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The quantum analog of the classical erasure channel provides a simple example of a ch
whose asymptotic capacity for faithful transmission of intact quantum states, with and wit
the assistance of a two-way classical side channel, can be computed exactly. We deriv
quantum and classical capacities for the quantum erasure channel and related channels, and c
them to the depolarizing channel, for which only upper and lower bounds on the capacitie
known. [S0031-9007(97)03003-2]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Dv
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Classical information theory, which deals with th
optimal use of classical channels to transmit classi
information, has recently been extended to include
study of quantum channels, and their optimal use, alon
in conjunction with classical channels, for communicati
not only classical information but also intact quantu
states, and for sharing entanglement between separ
observers. A classical (discrete, memoryless) channe
generally described by a set of conditional probabiliti
Psjjid, the probability of channel outputj given channel
input i. A quantum channel may be described [1,
by a trace-preserving, completely positive linear m
(superoperator)X from input-state density matrices t
output-state density matrices.

In classical information theory a channel’s capacity
the greatest asymptotic rate at which classical informat
can be sent through the channel with arbitrarily hi
reliability. More precisely the capacity (in bits) of
discrete memoryless channel can be defined as the gre
numberC such that for any rateR , C and any error
probability d . 0, there exist block sizesm and n and
an error-correcting code mappingm-bit strings into n
forward uses of the channel withmyn . R, such that
everym-bit string can be recovered with error probabili
less thand at the receiving end of the channel. It is we
known that backward communications, e.g., messag
from receiver to sender requesting retransmission w
an error has been detected, do not increase the forw
capacity for classical channels, although they are of
used in practice to reduce latency and complexity
the decoding processes. Another noteworthy feature
classical capacity is that it is equal to the maximu
over channel input distributions, of the mutual informatio
between channel input and output for asingle use of
the channel. Thus, the asymptotic capacity for relia
transmission when the channel is used many times
equal to the amount of information that can be transmit
unreliably in a single use of the channel.

For quantum channels, reliability is measured byfidelity
[2,3], the probability that the channel output would pa
a test for being the same as the input, conducted
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someone who knows what the input was. When a pu
state r ­ jcl kcj is sent into a quantum channelX ,
emerging as an (in general) mixed stater0 ­ X srd, the
fidelity of output relative to the input is

F ­ kcjr0jcl. (1)

Paralleling the definition of capacity for classical chan
nels, the quantum capacityQsX d of a quantum channel
X may be defined in an asymptotic fashion, as th
greatest numberQ such that for anyR , Q and any
d . 0, there exist block sizesm and n and a quantum
error-correcting code mapping statesjcl of m qubits
into n forward uses of the channel withmyn . R, such
that any statejcl can be recovered with fidelity at leas
1 2 d at the receiving end of the channel. The encodin
and decoding may be described mathematically as sup
operatorsE and D on blocks of quantum information
carriers, respectively, mapping fromm qubits into n
intermediate systems (which need not be qubits), each
which is then sent through an independent instance of
channel, and finally from then channel outputs back to
m qubits (cf. Fig. 1). Physically a superoperator corr
sponds to a unitary interaction of the quantum system
question with an external system or environment, initial
in a standard pure state. The superoperator formali
is broad enough to describe any physically realizab
treatment that can be applied to a quantum system.

FIG. 1. A pure input stater ­ jcl kcj of m qubits is encoded
by a quantum encoderE into the joint state ofn intermediate
systems, each of which passes through an independent insta
of the quantum channelX . The joint state is then decoded by
decoderD resulting in a (typically) mixed stater0 of m qubits,
whose fidelityF ­ kcjr0jcl relative to the input is evaluated.
This code has a ratemyn of 4y5.
© 1997 The American Physical Society 3217
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particular, mappings between different-sized Hilbe
spaces can be accommodated by adding dummy dim
sions to the smaller space. This happens explicitly inE

andD and also in channels such as the erasure chan
to be described in this paper.

