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3D XY and Lowest Landau Level Fluctuations in DeoxygenatedYBa2Cu3O72d Thin Films
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Conductivity measurements reflect vortex solid melting in YBa2Cu3O72d films. Field-independent
glass exponentsng . 1.9 and zg . 4.0 describe the transitionTgsHd for 0 , H # 26 T. At low
fields, 3D XY exponentsnXY . 0.63 and zXY . 1.25 are also observed, withzXY smaller than
expected. These compete with glass scaling according to multicritical theory. A predicted power-law
form of TgsHd is observed for0.5Tc , Tg , Tc. For Tg , 0.5Tc, 3D XY scaling fails, but a self-
consistent lowest Landau level analysis becomes possible, obtainingTc2sHd with positive curvature.
[S0031-9007(97)02912-8]

PACS numbers: 74.25.Bt, 74.25.Dw, 74.40.+k, 74.72.–h
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The nature of fluctuations near the superconducting
normal state transition in high-temperature supercond
tors (HTSCs) is still a matter of controversy. Several d
tinct fluctuation types and regions have been propos
e.g., 3DXY fluctuations at low fields, lowest Landau lev
(LLL) fluctuations at high fields, and glasslike fluctu
tions (for disordered HTSCs) near the finite-field tran
tion TgsHd. However, experimental analyses based up
the different scaling theories lead to conflicting resu
This situation is most evident for competing 3DXY and
LLL fluctuations,bothof which are supported experimen
tally, in the same region of the phase diagram, in spite
being incompatible [1].

The 3D XY transition is driven by phase fluctuation
of a complex order parameter (OP) which fall into t
universality class of thel transition in 4He. The zero-
field, “intermediate” (nonelectrodynamic) phase fluctu
tions of the HTSCs are thought to be of this type [2].
T ­ Tc (and H ­ 0), these fluctuations diverge in siz
driving the resistive phase transition. Recent experim
tal evidence supporting this picture is found in spec
heat [3,4], magnetization [4,5], penetration depth [6], a
current-voltage (J-E) measurements [4,7]. The finite-fiel
transitionTgsHd, which is similarly driven by phase fluc
tuations of the OP, joins smoothly toTc ; TgsH ­ 0d.
However, the glass and 3DXY fluctuations exhibit dis-
tinct scaling functions and exponents [2].

Fluctuations of the OPamplitudeoccur near the uppe
critical (mean-field) temperatureTc2sHd. These fluctua-
tions drive the Cooper pair density to zero, but do not c
respond to a true transition; superconducting order v
ishes at the slightly lower temperatureTgsHd. In the low-
field region, the distinction between OP amplitude a
phase fluctuations results in the dominance of 3DXY crit-
ical behavior nearT ­ Tc. At high fields, this distinction
is not present, yielding a different type of behavior, mo
conveniently described in terms of the Ginzburg-Land
LLL approximation, with its corresponding scaling theo
[8,9]. Experimental evidence in support of this behav
is found in specific heat [10–12], magnetization [10,1
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andJ-E characteristics [10,13]. A crossover is expect
between the low-field (3DXY ) and high-field (LLL) be-
haviors, and its clarification is fundamental in the inves
gation of HTSC fluctuations [14].

It may appear that glass fluctuations nearTgsHd only
complicate the story, since they compete with both
low- and high-field fluctuations. However, in this Lette
we suggest, to the contrary, that glass fluctuationshelp
to identify low- and high-field behaviors, through th
use of multicritical scaling theory. Such theories a
applicable when fluctuations of different types compe
for dominance. For example, in the low-field limit,TgsHd
joins Tc ; TgsH ­ 0d, forcing the distinct fluctuation
types to coexist near the multicritical pointTc [2]. In this
paper, multicritical predictions augment the 3DXY and
LLL theories, thus clarifying their applicability to HTSCs

