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Spectral Analysis of Time Correlation Function for a Dissipative Dynamical System
Using Filter Diagonalization: Application to Calculation of Unimolecular Decay Rates
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The filter-diagonalization method of Wall and Neuhauser for harmonic inversion of a complex time
signal,C(¢) = >, dye ", is simplified by introducing a different boxlike filter and is reformulated to
the case of a signal given on a sparse equidistant time grid. The method is applied to the large scale
quantum dynamics problem of extracting hundreds of (narrow and overlapping) resonance$iéf the
molecular ion directly from a single signal, = (®,, T, (H)®,), generated by the dynamical system
governed by a modified Chebyshev recursion. [S0031-9007(97)03023-8]

PACS numbers: 34.10.+Xx, 31.70.Hq, 63.20.Dj

The knowledge of the vibrational spectra for variousing to the signal
physical systems such as molecules, clusters, glasses,
crystals, etc., can provide an important insight into their C(t) = Z dpe o, ()
dynamics. In particular, the density of states for large k
species can be used to calculate their thermodynamisne should be able, at least in principle, to extract these
properties. When the system of interest is dissipative (founknowns. This is a fundamental problem in physics and
example, if it is a small part of a larger system consid-many other diverse fields. It has a long history which we
ered as a bath), its spectrum can often be represented bynall not discuss here. The interested reader is referred to
set of complex frequencies (energies) whose negative Refs. [4—7] where the various “high resolution” methods
imaginary parts characterize the decay rates. In this corfsuch as Prony’s method, MUSIC, maximum entropy
text, relaxation rates of excited local modes in a large molmethod, ESPRIT, etc.) of spectral analysis of time signals
ecule or the unimolecular decay rates (resonance widthsglevant to the present approach are discussed. In this
of an excited quantum scattering system can be recallegdvork we formulate the filter-diagonalization method by
Such spectra can often be computed by diagonalizing thigtroducing a new and simple filter so that it applies
Hamiltonian matrix, say, in the case of quantum dynamrigorously to a signal defined on a finite discrete time grid
ics, or the Hessian matrix if the normal modes of a clasqi.e., avoiding continuous integrals over the time variable).
sical system are of interest. On the other hand, a tim@lthough the formalism is very much akin to the work of
signalC(¢) generated by the underlying dynamical systemRef. [1], we present it in detail due to the simplicity of the
often carries adequate information relevant to the spedinal formulas and to the fact that they allow us the use of
trum of the corresponding Hamiltonian or the evolutiona very efficient method for extracting a high number of
operator. Recently, Wall and Neuhauser [1] have devise¢hany (narrow and overlapping) resonances in large scale
an approach, filter diagonalization, for extracting highly quantum simulations.
resolved spectra for large and complex species with high The crucial idea is, following the work of Wall and
densities of states by analyzing such a signal in an efNeuhauser [1], to associate the time sigaal) of the
ficient manner. The method has been applied to extradbrm of Eq. (1) with a time correlation function generated
a limited number of resonances in molecular structureyy a suitable dynamical system (or vice versa),
[2] and a large number of instantaneous normal modes _ . A _ —inrQ
in classical molecular dynamics simulation [3]. The time  “* — Clta) = (o, U"®o) = (P, e ©o). (2)
signal to be analyzed could be either measured experimemhere (-, -) defines a complex symmetric inner product
tally or it could be obtained in a numerical experiment.(no complex conjugation); the complex symmetric evolu-
Such calculations (measurements) can be very accurate ton operatorU is defined implicitly by
they can introduce some “noise” (e.g., caused by the nu-
merical errors). Because of various theoretical or practical U= Z up @ (Py, ), (3)
reasons, the signal(z) might be available only on a short k
time segment or on a small set of sample points ,.  where the set of eigenvectof®,} is associated with an
This makes it impossible to use a standard Fourier analyarbitrary orthonormal basis set, the eigenvalueaf](ﬂre
sis, which in such a case can provide one with only “lowu; = e "¢ (or equivalently the eigenvalues &1 are
resolution” results. From an informational point of view, w;), and the initial wave functionb, is defined by its
if the number of sample points is larger than the numbeprojections(®;, ®;)*> = d;. The use of the discrete dy-
of unknown frequencies; and amplitudes/; contribut- namics instead of a continuous one allows us to analyze
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a signalc, = C(t,) given on an equidistant time grid,  To realize the outlined strategy we proceed by choosing
t, = n7, which only has to be dense enough to sat-a Krylov-type basis defined as a finite-time Fourier basis,
isfy 7lwi| < 7. The “dissipative dynamics” means that
Im w; = 0, which is equivalent to having all the eigen-
values of the evolution operatér inside the unit circle in
the complex plan€u;| = 1. According to Ref. [1], this
construction establishes an equivalence between the profor a set of complex values = e % j=1,2,...,Nyn

lem of extracting spectral information from a time signaltaken on the unit circle (i.e¢; is real). As explained in
with the one of diagonalizing the evolution operaidr  Ref. [1], one reason for choosing a Fourier-type basis is
(or the Hamiltonian()) of the underlying dynamical sys- that for anyz; the functionW(z;) will be dominated by
tem. To show this, let us assume for a moment that wehe eigenvector®; whose eigenvalues; are close ta;.

