VOLUME 78, NUMBER 2 PHYSICAL REVIEW LETTERS 13 ANUARY 1997

Critical Percolation and Transport in Nearly One Dimension

A.N. Samukhin? V. N. Prigodin!3 and L. Jastral®
IA. F. loffe Physical & Technical Institute, 194021 St. Petersburg, Russia
%Institute of Physics AS CR, Na Slovance 2, 180 40 Prague 8, Czech Republic

3Max-Plank-Institute fur Physik Komplexer Systeme, Aussenstelle Stuttgart, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
(Received 26 September 1996

A random hopping on a fractal network with dimension slightly above % 1 + €, is considered
as a model of transport for conducting polymers with nonmetallic conductivity. Within the real space
renormalization group method of Migdal and Kadanoff, the critical behavior near the percolation
threshold is studied. In contrast to a conventional regular expansia the critical indices of
correlation lengthy = e~! + O(e~/¢), and of conductivity,s = e 2exp(—1 — 1/¢), are found to
be nonanalytic functions oé ase — 0. In the case of variable range hopping a “1D Mott's law”
exd —(T,/T)"/*] dependence was found for the dc conductivity. It is shown that the same type of strong
temperature dependence is valid for the dielectric constant and the frequency-dependent conductivity, in
agreement with experimental data for poorly conducting polymers. [S0031-9007(96)01916-3]

PACS numbers: 73.61.Ph, 05.60.+w, 71.30.+h, 72.90.+y

Conducting polymers represent a large class of new may coupled polymer chains oriented along some direc-
terials with a great variety of transport properties [1]. Thetion. Electronic micrographs show that in these sub-
room-temperature conductivity-¢t) of some of them at- stances polymeric chains are organized ifitwils [1],
tains the metallic value, and the temperature and frequenayhich may be distinctly seen to be subdivided into smaller
dependencies of their conductivity are closely to be metalenes [10]. In a nonfibrillar form of conducting polymers,
lic. The nature of the metallic phase is presently the sublike polyaniline, x-ray data reveal the existence of highly
ject of intensive study [2]. One point is that the metallic ordered “crystallinity regions” with metallic properties
state is provided by strong interchain coupling in these mafl]. Therefore the whole network in the stretched polyani-
terials [3]. In polymers with moderatert (of the order line may be thought of as constructed from long one-
of several hundreds S/cm) the conductivity, as a rule, dedimensional polymer chains randomly coupled by metallic
creases with decreasing temperature. Because this decaystallinity islands of various sizes. The volume fraction
follows a power law in a large temperature interval, pre-of later ones can be small.
sumably these materials are near the metal-insulator tran- We assume here that a polymer structure represents a
sition which happens at the critical interchain coupling.nearly one-dimensional fractal That means a specific
Poorly conducting samples withg 1 of the order of orless  kind of polymer chain organization, defined in the fol-
than 1 S/cm demonstrate a behavior that can be classifiddwing way: Choose a three-dimensional cube with the
as dielectric [4]: Itis similar to that observed in amorphousedgeL. Chains, which are coupled within this cube, form
semiconductors. Namely, dc conductivity is strongly de-a set of bundles disconnected from each other. If for
pendent on temperature and its best fit is given by a “1Darge enougt. the cross section of the maximum bundle
Mott's law”: 34, = exp—(Ty/T)"/2. For a variable range is proportional toL¢, where0 < e =< 2, then we shall
hopping mechanism of transport, the temperature depemrall the systemd® = (1 + €) dimensional. Obviously,
dence of conductivity is [5,6FEq. = exp—(To/T)"/@*D, € = 0 for purely one-dimensional systems (sets of un-
whered > 1 is the system’s dimension. This is not true, coupled chains). Note that if one assumes chains to be
however, in a 1D case [7], for which it should be the connected either with low concentration of uncorrelated
Arhenius dependenc&,. « exp—(Ty/T). interchain links, or with weak links (their resistivities be-

Experimental measurements of the microwave conduang high compared to intrachain ones in our example), then
tivity and the dielectric constant of these poorly conduct-we are dealing with aquasi-one-dimensionaystem [3],
ing samples [4,8] revealed that both are strongly dependemthich is three dimensional according to our definition.
upon temperature too, most probably according to the same The transport mechanism in conducting polymers in the
1D Mott’s law. The theory of hopping transport predicts, localized phase is assumed to be the variable range hopping
however, only a very weak power temperature dependendgpe (VRH) [11]. The regular method to treat VRH models
for the frequency-dependent conductivity and the dielectriégs the effective medium approximation [9], which gives
constant in two- and three-dimensional systems [9]. wrong results in the nearly 1D case. For example, for

