

where Ĥ is the system Hamiltonian. If the quantum
dynamics is governed only by bound and quasibou
(resonance) states,Cstd can be effectively represented b
the sum over these states whose energies are taken a
complex numbersek 2 iGky2, where the widthsGk are
associated with the decay rates,

Cstd ø
X

k

dke2itsek2iGk y2d. (12)

The coefficientsdk are then given by the overlap integral
of the initial wave packet with the resonance wav
functions,dk  sF0, Fkd2.

In practice, for the evaluation ofCstd, either the split
operator method [11] or Chebyshev [12] (or modifie
Chebyshev [2,14]) polynomial expansion of the tim
evolution operatore2itĤ can be used.

Another alternative is to use a different dynamics whic
is both suitable for the problem of resonances and easy
apply. An excellent example of such a dynamics, in t
spirit of Refs. [13,14] is the one generated by the modifi
Chebyshev recursion relation itself,

j0  F0, j1  e2ĝĤj0, . . . ,

jn11  e2ĝs2Ĥjn 2 e2ĝjn21d , (13)

with the correlation function to be analyzed,

cn  sssF0, TnsĤdF0ddd ø sF0, jnd , (14)

where TnsĤd are the Chebyshev polynomials of th
Hamiltonian operatorĤ which is already rescaled such
that its eigenvalues belong to the unit intervalf21, 1g.
3276
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This assures the stability of the recursion relations
The damping operatore2ĝ is used to eliminate the
boundary reflection effects and can be considered he
as a convergence factor. Forĝ  0, Eq. (14) becomes
an exact equality but is numerically inefficient becaus
it requires very large grids. Ifgsrd is chosen properly
the vectorsjn are localized in space, decaying rapidly in
the damping region. This allows one to use finite grids
extended not too far in the asymptotic region. While in
Refs. [8–10,14] Eq. (13) was used to obtain an efficien
recursion polynomial expansion of the Green’s function
Ĝ1sEd with particular absorbing boundary conditions
here we only need to satisfy Eq. (14).

To show that the signalcn computed using Eq. (14) has
the desired form of Eq. (1) let us introduce the convenien
representation of the Chebyshev polynomials,

TnsĤd ; Ree2inV̂ , (15)

where the Hermitian operator̂V is defined by Ĥ ;
cosV̂. Now, by analogy with Eq. (12) for a real initial
wave packetF0, we can write

cn  ResF0, e2inV̂F0d ø
1
2

X
k

dke2invk 1 dp
keinv

p
k ,

(16)

where dk  sF0, Fkd2. The sum in Eq. (16) is taken
over the same, as in Eq. (12), set of complex pole
of the Green’s functionĜ1sEd  sE 2 Ĥ 1 i0d21 ;
sE 2 cosV̂ 1 i0d21,

ek 2 iGky2 ; cosvk . (17)

Thus for a quantum scattering problem described by
Hermitian HamiltonianĤ we have found a convenient
(discrete-time) signalcn generated using a numerically
simple, inexpensive, and accurate recursion procedur
Eq. (13). Relevant physical information, such as the
energies and widths of resonances, can be extract
directly from cn [i.e., avoiding construction ofCstd] by
a high resolution spectral analysis.

Calculation of resonance states of theH1
3 molecule.—

In Ref. [10] we presented a calculation and statistica
analysis ofJ  0 bound and resonance energies of the
H1

3 molecular ion using the Meyer, Botschwina, and
Burton potential energy surface of Ref. [15]. This was
done using our old version of the filter-diagonalization
method an effective application of which required a 500
Mbyte parallel computer. To the best of our knowl-
edge, this was the largest (in the sense of the numb
and the density of states) accurate resonance calcu
tion ever performed for open chemical systems. Here
in order to demonstrate the present approach, we a
ply it to the same problem. The implementation of the
recursion procedure, Eq. (13), and all the basis set p
rameters are the same as in Ref. [10]. In particula
the size of the primitive grid used was of the order o
110 000. (For more detail see this paper and referenc
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therein.) The signalcn, Eq. (14), was computed using
Niter  240 000 iterates of Eq. (13). This was necessar
to converge all the bound and resonance states ofH1

3 up
to E  41 700 cm21. The resonance widths as a functio
of energy are shown in Fig. 2. An excellent agreeme
(within ,0.01 cm21 for all bound and most resonance
state energies) with the results of Ref. [10] was achiev
for all NEs

1 NEa
1 NA1 1 NA2  604 1 604 1 358 1

256  1822 bound and allNEs 1 NEa 1 NA1 1 NA2 
264 1 264 1 142 1 119  789 resonance states with
widths G , 100 cm21, whereE, A1, andA2 correspond
to irreducible representations of theD3sMd nuclear per-
mutation group. Note that some resonances are quite n
row but most of them (especially at higher energies) a
strongly overlapping.

Niter  240 000 might seem to be a large numbe
compared toNiter  80 000 used in Ref. [10]. We note,
however, that all the resonances for each of the tw
symmetry blocks (see Ref. [10]) were obtained from
single signal cn (and not window by window) using (to
create the signal),31 h of the cpu time and,5 Mbyte
of core memory on an IBM 6000y990 work station.
Extracting the spectral information fromcn takes only a
few minutes.

In conclusion, implementation of the filter-diagonaliza
tion method described in this paper is quite gener
numerically inexpensive, stable, and accurate. It can
routinely applied for extraction of complex spectra o

FIG. 2. The resonance widths (decay rates) of the nonrotat
H1

3 molecular ion as a function of the resonance position.
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various systems using the information contained on
by the time correlation function. The purpose of pre
senting the numerical example is to demonstrate th
potential ability of the method to perform accurate reso
nance calculations for quantum dissipative systems th
require basis sets (grids) as large as10627 if supercom-
puters are used.
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