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Exact Scaling Law for the Fragmentation of Percolation Clusters: Numerical Evidence
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We perform large-scale numerical simulations to generate and fragment three-dimensional bond
percolation clusters on the cubic lattice. We compute very accurately the standard exponentst andg,
as well as an exponentf which characterizes the binary fragmentation of the clusters. Two published
scaling laws which relatef to t andg are tested. Excellent agreement is obtained with one of these
relations, indicating that it is possibly exact in any dimension, while the other relation is shown to be
in error. [S0031-9007(97)02946-3]
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Fragmentation is a very wide area of science in whic
applications range from subatomic scales, with the fra
mentation of atomic nuclei [1], to planetary scales, wit
the fragmentation of asteroids [2]. It is of special im
portance in materials science, where particular attent
is devoted to the fragmentation of random porous ma
rials [3,4]. Recently, there has been an increasing int
est in binary fragmentation of percolation clusters [5,6
probably because it is a rare example of a model for t
fragmentation of disordered porous solids providing an
lytical results. Usually bond percolation clusters are stu
ied, since removing a single bond from a cluster produc
two fragments at most. Thus, fragmentation is automa
cally binary, which is not true for site percolation. Th
bond which is removed can be arbitrarily chosen among
the bonds in the cluster [5]. Alternatively, this choice ca
be restricted to the bonds that belong to the cluster exter
surface (the “hull”) [6]. In the latter case, the quantity o
interest is the probabilityPs0,s that a fragment ofs0 bonds
is obtained when a bond is removed at the hull of as-bond
cluster. This quantity is expected to scale withs0 as

Ps0,s , ss0d2fGss0ysd , (1)
where the scaling functionGsxd is finite and nonzero for
x ­ 0, and is zero forx $ 1 [5,6].

Two analytical expressions relating the fragmentatio
exponentf to the standard exponents of the percolatio
transition have been recently proposed in the literatu
Considering the time fluctuations of the invaded volum
in invasion percolation, Gouyet obtained [7]

f ­ 1 1 sdH 2 1yndydf , (2)
in the limit of a perfectly compressible displaced fluid
i.e., in the limit of standard kinetic percolation. In
this relation,n represents the critical exponent for th
correlation length of the percolation clusters. The fract
dimensions for the hull and for the bulk of the clusters a
denoted bydH anddf , respectively. The second relation
found by Roux and Guyon in a very similar context [8
reads

f ­ t 1 s 2 dHydf , (3)
wheret ands, respectively, are the mass distribution an
the characteristic mass exponents for regular percolati
0031-9007y97y78(16)y3145(4)$10.00
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In the following, Eqs. (2) and (3) will be referred to as (G
and (RG), respectively. In two dimensions, the numeric
values off given by (G) and (RG) coincide. Using the
exact values of the critical exponents [9], we have th
f ­ 139y91 ­ 1.527 . . . . On the other hand, as first
noticed by Gouyet [7], the two relations give differen
results in three dimensions (3D). As a consequence, o
(or both) of these relations is not exact. Since mo
applications of fragmentation are in 3D, this point is o
practical importance. However, to our knowledge, the
has been no numerical test of (G) and (RG) in 3D so fa
The reason is probably that conclusive numerical resu
are difficult to obtain.

In this Letter, we will present the results of intensiv
numerical simulations intended to test the validity of (G
and (RG) in 3D. Since the standard critical exponentg of
percolation is not known very precisely in 3D, we begi
by computing it more accurately by constructing bon
percolation clusters on the cubic lattice. Our results a
then used in conjunction with (G) and (RG) to produc
precise estimates forf. In parallel, we independently
compute the exponentf by fragmenting a large set of
percolation clusters. An efficient fragmentation algorith
is designed to perform this task. Our results suppo
Gouyet’s relation with remarkable precision, suggestin
that (G) is indeed exact in any dimension. On the oth
hand, Roux and Guyon’s prediction [8] is found to b
invalid and we offer an insight into why this is so.