In the present Letter we suggest an explanation fothe percolation model it gives a threshold concentration of
these peculiar features of conducting polymers that ibroken bonds; = €, while ¢; = exp(—1/¢), as we shall
based on the specific structure of the polymer networksee later. The results for the critical exponents are also
In the stretched polyacetylene, this network is formedwrong in this case. We choose the following approach.
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We will first study the nearly 1D percolation system ex-formation:

actly. The VRH model is reduced to the percolation prob- © s

lem by constructing the effective percolation lattice [6,9]. Plo)=1— \/Ef — J12\/s0)0(s),  (2)
Our first aim is the study of the critical behavior 0 s

of the conductivity near the percolation threshold in awhere J;(s) is the Bessel function. For the hierarchical

d-dimensional lattice, wherel is close to the lower structures, we arrive, after the transition to a continuous

critical dimensionality, i.e.d = 1 + €, € < 1. Thereal transformation, at the following equation:
space renormalization group of Migdal and Kadanoff

(RGMK) [12-14], that is exact af = 1, is expected to A 90(s, A) + (1 - G)M

be the appropriate tool ifl is close to 1. This method dA ds
was applied to the percolation conductivity problem by * do
Kirkpatrick [15], but the case of dimensionality closelto —0(5,)INQ(s,A) + € f NG
did not get any special attention. 0
The RGMK method may be formulated as follows: The X Ji(2\sa)P(o,)InP(a,A) = 0. (3)
d-dimensional hypercubic lattice is replaced byra n) Finite concentration of broken bonds may be consid-

hierarchical structure (see below) with = "', and  ered by introducing the boundary conditions
n — 1 afterwards. Thdm,n) hierarchical pseudolattice

may be constructed by the infinite repetition of two O@s, Mls=0 =1 = cp = P(o, Mlg=t+x =cy.
subsequent steps, as illustrated in Fig. 1: (a) formation (4)
of an n-length chain fromn bonds, (b) formation of an Setting in Eq. (35 — 0, we obtain the RGMK equations
m bundle with m chains in a cross section. Bundles o, proken bond concentration,

obtained in this way are used as elementary bonds at the

next stage, etc. To have a continuous RG transformation /\ﬂ —ecpyIne, — (1 — ¢)In(1 — ¢p). (5)
instead of a discrete transformation, one should proceed dA
to infinitesimal transformation, setting= 1+ ».m =  Tnere are three fixed points, two stable oneg,= 0

I+ ev;v—0, where e =d — 1. At this step We (reqular lattice) and:, = 1 (completely broken lattice),

introduce the continuous scale variable= exp(rl),  and one unstable fixed poinf = c,, where the threshold
wherel is the order of bonds in the hierarchical structure.concentrationr, (0 < ¢, < 1) is given by

It appears to be convenient to work with conductivity

. and resistivityR = 1/3, distribution functions in the ecidne, = (1 = ¢)In(l = ¢)). (6)
Laplace representation: At arbitrary values ofe one can solve Eq. (3) only
P(o) = (exp—o2)); QO(s) =<exp(—sR)). (1) numerically. Numerical results concerning this solution

This is justified by the fact that for the chains or theunder the threshold boundary condition,,—o =1 —
bundles formation we have simply sums of independent’: Q,l s=+= = 0, support the following gssertlon: The
random resistivities or conductivities, respectively. ThesdUNctionQ(s, A) eventually evolves at sufficiently large
functions are related by the following integral trans-Nto the following automodeling form:

0(s,A) = Q(sA?),  P(o,A)=P(cA™), (7)
a b

wherea is the e-dependent exponent. This form ensures,
—0 e ——¢— = together with Eg. (5), the power-law critical behavior of
the conductivity>.:

S(r) ~ 7, T=c—c/c, t=av. (8)
— m—- Here v is the critical exponent of the correlation length
(the characteristic size of a finite connected cluster) that is

determined from Eq. (5) by linearizing near the threshold

point:
v I=¢€lne, + 1) +1+In(l —¢), (9)
wherec, is given by Eq. (6). The critical index for the
— e e conductivity + as a function ofe can be found only

numerically, and the result is shown in Fig. 2.
In the limit of small e the problem may be treated
analytically. In this case the threshold concentration and

o ] ) the critical index of the correlation length are given by
FIG. 1. The two initial stages of2,3) hierarchical structure

formation. c=e Ve, vl=e—teVe ., (10)
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FIG. 2. The conductivity exponent as a function ofe =
d—1.
curve) and analytical results.

One can see that although the main part :0f!(e)
dependence is linear, the remaining dependencee on
is essentially nonanalytic, and therefore no reguar
expansion in{ + €) dimensions is possible.

Let us look for the automodeling solution (7)ai< 1.
Using the fact that fore = 0 this solution is simply
exp(—s) (a = 0), we assume

0(x) = (1 — c)exd—x + v(x)], (11)
as well asa ~ ¢;, v ~ ¢;. Plugging Egs. (7), (10), and
(11) into Eq. (3), linearizing iy, and neglecting higher-
order terms ovec,, such asiv, c,2, c;v, etc., we arrive at
the following equation:

~ Ni(2VE)

v’ — v + v = e_l/E[I Tz
eﬂ " aes,

{5
(12)
wherex = €£/(1 + e).

1+
The solution of Eq. (12) with/(0) = »’(0) = 0 can be
found by the substitutiom(£) = éw(€). We have

w'(€) g—i[e_lk(l —e ¢

¢ d
an —n/(+e) —
e Ji(2 77))
o I Vv

—ea[l — (1 + f)e_f]:|.

