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3D XY and Lowest Landau Level Fluctuations in DeoxygenatedBa;Cu307_5 Thin Films
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Conductivity measurements reflect vortex solid melting in YB&O,_; films. Field-independent
glass exponenty, = 1.9 and z, = 4.0 describe the transitiof,(H) for 0 < H = 26 T. At low
fields, 3D XY exponentsvyy = 0.63 and zxy = 1.25 are also observed, withyxy smaller than
expected. These compete with glass scaling according to multicritical theory. A predicted power-law
form of T,(H) is observed for0.5T, < T, < T.. ForT, < 0.5T,, 3D XY scaling fails, but a self-
consistent lowest Landau level analysis becomes possible, obtafgiGg) with positive curvature.
[S0031-9007(97)02912-8]

PACS numbers: 74.25.Bt, 74.25.Dw, 74.40.+k, 74.72.—h

The nature of fluctuations near the superconducting tandJ-E characteristics [10,13]. A crossover is expected
normal state transition in high-temperature supercondudetween the low-field (30XY) and high-field (LLL) be-
tors (HTSCs) is still a matter of controversy. Several dis-haviors, and its clarification is fundamental in the investi-
tinct fluctuation types and regions have been proposedjation of HTSC fluctuations [14].

e.g., 3DXY fluctuations at low fields, lowest Landau level It may appear that glass fluctuations ndafH) only
(LLL) fluctuations at high fields, and glasslike fluctua- complicate the story, since they compete with both the
tions (for disordered HTSCs) near the finite-field transi-low- and high-field fluctuations. However, in this Letter
tion 7,(H). However, experimental analyses based uponve suggest, to the contrary, that glass fluctuatibatp
the different scaling theories lead to conflicting resultsto identify low- and high-field behaviors, through the
This situation is most evident for competing 3lY and use of multicritical scaling theory. Such theories are
LLL fluctuations,both of which are supported experimen- applicable when fluctuations of different types compete
tally, in the same region of the phase diagram, in spite ofor dominance. For example, in the low-field linift, (H)
being incompatible [1]. joins T, = T,(H = 0), forcing the distinct fluctuation

The 3D XY transition is driven by phase fluctuations types to coexist near the multicritical poifit [2]. In this
of a complex order parameter (OP) which fall into thepaper, multicritical predictions augment the 3y and
universality class of the\ transition in“He. The zero- LLL theories, thus clarifying their applicability to HTSCs.
field, “intermediate” (nonelectrodynamic) phase fluctua- To address these issues, it is desirable to work in both
tions of the HTSCs are thought to be of this type [2]. Atthe low- and high-field regions of the phase diagram. In
T = T. (and H = 0), these fluctuations diverge in size, YBa,Cw;O;_5 samples,H.,(0) is very large(=100 T)
driving the resistive phase transition. Recent experimenfor “optimal” (6 = 0.05) stoichiometry. We therefore
tal evidence supporting this picture is found in specificfocus on deoxygenated films, for which magnetic field
heat [3,4], magnetization [4,5], penetration depth [6], andscales are relatively small, allowirfg.»(T) to be accessed
current-voltage-E) measurements [4,7]. The finite-field over a wide temperature range. Three optimadxis
transition, (H), which is similarly driven by phase fluc- YBa,Cu;0;-5 films, approximately 4000 A thick, were
tuations of the OP, joins smoothly t6. = T,(H = 0).  prepared, and then deoxygenated, as described elsewhere
However, the glass and 3®Y fluctuations exhibit dis- [15]. Films with resulting stoichiometries of = 0.24,
tinct scaling functions and exponents [2]. 0.57, and0.59 (*=0.05) were produced, corresponding to

Fluctuations of the ORmplitudeoccur near the upper T, of 77, 61, and 56 K, respectively. The films were pat-
critical (mean-field) temperaturg.,(H). These fluctua- terned intol00 X 2000 wm bridges using laser ablation.
tions drive the Cooper pair density to zero, but do not cordsothermal/-E and conductivity( o) curves were obtained
respond to a true transition; superconducting order vardsing a conventional four-point geometry. As typical for
ishes at the slightly lower temperatufg(H). Inthe low- underdoped samples, the normal state contribution could
field region, the distinction between OP amplitude andhot be eliminated fronvr, as it is not yet well character-
phase fluctuations results in the dominance ofX3Dcrit-  ized. However, this background contribution should not
ical behavior neal’ = T.. At high fields, this distinction affect the present results greatly, in the temperature range
is not present, yielding a different type of behavior, mostof interest, due to the insulating nature of the normal state.
conveniently described in terms of the Ginzburg-LandauMagnetic fields were applied perpendicular to the film sur-
LLL approximation, with its corresponding scaling theory face (parallel to the axis) in the rang® < H = 26 T.