It has recently been shown that in 3D the hull an
the bulk of percolation clusters have the same frac
dimension, i.e., thatdH ­ df [10]. Using in addition
the scaling lawsndf ­ 1ys ­ gys3 2 td [9], (G) and
(RG), respectively, become

f ­ 2 2
3 2 t

g
(4)

and

f ­ t 2 1 1
3 2 t

g
, (5)

whereg is the critical exponent associated with the mea
cluster mass. The most accurate estimates oft and g
© 1997 The American Physical Society 3145
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published so far areg ­ 1.805 6 0.020 [11], obtained
by performing series expansions, andt ­ 2.188 6 0.003
[12], obtained in Monte Carlo simulations [13]. Wit
these estimates, Eqs. (4) and (5), respectively, givef ­
1.550 6 0.007 and f ­ 1.638 6 0.007. The gap be-
tween the two central values is about 12 standard de
tions. This is definitely sufficient to allow a conclusiv
comparison with an independent estimate forf. Let us
remark, however, that the main contribution to the er
on f comes from the estimate forg. In the following,
we compute a more precise estimate forg which allows
us to obtain the exponentf even more accurately.

With this aim, a large number of bond percolation clu
ters were constructed on the 3D cubic lattice. We use
Leath-Alexandrowicz algorithm [14] which constructs th
clusters one by one. Starting from a single occupied bo
this algorithm repeatedly adds either a new occupied b
with probability p or a new vacant bond with probability
1 2 p, until the cluster surface is saturated with vaca
bonds. As new occupied or vacant bonds are added
the cluster, their locations are stored in a list. Using
hashing technique [15], only two attempts are necess
on the average to locate a given bond in the list. This
gorithm allows us to get rid of any finite-size effect due
the underlying lattice and to save computer memory. T
maximum number of occupied bonds in a cluster is se
smax ­ 218 in the simulations.

A total of 105 clusters were constructed at the pe
colation threshold,p ­ pc ­ 0.248 813. This value is
an average of the estimates0.248 814 6 0.000 003 and
0.248 812 6 0.000 002 given in Refs. [12] and [16], re-
spectively. As a preliminary test, the fractionFssd of clus-
ters containing at leasts bonds was computed. Atp ­ pc,
this quantity is expected to scale withs asFssd , s22t.
In Fig. 1, the finite-size estimatorts ­ 2 2 log10fFsasdy
Fssdgy log10sad is plotted as a function ofs, for a ­ 21y8.
We observe thatts is roughly constant fors $ 50. A
statistical average of the corresponding data points gi
t ­ 2.188 6 0.001. In order to take into account th

FIG. 1. The finite-size estimator for the exponentt plotted as
a function of the cluster masss. The horizontal line is to the
average value of the data points fors $ 50.
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error onpc explicitly, we repeated the same calculation
for pc ­ 0.248 810 and pc ­ 0.248 817, the lower and
upper bounds of the error range onpc. We obtained
t ­ 2.189 6 0.002 and t ­ 2.188 6 0.003, respec-
tively. Our final estimate is thust ­ 2.188 6 0.003, in
very good agreement with the estimate quoted above [1

The exponentg was determined by considering 20
p values belowpc, p1 ­ 0.217 , p2 , · · · , p20 ­
0.245 and by constructing106 clusters for eachpi

si ­ 1, 2, . . . , 20d. All the clusters constructed stopped
growing before reaching the maximum masssmax, so that
no bias was introduced by this cutoff. The average clus
mass,xspd ­

Ps­`
s­1 Fssd, is expected to scale withp as

xspd , spc 2 pd2g . Finite-size corrections are usually
important for x and we found it to be indeed the cas
with our data,xi ­ xspid. To minimize these correc-
tions, a finite-size estimator,gkspid ­ log10sxi1kyxi2kdy
log10fspc 2 pi2kdyspc 2 pi1kdg, was computed and
plotted as a function ofspc 2 pid. As observed in Fig. 2,
the data points forg5spd fall on a straight line. Linear
extrapolation top ­ pc givesg ­ 1.794 6 0.004. The
robustness of this method was tested by repeating
procedure with k ­ 3, 4, 6, 7. The same result was
found in each case. Here again, the same analy
was repeated forpc ­ 0.248 810 and pc ­ 0.248 817,
which gaveg ­ 1.793 6 0.003 andg ­ 1.796 6 0.004,
respectively. Altogether, our final estimate isg ­
1.794 6 0.006. This estimate is in good agreement wit
the g value quoted above [11] but is significantly mor
precise. As a matter of fact, our estimates fort and g

are very close to unpublished results obtained by Ziff a
Stell [16].