can diagonalize the operatdi” by (i) picking a basis set Another important reason for choosing the form of Eq. (7)

M
;= V() = D (0/z)" Dy, (7)

n=0

vhj= Nyin, then (i) evaluating in this basis is that as in [1] all the matriceE(?) are now functionals
the matrix, of only the{c,} sequence and do not depend explicitly on
(”) = (¥, ur V), (4)  either of the auxiliary object&/, ®; or ®,. To show this,

and then by solvmg the generallzed eigenvalue problem, €t us insert Eq. (7) into Eq. (4) and use the symmetry

UP'B, = u!SB, 5) property((I)’ U®) = (UP', ®) and the definition of,,,
' ' 2
Here, by bold characte®? andS = U©, we defined a. (2)
the corresponding complex symmetric matrices of the size o)
Nyin X Nwin. The eigenvector8, are then the column Z Z (zjr/z)) Cninwpzj (8)
vectors of sizeVy;, X 1, satisfying n'=0 n=
o, = Z By ;. (6)  The substitutiod = n + n' followed by summation over
» ' n gives
) 1 M M 2M
Uj;’ = |:Zj Z Cz+pzj7[ - 7M Z Cl-i—pZ/ L Z Cl+/JZ;l + Z;M Z Cl+ pZM Hl:|,
Zj Tz 1=0 =M+1 1=0 I=M+1
( _
U =3 (M~ 1M~ 1]+ Depz ©)
1=0

(Note that the evaluation &) requires knowledge of| value decomposition db (see, e.g., Ref. [1]). If the basis
cnforn=p,p+1,....2M + p)) {¥;} is not complete, which is usually the cadé?’ #
Equation (9) with Eqg. (5) are working expressions andU?. Only for converged eigenvalueg and eigenvectors
can be applied to a general signg] directly as they B; will Eq. (5) yield the results that are independent
are. Notably and quite importantly, the matricté”)  on the powerp. In other words, identification of the
have a sinclike structure with large diagonal and rapidlyconverged eigenvalues can be done by solving Eq. (5)
decaying off-diagonal terms. It is this structure whichsimultaneously for two different values of (e.g.,p = 1
justifies the procedure of filter diagonalization. Now and p = —1) and then by comparing the results for the
the eigenfrequencies; in a small frequency window eigenvalues:, and the eigenvectoB;.
emin/T < Rew, < ¢max/7 can be obtained by solving Quantum dissipative dynamics: calculation of uni-
the generalized eigenvalue problem Eq. (5) in abgBig  molecular decay rates-A quantum scattering system
constructed using a small set of values., < ¢; < dominated by long lived resonance states is a perfect ex-
Cmax>J = 1,2,..., Nwin, With Ny, being greater than ample of a dissipative dynamics. While, in principle, the
the number of elgenvaluesk = ¢~ 7% lying near the problem of extracting resonance parameters can efficiently
corresponding segment of the unit circle in the complexoe solved using our older version of the filter diagonaliza-
plane (see Fig. 1). Once we have the eigenve@®érthe tion method [8—10], for very large systems it might be-
amplitudesd; can [due to Eq. (6)] be obtained using [1] come unfeasible since it could require too large a storage
1/2 for the window basis functions.
Z Bjx(¥;, @) = Z Bk Z cnz; "o (10) In order to make the present approach applicable we
need to find, for a quantum scattering system, a suitable
It has to be noted that in practlce the bafi;} is  signal ¢, which (i) would be easy to produce and (ii)
often close to linear dependent so that the ma&ikas would contain the desired spectral information, such as
some eigenvalues which are nearly zero. When solvinghe energies and widths of the resonances. It might
Eqg. (5) this problem is overcome by using a singularappear that the only natural choice here, as was used in
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This assures the stability of the recursion relations.
The damping operatoe~ 7 is used to eliminate the
boundary reflection effects and can be considered here
as a convergence factor. F¢r= 0, Eq. (14) becomes
an exact equality but is numerically inefficient because
it requires very large grids. liy(r) is chosen properly
the vectorsé,, are localized in space, decaying rapidly in
the damping region. This allows one to use finite grids
extended not too far in the asymptotic region. While in
Refs. [8—10,14] Eg. (13) was used to obtain an efficient
recursion polynomial expansion of the Green’s function
G*(E) with particular absorbing boundary conditions
here we only need to satisfy Eq. (14).