[8,9]. Experimental evidence in support of this behavior Transition temperatures,, corresponding to the con-
is found in specific heat [10—12], magnetization [10,12],tinuous vortex solid melting transition, were deduced at
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each applied field using the scaling ansatz of Fisher, Fishewe develop here a more reliable “crossing-point” scaling
and Huse (FFH) [2]. (Note that this ansatz is isomor-technique by extending the 3B} analysis to finite fields
phic with any two-exponent scaling theory of the melt-[20]. The subsequent field scaling hypothesis involves
ing transition.) The appropriately scaled conductivity isthe 3DXY scaling variable [2,4]x = (H*/H)"/?"» (T —
given by (J/E) |T — T,|"<“~Y, while the scaled current T,.)/T.. The scaling of the ohmic conductivityq can

is (J/T)|T — T,|"*:. Here, v, and z, are the static then be written asro (H/H*)®» /2 = 5(x), for which
and dynamic glass scaling exponents, respectively. Thihe asymptotic behavior is known [4,20§(x) ~ (x +
H,(T) phase boundaries determined in this way are show) "%~ asx — —1, corresponding t&@ — T,(H), and

in Fig. 1. The obtained scaling exponents are indepers(x) ~ x =" ~1 asx — 400, corresponding téf — 0.

dent of 6 [15] andH, with values ofrv, = 1.8-1.95 and The crossing-point method proceeds from the definition
zg = 4.0-4.1. This is consistent with the notion of a of x: If H > 0 andT = T,, thenx = 0 and must there-
single, 3D, glass universality class. fore be independent aff. It follows that, in this limit,

As a first application of multicritical scaling, we note oq (H/H*)®~1/2 should also be independentiéf Data
that the form ofH,(T) [the inverse ofl,(H)] is specified setsoq(T), obtained at constant fieldd, must then all
at low fields by the 3IXY theory [2,4]:H,(T) = H*(1 — cross atl’ = T, when plotted as in Fig. 2, provided that
T/T.)*,wherevyy (# v,)isthe 3DXY static exponent. zyxy has been chosen correctly. As observed in the insets,
The phase boundaries satisfy this relation over a widéhe crossing-point method places strong constraints on the
temperature rangé).57, = T = T,, as shown in Fig. 1 exponent and transition temperature, which we identify
(inset), identifying the crossover temperatdie= 0.57.  aszxy = 1.25 * 0.05 andT. = 60.8 = 0.4, for the film
as the limit of 3DXY scaling. The slope of these curves shown. These results are corroborated by low-field data
gives a (sample-averaged) exponegt = 0.63 = 0.04, (H = 0.1 T) [20]. Since 3DXY fluctuations are most
which compares favorably with the expected value ofprevalent neaf = T, itis helpful to think of this method
0.669 [16]. This is then used to determine the sampleas optimizing scaling near this temperature. We emphasize
dependent field scal&*. For the films used herdf*  thatzxy obtained in this way disagrees with the expected
is in the range 7-19 T, as compared to optimal samplef] diffusive dynamics(zxy = 2), and also with other
for which H* is on the order of 50 T. The crossover experimental observations [19,21]. It is our opinion that
field H, = H,(T = T,) was studied previously, and was the crossing-point method can achieve better results than
suggested to separate 3D from 2D behavior alBi¢l’)  those analyses due to the incorporation of finite-field data
[17,18]. However, the field independence of the glassn the scaling procedure.
transition does not corroborate this conclusion. Below, The estimates forxy, vxy, and7., determined above,
we demonstrate instead that, for fielt#ls<< H,, the 3D  can be checked through a full scaling analysisref, as
XY description is in good agreement with the data while shown in Fig. 3. For that film, the initial estimates could
for H > H,, a self-consistent LLL description becomes not be improved upon. The fitting is excellent at all low
possible. fields, becoming optimal & = T.. For comparison, the