To address these issues, it is desirable to work in b
the low- and high-field regions of the phase diagram.
YBa2Cu3O72d samples,Hc2s0d is very larges*100 Td
for “optimal” sd . 0.05d stoichiometry. We therefore
focus on deoxygenated films, for which magnetic fie
scales are relatively small, allowingHc2sT d to be accessed
over a wide temperature range. Three optimalc-axis
YBa2Cu3O72d films, approximately 4000 Å thick, were
prepared, and then deoxygenated, as described elsew
[15]. Films with resulting stoichiometries ofd . 0.24,
0.57, and0.59 s60.05d were produced, corresponding t
Tc of 77, 61, and 56 K, respectively. The films were pa
terned into100 3 2000 mm bridges using laser ablation
IsothermalJ-E and conductivityssd curves were obtained
using a conventional four-point geometry. As typical f
underdoped samples, the normal state contribution co
not be eliminated froms, as it is not yet well character
ized. However, this background contribution should n
affect the present results greatly, in the temperature ra
of interest, due to the insulating nature of the normal sta
Magnetic fields were applied perpendicular to the film s
face (parallel to thec axis) in the range0 , H # 26 T.

Transition temperaturesTg, corresponding to the con
tinuous vortex solid melting transition, were deduced
© 1997 The American Physical Society 3173
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each applied field using the scaling ansatz of Fisher, Fis
and Huse (FFH) [2]. (Note that this ansatz is isom
phic with any two-exponent scaling theory of the me
ing transition.) The appropriately scaled conductivity
given bysJyEd jT 2 Tgjngszg21d, while the scaled curren
is sJyT d jT 2 Tgj22ng . Here, ng and zg are the static
and dynamic glass scaling exponents, respectively.
HgsT d phase boundaries determined in this way are sho
in Fig. 1. The obtained scaling exponents are indep
dent ofd [15] andH, with values ofng ­ 1.8 1.95 and
zg ­ 4.0 4.1. This is consistent with the notion of
single, 3D, glass universality class.

As a first application of multicritical scaling, we not
that the form ofHgsT d [the inverse ofTgsHd] is specified
at low fields by the 3DXY theory [2,4]:HgsT d ­ Hps1 2

TyTcd2nXY , wherenXY sfi ngd is the 3DXY static exponent.
The phase boundaries satisfy this relation over a w
temperature range,0.5Tc # T # Tc, as shown in Fig. 1
(inset), identifying the crossover temperatureTb . 0.5Tc

as the limit of 3DXY scaling. The slope of these curve
gives a (sample-averaged) exponentnXY ­ 0.63 6 0.04,
which compares favorably with the expected value
0.669 [16]. This is then used to determine the samp
dependent field scaleHp. For the films used here,Hp

is in the range 7–19 T, as compared to optimal samp
for which Hp is on the order of 50 T. The crossove
field Hb ; HgsT ­ Tbd was studied previously, and wa
suggested to separate 3D from 2D behavior alongHgsT d
[17,18]. However, the field independence of the gla
transition does not corroborate this conclusion. Belo
we demonstrate instead that, for fieldsH , Hb , the 3D
XY description is in good agreement with the data wh
for H . Hb , a self-consistent LLL description become
possible.

It is possible to determineTc at zero field using the
FFH ansatz [2]. However, this procedure is known to b
come uncontrolled at very low fields, obtaining surprisi
results, such as nonuniversal exponents [19]. Theref

FIG. 1. Superconducting phase boundaries for three deo
genated YBa2Cu3O72d thin films. Lines are a guide to the eye
The inset shows the same phase boundaries plotted logarit
cally. Power-law behavior is evident forH , Hb .
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we develop here a more reliable “crossing-point” scalin
technique by extending the 3DXY analysis to finite fields
[20]. The subsequent field scaling hypothesis involv
the 3DXY scaling variable [2,4]:x ­ sHpyHd1y2nXY sT 2

TcdyTc. The scaling of the ohmic conductivitysV can
then be written assVsHyHpdszXY 21dy2 ­ s̃sxd, for which
the asymptotic behavior is known [4,20]:s̃sxd , sx 1

1d2ngszg21d asx ! 21, corresponding toT ! TgsHd, and
s̃sxd , x2nXY szXY 21d asx ! 1`, corresponding toH ! 0.