To eliminate here the term, growing &t> 1 as expf =
exp(x/¢€), the following condition should be fulfilled:

€a = ct<1 - j:o j—%eﬂ/(l+f)l1(2ﬁ)>- (14)
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(13)

The inset shows the comparison of numerical (solid

This equation determines the critical exponent for the con-
ductivity t = av [see Eq. (8)]. By combining Egs. (10)
and (14) we get

t=¢elexp(—1 — 1/e). (15)

The coefficientsv,, of a Tailor expansion ol (x) at
x = 0 represent the cumulants of the distribution function
for resistivities, e.g.,v, = (R?) — (R)®)/(R)*>. They
are obviously of the order of,. That means that the
resistivity distribution at length scal@ is of an almost
Gaussiand function, centered afR) « A¢ and with the
width o« A% exp(—1/¢€).

Using the scaling arguments [16,17], one can derive
the low-frequency part of the ac conductivil(w, 7)
near the percolation threshold, if the critical exponent of
the dc conductivity is known. System conductivity at
low frequenciesw <« W, (W, is the hopping rate of the
retaining bonds) and near the percolation threshotet 1
is supposed to be represented in the scaling form

e’n, S \~u/t
3w, 7) = Fa|||7|tWog[T<Wo> } (16)
whereS = —iw, g is the longitudinal lattice constant,
u=t/(s +1), s=2v-—p. a7

Here s and u represent the critical exponents for the
dielectric constant near the percolation threshold and
the frequency-dependent conductivity at the threshold,
respectively, and8 is the exponent of the percolation
order parameter (the probability of the site to belong to
the infinite cluster). The scaling functiop(x) has the
following asymptotic behavior:

glx) = {

The critical exponentB in nearly one-dimensional sys-
tems is very smallB = ¢2/(3¢) and hence = 2v.

Now let us consider a nearly one-dimensional system
with variable range hopping along the chains. We as-
sume [5] that the hopping rates depend on the intersite
distancesr;; = |r; — r;| and on the energy difference
gij = |8,‘ - 8j| Viafl‘j = rij/a + Sij/ZkT ((1 is the lo-
calization radius) asW;; = woexp(—2f;;). Assuming
site positions and energies near the Fermi level homoge-
neously distributed with the densityy, we arrive at the
“two-dimensional Poisson” distribution fof;;, F(f) =
exfd —(f/fo)*], with fo = (To/T)"/?, kTy = (Nra)~ .

Itis known [9] that the behavior of the conductivity with
continuously distributed hopping rates may be explained,
at least qualitatively, if the result for the percolation lattice
is known. For this purpose, we choose some trial value of
the hopping rate®.. Then the initial system is replaced
by the percolation network where the hopping rates less
than W, are set to zero (broken bonds) and all others are
set equal toW.. The conductivity of such a system is

Alx|7, aslx| < 1,
1+ Byx 714+ ...,asx>1,
B_|x|™*7t+ ...,asx <0, |x|>1.
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obviously less than the initial one. If the trial value of with extremely low frequencies. Such a type of strong
W. is chosen so that the conductivity of the percolationtemperature and frequency dependence is actually ob-
system is maximal, one can hope that this value gives aerved in conducting polymers with localized carriers [4,8].
good estimate for the conductivity of the real system. Let us stress again that a similar dependence cannot
Performing this procedure, e.g., at zero frequency, onbe obtained within the standard 2D or 3D hopping
can find that the dc conductivity is determined by the hopsnodels. By assuming the strong Coulomb repulsion
with f;; very close to its threshold valug;, which is  between carriers, the 1D Mott's law could be reproduced
determined byF( f;) = ¢,. From Eq. (10) it follows that [6], but it does not lead to any strong dependence for
fi = fo/J€ = (T\/T)"?, whereT, = Ty/e = (eNra)~'.  the dielectric constant and for the frequency-dependent
Taking in Eq. (16)1, = NpkT anda = 1/n,, we have  conductivity. The reason is the following. In contrast
AW, 2wy to the low-dimensional case, the clusters in 2D and 3D
24e = Ne(TY? — Np(kT)? exd—(7,/T)"/?]. (18)  systems prove to be more effectively coupled. Therefore
F F the large polarization of clusters does not happen because
At the lowest frequencies (hydrodynamical regian,<  of leakage of carriers. Thus our results support strongly
wy,) the conductivity can be close to its dc value andthe idea that the conducting polymers represent a low-

may be represented as a power series-iw: X[w] =  dimensional substance even in the dielectric phase.

Sac(l — iw/w, — --+), with a very small value foww),. The authors are grateful to A. Epstein, G. Du,

As a result, the static dielectric constaptbecomes very P. Fulde, M. Kastner, and B. Shalaev for their interest

large and strongly temperature dependent: in the problem. The work was partially supported by a
n ~ W, /w, ~ (T /T)V exp2/€?). (19) Czech National Grant No. GACR 2024/0453.
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