The above definition ofQ is for a forward quantum
channel alone, unassisted by classical communicat
If we now allow the quantum channel to be assist
by classical communication, we can defineQ1 and Q2
as the asymptotic quantum capacities of a quant
channel assisted, respectively, by forward and by tw
way classical communication. We have shown [4] th
classical forward communication alone does not incre
the quantum capacity of any channel:QsX d ­ Q1sX d
for all X . Hence Q and Q1 can safely be denoted
by a single symbolQ. By contrastQ2, the quantum
capacity assisted by two-way classical communicati
can be greater thanQ, and is known to be positive
for some channels for whichQ is zero. Protocols for
exploiting Q2 typically do not involve a single encode
and decoder, but rather use multiple adaptive rounds
communication between the sender and receiver.
one-way and two-way capacitiesQ and Q2 are closely
related to the amounts of purified entanglement distillab
respectively, by one-way and by two-way entanglem
purification protocols from entangled mixed states sha
between two separated observers [4].

The three kinds of communication represented byQ,
Q2, andC differ both fundamentally and practically. Th
positivity of Q2 determines whether a channel can be us
to communicate intact quantum states and to establish
tanglement between separated observers if reliable sto
of quantum information is available. The positivity o
Q determines whether unreliable quantum storage can
made reliable, by encoding the data before it is stored
decoding it after it is retrieved. The impossibility of sen
ing messages backward in time precludes two-way pro
cols in this case.C, which we will now use to denote
the classical capacity of aquantumchannel, represent
the maximum rate of classical information transmissi
allowing arbitrary state preparations by the sender and
bitrary quantum measurements by the receiver, includ
preparations and measurements coherently spanning
tiple information carriers.

By definition, Q # Q2; by using orthogonal quantum
states to transmit classical bits, it follows thatQ # C
for all channels. No channels are known for whic
Q2 . C but we know of no proof that this is impossible
On the other hand, examples are known (see bel
of channels for whichQ , Q2 and for whichQ2 , C
(cf. [4], Sec. VII).

The main features of quantum error correction a
illustrated by two simple channels, operating on a Hilb
space of dimension 2, and analogous, respectively, to
classical binary symmetric and binary erasure channel
3218
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(i) The depolarizing channel—which with probability
e replaces the incoming qubit by a qubit in a random
state, without telling the receiver on which qubits thi
randomization has been performed; and

(ii) The quantum erasure channel (QEC)[5]—which
with probability e replaces the incoming qubit by an
“erasure state”j2l orthogonal to bothj0l and j1l, thereby
both erasing the qubit and informing the receiver that
has been erased.

Unfortunately, exact expressions are not known for an
of the capacities of the depolarizing channel for gener
e, only upper and lower bounds [4,6–8]. However
the known bounds are tight enough to show that th
depolarizing channel exhibits the following sequence o
thresholds:

(i) For e , 0.25408, all three capacitiesQ, Q2, andC
are positive [4,9].

(ii) For 1
3 , e ,

2
3 , the one-way quantum capacityQ

vanishes butQ2 andC remain positive [4,6–8].
(iii) For 2

3 # e , 1, both quantum capacities vanish
but the classical capacity remains positive [4].

(iv) At e ­ 1 (complete depolarization) all capacities
vanish.

The capacities of the QEC, by contrast, can be com
putedexactly[see Fig. 2(a)] and are given by

Q ­ maxh0, 1 2 2ej,

Q2 ­ C ­ 1 2 e .
(2)

To show that the QEC’s one-way capacityQ must
vanish for e $

1
2 suppose the contrary. The sende

(“Alice”) could then clone quantum information faithfully
by dividing it between two receivers (e.g., “Bob” and
“Charlie”), each of whom would think he was seeing th
source through a QEC ofe $

1
2 . In more detail (cf. [4],

Sec. IV), let Alice toss a fair coin for each qubit, and i
the result is heads (tails) send the qubit to Bob (Charli
through an2e 2 1 QEC while sending a pure erasure
state to Charlie (Bob). This implements ane $

1
2 QEC

to each receiver. Such channels must have zero capa

FIG. 2. (a) Exact classical and quantum capacities for qua
tum erasure channel vs erasure probabilitye. Also shown is
the thresholdtyn ­ 1y3 above which quantum codes, in the
limit of large n, cannot correct all patterns oft or fewer era-
sures in code words ofn qubits. (b) Same capacities for the
mixed erasureyphase-erasure channel with equal probabilitie
of erasure (e) and phase erasure (d) vs total erasure probability
d 1 e.
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to prevent cloning. Linear interpolation between the 50
QEC and the noiseless channel [10] yields an upper bou
Q # 1 2 2e, which coincides with the lower bound
obtained by using one-way random hash coding [11].
such codes, two bits of redundancy per erased qubit
necessary and sufficient for Bob to recover the phase
amplitude of all erased qubits with probability tending t
1 in the limit of large block size.

