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Capacities of Quantum Erasure Channels
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The quantum analog of the classical erasure channel provides a simple example of a channel
whose asymptotic capacity for faithful transmission of intact quantum states, with and without
the assistance of a two-way classical side channel, can be computed exactly. We derive the
guantum and classical capacities for the quantum erasure channel and related channels, and compare
them to the depolarizing channel, for which only upper and lower bounds on the capacities are
known. [S0031-9007(97)03003-2]
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Classical information theory, which deals with the someone who knows what the input was. When a pure
optimal use of classical channels to transmit classicastate p = |i) (/| is sent into a quantum channéX,
information, has recently been extended to include themerging as an (in general) mixed state= X (p), the
study of quantum channels, and their optimal use, alone didelity of output relative to the input is
in conjunction with classical channels, for communicating F = (lp'l0). (1)
not only classical information but also intact quantum
states, and for sharing entanglement between separat
observers. A classical (discrete, memoryless) channel
generally described by a set of conditional probabilitie
P(jli), the probability of channel outpyt given channel ; .
input i. A quantum channel may be described [1,2]5 > 0, there. exist block S1zEs andx and a quantum
by a trace-preserving, completely positive linear magf!Tor-correcting code mapping statgs) of m qubits

(superoperator)X from input-state density matrices to Nt@ n forward uses of the channel with/n > R, such
output-state density matrices. that any statdy) can be recovered with fidelity at least

In classical information theory a channel’s capacity is] — & atthe receiving end of the channel. The encoding

the greatest asymptotic rate at which classical informatio@Nd deco%ng rga% be dglscrli(bedfmathematipa}lly as super-
can be sent through the channel with arbitrarily high®PeratorsZ and L) on blocks of quantum Information
carriers, respectively, mapping fromx qubits into n

reliability. More precisely the capacity (in bits) of a . . . .

discrete memoryless channel can be defined as the great _rmt_edlate systems (which need not be q'ub|ts), each of

number C such that for any rat® < C and any error W ich is then sent through an independent instance of the

probability 5 > 0, there exist block sizes: andn and ~ channel, and finally from the channel outputs back to

an error-correcting code mapping-bit strings inton qubits (cf. F'.g' l)'. Phys!cally a superoperator corre-
sponds to a unitary interaction of the quantum system in

forward uses of the channel witli/n > R, such that ! . X g
every m-bit string can be recovered with error probability dUestion with an external system or environment, initially
n a standard pure state. The superoperator formalism

less thans at the receiving end of the channel. It is well ' ) ; X
known that backward communications, e.g., messages'S Proad enough to describe any physically realizable
from receiver to sender requesting retransmission wheffeatment that can be applied to a quantum system. In
an error has been detected, do not increase the forward
capacity for classical channels, although they are often

Bgralleling the definition of capacity for classical chan-
els, the quantum capacit9(X) of a quantum channel

may be defined in an asymptotic fashion, as the
greatest numbeQ such that for anyR < Q and any

used in practice to reduce latency and complexity of 7 —
the decoding processes. Another noteworthy feature of — L.
classical capacity is that it is equal to the maximum, [w><vl | E |

over channel input distributions, of the mutual information
between channel input and output forsangle use of
the channel. Thus, the asymptotic capacity for reliable
transmission when the channel is used many times iBIG. 1. A pureinputstatp = |){y| of m qubits is encoded
equal to the amount of information that can be transmittedy a quantum encodeE into the joint state of: intermediate
unreliably in a single use of the channel. systems, each of which passes through an independent instance

£ ¢ h | liability i ditlelit of the quantum channeX. The joint state is then decoded by
or quantum channeils, reliability IS measurediigiity  gecoderD resulting in a (typically) mixed statg’ of m qubits,
[2,3], the probability that the channel output would passyhose fidelityF = (ip’|1/) relative to the input is evaluated.

a test for being the same as the input, conducted byhis code has a rate/n of 4/5.

IO
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particular, mappings between different-sized Hilbert (i) The depolarizing channetwhich with probability

spaces can be accommodated by adding dummy dimes- replaces the incoming qubit by a qubit in a random

sions to the smaller space. This happens explicithEin state, without telling the receiver on which qubits this

and D and also in channels such as the erasure channelandomization has been performed; and

to be described in this paper. (i) The quantum erasure channel (QECH]—which
The above definition oD is for a forward quantum with probability e replaces the incoming qubit by an

channel alone, unassisted by classical communicatiorierasure state12) orthogonal to botH0) and|1), thereby

If we now allow the quantum channel to be assistetboth erasing the qubit and informing the receiver that it

by classical communication, we can defigk and Q, has been erased.