To show that the signal, computed using Eq. (14) has
the desired form of Eq. (1) let us introduce the convenient
representation of the Chebyshev polynomials,

T,(f) = Ree "2, (15)

FIG. 1. A schematic plot of eigenvalues of the operdigra ~ Where the Hermitian operatof) is defined by A =
small portion of which (in the shadowed region) is extracted bycos(). Now, by analogy with Eq. (12) for a real initial
the filter-diagonalization procedure. wave packetb,, we can write

n = Re(@g,e " D) = — ¥ dpe " + die",
Refs. [1,7], is the signal, = C(n7) obtained from a time e(Po 0) 2 % k k
correlation function, (16)

C(t) = (Do, e " dy), (11)  where d; = (®y, P;)2. The sum in Eq. (16) is taken
where H is the system Hamiltonian. If the quantum over the same, as in Eq (12), set of complex poles
dynamics is governed only by bound and quasiboun®f the Green'’s funct|onG (E)=(E - H +i0)' =
(resonance) state6)(z) can be effectively represented by (E — cosQ) + i0)”!

the sum over these states whose energles_ are taken as the € — zI‘k/Z = Cosw; . (17)
complex numbers;, — il';/2, where the widthd", are ] )
associated with the decay rates, Thus for a quantum scattering problem described by a
Hermitian Hamiltoniani we have found a convenient
Cr) = Z dye~1e=il/2), (12) (discrete-time) signat, generated using a numerically
X simple, inexpensive, and accurate recursion procedure,

The coefficients/; are then given by the overlap integrals EqQ. (13). Relevant physical information, such as the
of the initial wave packet with the resonance waveenergies and widths of resonances, can be extracted
functions,d; = (®g, ®;)>. directly from ¢, [i.e., avoiding construction o€ ()] by
In practice, for the evaluation of (¢), either the split ~a high resolution spectral analysis.
operator method [11] or Chebyshev [12] (or modified Calculation of resonance states of thg" molecule—
Chebyshev [2,14]) polynomial expansion of the timeln Ref. [10] we presented a calculation and statistical
evolution operatoe ~ it san be used. anaIyS|s ofJ = 0 bound and resonance energies of the
Another alternative is to use a different dynamics whichH3 molecular ion using the Meyer, Botschwina, and
is both suitable for the problem of resonances and easy Burton potential energy surface of Ref. [15]. This was
apply. An excellent example of such a dynamics, in thedone using our old version of the filter-diagonalization

spirit of Refs. [13,14] is the one generated by the modifiednethod an effective application of which required a 500
Chebyshev recursion relation itself, Mbyte parallel computer. To the best of our knowl-

o = D £ = e VHE edge, this was the largest (in the sense of the number
0 0> 1= 0reeeo and the density of states) accurate resonance calcula-
Enir=e YQAE, — e VE, ), (13) tion ever performed for open chemical systems. Here,
with the correlation function to be analyzed, in order to demonstrate the present approach, we ap-
. ply it to the same problem. The implementation of the
cn = (Po, Ta(H) Do) = (Po, £1) (14)  recursion procedure, Eg. (13), and all the basis set pa-
where T, (H) are the Chebyshev polynomials of the rameters are the same as in Ref. [10]. In particular
Hamiltonian operatod which is already rescaled such the size of the primitive grid used was of the order of
that its eigenvalues belong to the unit interyal1,1].  110000. (For more detail see this paper and references
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therein.) The signat,, Eq. (14), was computed using various systems using the information contained only
Nier = 240000 iterates of Eq. (13). This was necessaryby the time correlation function. The purpose of pre-
to converge all the bound and resonance statddofup  senting the numerical example is to demonstrate the
to E = 41700 cm~!'. The resonance widths as a function potential ability of the method to perform accurate reso-
of energy are shown in Fig. 2. An excellent agreemenhance calculations for quantum dissipative systems that
(within ~0.01 cm™! for all bound and most resonance require basis sets (grids) as large 1887 if supercom-
state energies) with the results of Ref. [10] was achieveguters are used.

forall Ng, + Ng, + Na, + N4, = 604 + 604 + 358 + This work was supported by DOE Grant No. DE-FGO3-
256 = 1822 bound and allNg, + Ng, + Na, + Na, =  94ER14458. We have benefited from discussions with
264 + 264 + 142 + 119 = 789 resonance states with Stephen Gray, J6rg Main, and Daniel Neuhauser.
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