It is possible to determin€. at zero field using the best fit, using the expected exponents = 2 andvyy =
FFH ansatz [2]. However, this procedure is known to be.669, is shown in the inset. As found in previous analyses
come uncontrolled at very low fields, obtaining surprising[4], scaling using:xy = 2 suffers at the lowest fields and,
results, such as nonuniversal exponents [19]. Therefore,
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genated YBgCw; 0, thin films. Lines are a guide to the eye. a single point, identifying bothryy and 7.. Poor crossing
The inset shows the same phase boundaries plotted logarithmiehavior is observed for (slightly) incorrect values gfy
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FIG. 3. Full 3DXY scal_lng Of the ohmic conductivity-q f.OI’ ing parametersx, and Ve respectively, evaluated af =
the § = 0.57 film. Scaling is successful only for low fields T,(H). The dashed line indicates the crosso¥y. Scaling
(H < H, = 5.1 T). Expected asymptotic behaviors are shownyariables should remain field independent in their respective
as solid lines. The inset shows the poor scaling obtained usingcaling regions. FoH < H,, 3D XY scaling is self-consistent,
the expected exponenigy = 0.669 andzyy = 2. while for H > H,,, LLL scaling is self-consistent.

perhaps more importantly, ned;. The scaling results write asoq(HT?/H*T?)'/* = F3p(y). In analogy with
found here are therefore an improvement over previouthe 3DXY caseoq(HT2/H*T?)'/> must be independent
analyses. of H whenT = T.,(H). To begin, a value off., is
The crossover between low- and high-field behaviorfirst assumedfor a particular reference fieldly. The
observed above using multicritical scaling, can be formutemperatured.,(H) consistent with this choice are then
lated more conveniently as follows. Since all sample deebtained for other field&H # Hy). This is accomplished
pendence of the 3IXY scaling variablex is absorbed by plotting o (HT2/H*T?)'/* vs T — T,(H) for (fixed
into the characteristic field*, the divergence obrg in H) oo (T) data sets, then adjustiri,(H) for each field
Fig. 3 must occur at a universal value of= —1 [20].  until a crossing occurs al' — T.(H) = 0, similar to
Multicritical self-consistency therefore requires the scal-Fig. 2. For fieldsH # Hy, T.»(H) is thus a function of
ing variablex, [i.e., x evaluated along the phase bound-the original choice off.»(Hy), reducing the following fit
ary T,(H)] to remain field independent in the 3®Y to a single parameter. All',»(H) curves found in this
scaling region, as shown in the lower half of Fig. 4. Er-way exhibit positive curvature. It is once again helpful to
rors in the determination of, are magnified at the lowest view the crossing point as a method for optimizing scaling
fields, where the differencé. — T,(H) is small. Devia- in the most essential temperature region; in the LLL case
tion from 3D XY multicritical self-consistency becomes this is nearT.,(H).
apparent folH > H,,. We are now left with one fitting parameteF,,(Hy),
Several fluctuation models are candidates for describwhich cannot be estimated from the crossing-point method
ing the upturn ofH,(T) whenH, > H, in Fig. 1 (inset). alone. The full LLL scaling procedure is now used to de-
Here, we consider the 3D LLL model, using multicriti- termine the single fitting parameter, while simultaneously
cal theory to place restrictions on the allowable scalingrequiring multicritical self-consistency. In analogy with
The scaling technique is constructed in analogy with thehe 3D XY case, this means that the scaling variaple
preceding 3DXY analysis. In the LLL theory, a natural [i.e., y evaluated af" = T,(H)] must remain field inde-
scaling parameter emerges [8,8]= (H*T./HT)**[T —  pendent in the LLL scaling region. We find that, by using
T.»(H)]/T., whereT. andH* have been used here to make T.,(H) obtained from the crossing-point method, multi-
y dimensionless. In this analysis it73,(H) which must  critical self-consistencgannot be met at low fieldsSince
be determined by scaling. Althoudh,(H) is often as- the LLL theory has its greatest justification at high fields,
sumed to be linear [8,9], this restriction becomes too sewe attempt, instead, to obtain self-consistency in the high-
vere for the underdoped samples used here. Instead, a Llfleld region. The outcome of the final scaling procedure
crossing-point method is now constructed, which allowss shown in Fig. 5. The (approximate) field independence
the form of T.,(H) to be ascertained. As described be-of y, is evident for the entire high-field range > H,,, as
low, this analysis obtaing,,(H) curves with positive cur- shown in the top half of Fig. 4.7.,(H) is obtained with
vature—an interesting feature which has previously beeonly small uncertainty, as shown in Fig. 5 (inset).
associated only with magnetically doped HTSCs [22]. We comment finally on the difference between the pres-
The LLL crossing-point method is described as follows.ent results and those of Refs. [10,13]. In our work, LLL
We make use of the 3D LLL scaling ansatz [9] which wescaling is found to be multicritically self-consistent only at
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FIG. 5. Full LLL scaling of oq for the 6 = 0.57 film.
Multicritically self-consistent scaling is successful only for high
fields(H > H, = 5.1 T). The inset show§.,(H) andT,(H)
for the same film. T.,(H) is speculative foild < H,.]
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