as the asymptotic quantum capacities of a quantum Unfortunately, exact expressions are not known for any

channel assisted, respectively, by forward and by twoef the capacities of the depolarizing channel for general

way classical communication. We have shown [4] thate, only upper and lower bounds [4,6—8]. However,

classical forward communication alone does not increasthe known bounds are tight enough to show that the

the quantum capacity of any channé&(X) = Q(X) depolarizing channel exhibits the following sequence of

for all X. HenceQ and Q; can safely be denoted thresholds:

by a single symbolQ. By contrastQ,, the quantum (i) For e < 0.25408, all three capacitie®), 0,, andC

capacity assisted by two-way classical communicationare positive [4,9].

can be greater tha, and is known to be positive (i) For 1 < e < % the one-way quantum capacigy

for some channels for whicl® is zero. Protocols for vanishes bu, andC remain positive [4,6—8].

exploiting Q> typically do not involve a single encoder (i) For # = e < 1, both quantum capacities vanish

and decher, but rather use multiple adaptive _rounds ®ut the classical capacity remains positive [4].
communication between the sender and receiver. The (jy) At € = 1 (complete depolarization) all capacities

one-way and two-way capacitigd and Q, are closely yanish.

related to the amounts of purified entanglement distillable, The capacities of the QEC, by contrast, can be com-

respectively, by one-way and by two-way entanglemenpytedexactly[see Fig. 2(a)] and are given by
purification protocols from entangled mixed states shared 0 = max0, 1 — 2¢)

between two separated observers [4]. (2)
The three kinds of communication represented(y O,=C=1-—¢€.

0,, and(C differ both fundamentally and practically. The To show that the QEC’s one-way capaciy must
positivity of 0, determines whether a channel can be useqgnish for € = 1 suppose the contrary. The sender

. . : 2
to communicate intact quantum states and to establish ep-pjice”) could then clone quantum information faithfully

tanglement between separated observers if reliable storag9 dividing it between two receivers (e.g., “Bob” and

of quantum information is available. The positivity of “Charlie”), each of whom would think he was seeing the
QO determines whether unreliable quantum storage can urce through a QEC af = L 1n more detail (cf. [4]
= 5. . [4],

made reliable, by encoding the data before it is stored angec' IV/), let Alice toss a fair coin for each qubit, and if

Qecoding it after it is retrie_ve(_:l. The impossibility of send- o ragit is heads (tails) send the qubit to Bob (Charlie)
ing messages backward in time precludes two-way pmtothrough an2e — 1 QEC while sending a pure erasure

cols in this case.C, which we will now use to denote state to Charlie (Bob). This implements are % QEC

the classical capacity of guantumchannel, represents . .
. S : . to each receiver. Such channels must have zero capacity
the maximum rate of classical information transmission

allowing arbitrary state preparations by the sender and ar-
bitrary quantum measurements by the receiver, including (a) (b)
preparations and measurements coherently spanning mul- C
tiple information carriers. C.Q 1/2
By definition, Q0 = 0»; by using orthogonal quantum Q Q2
states to transmit classical bits, it follows th@t= C Q
for all channels. No channels are known for which 0 '
0, > C but we know of no proof that this is impossible. 0 1812 ¢ 10 g4 28 1
On the other hand, examples are known (see below|G. 2. (a) Exact classical and quantum capacities for quan-

of channels for whichQ < Q, and for whichQ, < C  tum erasure channel vs erasure probabitty Also shown is
(cf. [4], Sec. VII). the threshold:/n = 1/3 above which gquantum codes, in the

The main features of quantum error correction ardimit of large »n, cannot correct all patterns ofor fewer era-
sures in code words of qubits. (b) Same capacities for the

illustrated by two simple channels, operating on a HiIbertmixed erasurgphase-erasure channel with equal probabilities

space of d_imension 2, al_Td analqgous, respectively, to th erasure ¢) and phase erasurévs total erasure probability
classical binary symmetric and binary erasure channels. § + e.
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to prevent cloning. Linear interpolation between the 50%channel(1 — €) times to transmiz(1 — €) of the qubits
QEC and the noiseless channel [10] yields an upper bounidtact, then measures remaining qubits in thez basis
Q0 =1 — 2¢, which coincides with the lower bound and transmits the results to Bob classically, allowing him
obtained by using one-way random hash coding [11]. Irto construct dephased versions of these qubits.] On the
such codes, two bits of redundancy per erased qubit arher hand,0 = 1 — € can be achieved asymptotically
necessary and sufficient for Bob to recover the phase aray one-way hash coding [11] because each dephased qubit
amplitude of all erased qubits with probability tending to contributes one bit of entropy to the syndrome. The no-
1 in the limit of large block size. cloning argument used to separgtérom Q, for the QEC