The QEC’s two-way quantum capacity must be
least 1 2 e by a straightforward construction in which
the sender (“Alice”) uses the QEC, in conjunction wit
classical communication, to share1 2 e good Einstein-
Podolsky-Rosen (EPR) pairs [such ass1y

p
2d j0A0B 1

1A1Bl] with the receiver (“Bob”) per channel use. Thes
can then be used to teleport quantum information to B
at the same rate1 2 e. Conversely Alice and Bob could
start with an initial supply ofns1 2 ed perfectly entanged
EPR pairs, then use these pairs in conjunction w
teleportation to simulaten instances of a QEC of strength
e. If Q2 for this channel were greater than1 2 e,
Alice and Bob would have been able to deterministica
increase their entanglement by purely local actions a
classical communication, which is impossible (cf. [4
Sec. II.A). This establishes thatQ2 is exactly1 2 e.

Finally, the classical capacityC of the QEC can be
no greater than1 2 e because of Holevo’s upper boun
[12] on the classical capacity of the1 2 e nonerased
qubits. Of course,1 2 e is also the capacity of aclassical
erasure channel, which the quantum erasure channel
be made to simulate by sending in thehj0l, j1lj basis and
receiving in thehj0l, j1l, j2lj basis. This establishes tha
the classical capacityC of the QEC is exactly1 2 e.

Another quantum channel for which the capacities c
be computed exactly is thephase-erasure channel(PEC),
in which, with probabilitye, the phase of the transmitted
qubit is erased without disturbing its amplitude. Th
may be described more formally by a superoperator fro
one- to two-qubit states, in which the second output qu
serves as a flag to indicate whether the first qubit has b
subjected to a randomization of its phase. Thus on
input 2 3 2 density matrixr, the output will be the4 3 4
density matrix

r0 ­ s1 2 edr ≠ j0l k0j 1 e
r 1 szrsy

z

2
≠ j1l k1j.

(3)
Heresz is the diagonal Pauli matrix which introduces ap

relative phase between the spin-z eigenstatesj0l and j1l
of the first qubit. The PEC has unit classical capac
C ­ 1 for all e because the input statesj0l and j1l
remain perfectly distinguishable despite dephasing. T
quantum capacities areQ ­ Q2 ­ 1 2 e by arguments
similar to those given for the plain erasure chann
On the one hand,Q2 can be no greater than1 2 e

because the channel can be simulated by a noise
quantum channel of rate1 2 e supplemented by classica
communication. [Givenn qubits, Alice uses the noiseles
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channelns1 2 ed times to transmitns1 2 ed of the qubits
intact, then measures remainingne qubits in thez basis
and transmits the results to Bob classically, allowing hi
to construct dephased versions of these qubits.] On
other hand,Q ­ 1 2 e can be achieved asymptotically
by one-way hash coding [11] because each dephased q
contributes one bit of entropy to the syndrome. The n
cloning argument used to separateQ from Q2 for the QEC
does not apply to the PEC (nor is it needed) because
PEC’s preservation of the amplitude prevents a noisele
quantum channel from being split into independent PEC
to two or more receivers.

Finally, the QEC and PEC can be generalized to
mixed erasureyphase-erasure channel that erases qub
with probabilitye and phase erases them with probabilit
d, transmitting them undisturbed with probability1 2

d 2 e $ 0. By arguments similar to those already given
the capacities of this channel are [see Fig. 2(b)]

Q ­ maxh0, 1 2 d 2 2ej,

Q2 ­ 1 2 d 2 e , (4)

C ­ 1 2 e .