The crossing-point method proceeds from the definiti
of x: If H . 0 andT ­ Tc, thenx ­ 0 and must there-
fore be independent ofH. It follows that, in this limit,
sVsHyHpdszXY 21dy2 should also be independent ofH. Data
setssVsT d, obtained at constant fieldsH, must then all
cross atT ­ Tc when plotted as in Fig. 2, provided tha
zXY has been chosen correctly. As observed in the ins
the crossing-point method places strong constraints on
exponent and transition temperature, which we ident
aszXY ­ 1.25 6 0.05 andTc ­ 60.8 6 0.4, for the film
shown. These results are corroborated by low-field d
sH # 0.1 Td [20]. Since 3DXY fluctuations are most
prevalent nearT ­ Tc, it is helpful to think of this method
as optimizing scaling near this temperature. We emphas
that zXY obtained in this way disagrees with the expect
[2] diffusive dynamicsszXY ­ 2d, and also with other
experimental observations [19,21]. It is our opinion th
the crossing-point method can achieve better results t
those analyses due to the incorporation of finite-field da
in the scaling procedure.

The estimates forzXY , nXY , andTc, determined above,
can be checked through a full scaling analysis ofsV , as
shown in Fig. 3. For that film, the initial estimates coul
not be improved upon. The fitting is excellent at all low
fields, becoming optimal atT ­ Tc. For comparison, the
best fit, using the expected exponentszXY ­ 2 andnXY ­
0.669, is shown in the inset. As found in previous analys
[4], scaling usingzXY ­ 2 suffers at the lowest fields and

FIG. 2. 3D XY crossing-point method, shown for thed ­
0.57 film. Symbols correspond to different fields: 1, 2, 3, 4
5 T. The appropriate choice ofzXY causes lines to cross a
a single point, identifying bothzXY and Tc. Poor crossing
behavior is observed for (slightly) incorrect values ofzXY
(insets).
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FIG. 3. Full 3DXY scaling of the ohmic conductivitysV for
the d . 0.57 film. Scaling is successful only for low field
sH , Hb . 5.1 Td. Expected asymptotic behaviors are sho
as solid lines. The inset shows the poor scaling obtained u
the expected exponentsnXY ­ 0.669 andzXY ­ 2.

perhaps more importantly, nearTc. The scaling results
found here are therefore an improvement over previ
analyses.

The crossover between low- and high-field behav
observed above using multicritical scaling, can be form
lated more conveniently as follows. Since all sample
pendence of the 3DXY scaling variablex is absorbed
into the characteristic fieldHp, the divergence ofsV in
Fig. 3 must occur at a universal value ofx ­ 21 [20].
Multicritical self-consistency therefore requires the sc
ing variablexg [i.e., x evaluated along the phase boun
ary TgsHd] to remain field independent in the 3DXY
scaling region, as shown in the lower half of Fig. 4. E
rors in the determination ofxg are magnified at the lowes
fields, where the differenceTc 2 TgsHd is small. Devia-
tion from 3D XY multicritical self-consistency become
apparent forH . Hb .

Several fluctuation models are candidates for desc
ing the upturn ofHgsTd whenHg . Hb in Fig. 1 (inset).
Here, we consider the 3D LLL model, using multicrit
cal theory to place restrictions on the allowable scali
The scaling technique is constructed in analogy with
preceding 3DXY analysis. In the LLL theory, a natura
scaling parameter emerges [8,9]:y ­ sHpTcyHT d2y3fT 2

Tc2sHdgyTc, whereTc andHp have been used here to ma
y dimensionless. In this analysis it isTc2sHd which must
be determined by scaling. AlthoughTc2sHd is often as-
sumed to be linear [8,9], this restriction becomes too
vere for the underdoped samples used here. Instead, a
crossing-point method is now constructed, which allo
the form of Tc2sHd to be ascertained. As described b
low, this analysis obtainsTc2sHd curves with positive cur-
vature—an interesting feature which has previously b
associated only with magnetically doped HTSCs [22].