The QEC’'s two-way quantum capacity must be atdoes not apply to the PEC (nor is it needed) because the
least1 — e by a straightforward construction in which PEC’s preservation of the amplitude prevents a noiseless
the sender (“Alice”) uses the QEC, in conjunction with quantum channel from being split into independent PEC's
classical communication, to shate— e good Einstein- to two or more receivers.
Podolsky-Rosen (EPR) pairs [such é&/+/2)10405 + Finally, the QEC and PEC can be generalized to a
1413)] with the receiver (“Bob”) per channel use. Thesemixed erasurfphase-erasure channel that erases qubits
can then be used to teleport quantum information to Bolwith probability e and phase erases them with probability
at the same raté — €. Conversely Alice and Bob could §, transmitting them undisturbed with probabilitly —
start with an initial supply of:(1 — €) perfectly entanged 6 — € = 0. By arguments similar to those already given,
EPR pairs, then use these pairs in conjunction witithe capacities of this channel are [see Fig. 2(b)]

teleportation to simulate instances of a QEC of strength _
. = max0,1 — 6§ — 2e€},
e. If Q, for this channel were greater thah-— e, 0 i t
Alice and Bob would have been able to deterministically 0,»=1-0 k€, (4)
increase their entanglement by purely local actions and 1 _
X 2 . s . C=1—-c¢€.
classical communication, which is impossible (cf. [4], _
Sec. Il.A). This establishes tha, is exactlyl — e. The upper bound orQ follows from a slightly more

Finally, the classical capacity' of the QEC can be complex no-cloning argument. Consider a series-parallel
no greater thal — e because of Holevo’s upper bound combination which begins with a PEC of strengih
[12] on the classical capacity of the — ¢ nonerased and is followed by a parallel combination of a noiseless
qubits. Of course] — e is also the capacity ofaassical ~channel for the phase-erased qubits ande&h — 6)-
erasure channel, which the quantum erasure channel c&iiength QEC for the non-phase-erased qubits. When
be made to simulate by sending in t{{@), |1)} basis and (1 — ) = % this combination can be cloned by copy-
receiving in the{|0), 1), |2)} basis. This establishes that ing the phase-erased qubits (this introduces no additional
the classical capacit¢ of the QEC is exactly — e. disturbance since dephasing renders quantum data effec-

Another quantum channel for which the capacities carively classical), and splitting the remaining qubits be-
be computed exactly is thehase-erasure chann@PEC), tween two receivers. Each receiver thus possesses a good
in which, with probabilitye, the phase of the transmitted copy of all the dephased qubits and a sufficient number
qubit is erased without disturbing its amplitude. Thisof nonerased, nondephased qubits to simulate the erasure
may be described more formally by a superoperator fronpart of the channel. For appropriate values &fand
one- to two-qubit states, in which the second output qubit, all three capacities have distinct nontrivial values in
serves as a flag to indicate whether the first qubit has beghe mixed erasuyghase-erasure channel; Fig. 2(b) shows
subjected to a randomization of its phase. Thus on athis for the casé = e.

input2 X 2 density matrixp, the output will be the x 4 It might seem that at least the classical capacity of

density matrix ; the depolarizing channel and other simple channels ought
+ . .

p' =1 - e)p ® |00 + e p T Opo; o [1)(1]. to be known, and indeed that it should be equal to the

maximum classical mutual information that can be sent
(3) through a single use of the channel by optimizing over
Hereo, is the diagonal Pauli matrix which introducesra  input ensembles and output measurements. In the case of
relative phase between the spireigenstate$0) and|1)  the depolarizing channel, this one-shot capacity

2

of the first qubit. The PEC has unit classical capacity € € €

C =1 for all e because the input statd8) and |1) 1 - Hz(z) =1+ 5 |092<5>

remain perfectly distinguishable despite dephasing. The

qguantum capacities ar@ = Q, = 1 — € by arguments 4 <1 _ £>|ng<1 _ i) (5)
similar to those given for the plain erasure channel. 2 2

On the one handQ, can be no greater tham — € is the capacity of a classical binary symmetric channel
because the channel can be simulated by a noiseles$ crossover probability /2, obtained by using any two

quantum channel of rate — e supplemented by classical orthogonal states as inputs, and measuring the output in
communication. [Givem qubits, Alice uses the noiseless the same basis. However, we have not been able to
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rule out the possibility of achieving a higher capacitysize. A similar gap between perfect and asymptotically

by employing input states entangled among multiple usefaithful error correction occurs for the QEC’s classical

of the channel (cf. [13,14]). The possibility of entangledcapacity C = 1 — €, which is strictly greater than the

inputs, of course, does not exist for classical channelgate of any perfect classical erasure-correcting code in

and their capacity is strictly additive, in the sense that théhe limit of largen [17]. On the other hand, no gap

asymptotic capacity, as noted previously, is equal to thexists for the QEC’s quantum capaci, = 1 — € in

maximum mutual information that can be sent through ahe presence of two-way classical communication. Here,

single use of the channel. the teleportation protocol given earlier allows perfect
While nonadditivity of the classical capacity of quan- quantum transmission at a rate— r/n following any

tum channels is an open question, the quantum capacipattern of: erasures in a block of qubits.
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