The upper bound onQ follows from a slightly more
complex no-cloning argument. Consider a series-para
combination which begins with a PEC of strengthd,
and is followed by a parallel combination of a noiseles
channel for the phase-erased qubits and anes1 2 dd-
strength QEC for the non-phase-erased qubits. Wh
es1 2 dd $

1
2 , this combination can be cloned by copy

ing the phase-erased qubits (this introduces no additio
disturbance since dephasing renders quantum data ef
tively classical), and splitting the remaining qubits be
tween two receivers. Each receiver thus possesses a g
copy of all the dephased qubits and a sufficient numb
of nonerased, nondephased qubits to simulate the era
part of the channel. For appropriate values ofd and
e, all three capacities have distinct nontrivial values
the mixed erasureyphase-erasure channel; Fig. 2(b) show
this for the cased ­ e.

It might seem that at least the classical capacity
the depolarizing channel and other simple channels ou
to be known, and indeed that it should be equal to t
maximum classical mutual information that can be se
through a single use of the channel by optimizing ov
input ensembles and output measurements. In the cas
the depolarizing channel, this one-shot capacity

1 2 H2

µ
e

2

∂
­ 1 1

e

2
log2

µ
e

2

∂
1

µ
1 2

e

2

∂
log2

µ
1 2

e

2

∂
(5)

is the capacity of a classical binary symmetric chann
of crossover probabilityey2, obtained by using any two
orthogonal states as inputs, and measuring the outpu
the same basis. However, we have not been able
3219
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rule out the possibility of achieving a higher capaci
by employing input states entangled among multiple us
of the channel (cf. [13,14]). The possibility of entangle
inputs, of course, does not exist for classical channe
and their capacity is strictly additive, in the sense that t
asymptotic capacity, as noted previously, is equal to t
maximum mutual information that can be sent through
single use of the channel.

While nonadditivity of the classical capacity of quan
tum channels is an open question, the quantum capa
Q is definitely known to be nonadditive, in the sens
that it sometimes exceeds the maximumcoherent infor-
mation [15] that can be sent through a single use of
quantum channel. Coherent information, which is d
fined as the excess of the output state’s entropy o
the environment’s entropy, is a natural candidate for
measure of distinctively quantum mutual information b
cause, as Schumacher and Nielsen show [15], it can
be increased by further processing of the channel outp
even with the help of classical communication. Nona
ditivity of quantum capacity is known to occur, in par
ticular, for the simple depolarizing channel in the rang
0.25239 , e , 0.25408, whereQ is positive but the one-
shot coherent information is identically zero (by a 25-sh
use of the depolarizing channel, Ref. [9] shows the cap
ity is positive in this range). The situation is simpler fo
the QEC, where the maximal coherent information equ
the quantum capacityQ for all e: For e ,

1
2 , a maxi-

mal coherent information equal toQ can be realized by
sending a random qubit state into the QEC. Fore $

1
2 it

can be realized by sending a fixed qubit, e.g.,j0l, into the
channel.

A third notion, besides quantum capacity and cohere
information, associated with the ability of channels
transmit intact quantum states, is the existence of co
able to correct all patterns oft or fewer errors in code
words of sizen. Rains [16] has shown that, for error
in unknown locations (a situation analogous to the simp
depolarizing channel), such codes cannot exist whent .

sn 1 1dy6. Since a quantum code can correctt errors
at unknown locations iff the same code can correct2t
errors at known locations [5] (a situation analogous
the QEC), there is a range1y3 , e , 1y2 over which
the QEC’s capacityC remains positive even though
no code can correct all patterns ofne erasures in a
block of size n. This is possible because capacity
defined in terms of asymptotically faithful transmission
which can tolerate some probability of uncorrected erro
provided it tends to zero in the limit of large block
3220
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size. A similar gap between perfect and asymptotica
faithful error correction occurs for the QEC’s classic
capacity C ­ 1 2 e, which is strictly greater than the
rate of any perfect classical erasure-correcting code
the limit of large n [17]. On the other hand, no gap
exists for the QEC’s quantum capacityQ2 ­ 1 2 e in
the presence of two-way classical communication. He
the teleportation protocol given earlier allows perfe
quantum transmission at a rate1 2 tyn following any
pattern oft erasures in a block ofn qubits.
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