The LLL crossing-point method is described as follow
We make use of the 3D LLL scaling ansatz [9] which w
n
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FIG. 4. Multicritical self-consistency: 3DXY and LLL scal-
ing parametersxg and yg, respectively, evaluated atT ­
TgsHd. The dashed line indicates the crossoverHb. Scaling
variables should remain field independent in their respecti
scaling regions. ForH , Hb, 3D XY scaling is self-consistent,
while for H . Hb, LLL scaling is self-consistent.

write assVsHT2
c yHpT2d1y3 ­ F3Ds yd. In analogy with

the 3DXY case,sVsHT2
c yHpT2d1y3 must be independent

of H when T ­ Tc2sHd. To begin, a value ofTc2 is
first assumedfor a particular reference fieldH0. The
temperaturesTc2sHd consistent with this choice are then
obtained for other fieldssH fi H0d. This is accomplished
by plotting sVsHT2

c yHpT2d1y3 vs T 2 Tc2sHd for (fixed
H) sVsTd data sets, then adjustingTc2sHd for each field
until a crossing occurs atT 2 Tc2sHd ­ 0, similar to
Fig. 2. For fieldsH fi H0, Tc2sHd is thus a function of
the original choice ofTc2sH0d, reducing the following fit
to a single parameter. AllTc2sHd curves found in this
way exhibit positive curvature. It is once again helpful to
view the crossing point as a method for optimizing scalin
in the most essential temperature region; in the LLL ca
this is nearTc2sHd.

We are now left with one fitting parameter,Tc2sH0d,
which cannot be estimated from the crossing-point meth
alone. The full LLL scaling procedure is now used to de
termine the single fitting parameter, while simultaneous
requiring multicritical self-consistency. In analogy with
the 3D XY case, this means that the scaling variableyg

[i.e., y evaluated atT ­ TgsHd] must remain field inde-
pendent in the LLL scaling region. We find that, by usin
Tc2sHd obtained from the crossing-point method, multi
critical self-consistencycannot be met at low fields. Since
the LLL theory has its greatest justification at high fields
we attempt, instead, to obtain self-consistency in the hig
field region. The outcome of the final scaling procedur
is shown in Fig. 5. The (approximate) field independenc
of yg is evident for the entire high-field rangeH . Hb , as
shown in the top half of Fig. 4.Tc2sHd is obtained with
only small uncertainty, as shown in Fig. 5 (inset).

We comment finally on the difference between the pre
ent results and those of Refs. [10,13]. In our work, LLL
scaling is found to be multicritically self-consistent only a
3175
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FIG. 5. Full LLL scaling of sV for the d . 0.57 film.
Multicritically self-consistent scaling is successful only for hig
fields sH . Hb . 5.1 Td. The inset showsTc2sHd andTgsHd
for the same film. [Tc2sHd is speculative forH , Hb .]

high fieldssH . Hbd, while Refs. [10,13], which do not
check for self-consistency, find that LLL scaling is appl
cable at low fieldssH , Hbd. (Note thatHb is very large
in the optimal samples used by those authors.) We spe
late that scaling could be accomplished in Refs. [10,1
only by allowing diminished scaling quality in precisel
the region where the quality should be highest [i.e., ne
Tc2sHd]. In the present work, this situation is avoided b
optimizing scaling nearTc2sHd from the outset.

After the completion of this work, we learned of simila
3D XY results, obtainingzXY & 2 from conductivity
scaling [23].
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