With our estimates fort and g, Gouyet’s and Roux
and Guyon’s relations givef ­ 1.547 6 0.003 andf ­
1.641 6 0.003, respectively. These two values off dif-
fer now by more than 30 standard deviations. Compa
ing them to a value off computed independently should
thus definitely allow us to discriminate between Eqs. (

FIG. 2. The finite-size estimator for the exponentg plotted as
a function ofpc 2 p. The line is a linear least-squares fit to
the data points.
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and (5). With this aim, we constructed and fragment
exhaustively a set of5 3 104 clusters with a cutoff mass
smax ­ 216. In order to exhaustively fragment a give
cluster, each of itss occupied bonds is replaced in tur
with a vacant bond. A test is then performed to dec
whether this substitution causes a binary fragmentat
If it does, the selected bond is called a fragmenting bo
When the test is completed, the selected bond is repla
again by an occupied bond and the next cluster bond
processed. It is worth noting that all the bonds in the cl
ter, and not only the bonds in the hull, are tested in o
algorithm. However, since the hull and the bulk fractal d
mensions are equal in 3D, this only introduces a cons
factor in the fragmentation probability, so that Eqs. (
and (5) apply equally well in both cases.

Fragmentation is usually tested by using a simple bu
ing algorithm [5]: One end of the selected bond is ra
domly chosen and an occupied bond adjacent to this
is set alight. Burning then propagates from bond to bo
until none is left unburnt. On the average, this simple
gorithm needs a total number of operations of orders2 for
a s-bond cluster. On the other hand, if burning is start
and propagatedsimultaneouslyon both ends of the selecte
bond, it can be shown [17] that the order of the algorith
reduces tos32f. Since f is roughly equal to 1.5, the
double-burning algorithm is significantly faster than th
simple one. Qualitatively, this is so because a percolat
cluster is much more likely to give fragments of very di
ferent masses than fragments of comparable masses.
double-burning algorithm was used to compute the av
age number of fragmenting bonds,kNfssdl, as well as the
average cumulative mass of the smaller fragments,Mssd ­
s
Pss21dy2

s0­1 s0kNfssdlPs0 ,sd s
Pss21dy2

s0­1 Ps0,sd21 . In these ex-
pressions, the angular brackets represent statistical a
ages over all thes-bond clusters constructed.

Our data forkNfssdl andMssd were binned, according
to the method described in Refs. [5,6]. The binned valu
are denoted bykNB

f ssdl and MBssd, respectively. In 2D,
analytical and numerical results showed thatkNfssdl , s
[5,6] and it was argued that this is true in any dimensi
[5,18]. A careful finite-size analysis of our data gav
kNB

f ssdl , s1.00160.004 [17], providing extra support to the
relationkNfssdl , s.

Using this last relation in conjunction with Eq. (1
we find Mssd , s32f. Figure 3 is a plot of the finite-
size estimatorfs ­ 3 2 log10fMBs4sdyMBssdgy log10s4d
as a function of1ys. A linear behavior is obtained an
extrapolation tos ! ` gives the estimatef ­ 1.548 6

0.008. Let us remark that a direct fit ofall the data
points forMssd in the ranges $ 104 gave a comparable
though less precise, estimate [17]. Our fragmentat
program was run again forpc ­ 0.248 817, the upper
boundary of the error range onpc. The exponentf
extracted from the corresponding data was found to
equal to1.545 6 0.009. Assuming a symmetric behavio
for pc ­ 0.248 810, the lower bound of the error range o
d
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FIG. 3. Extrapolation of the finite-size estimator for th
exponentf to the limit 1ys ! 0. The solid line is a linear
least-squares fit to the data points.

pc, we finally obtained
f ­ 1.548 6 0.016 . (6)

This direct estimate off is in excellent agreemen
with the valuef ­ 1.547 6 0.003 obtained from Eq. (4).
Conversely, it definitely rules out Eq. (5) which gavef ­
1.641 6 0.003. Thus, (RG) is found to be in error in
3D. Since this relation does not give the expected me
field behavior either [19], its validity can be called int
question. The derivation of (RG) is actually based
the observation that the bursts which form at the front
invasion percolation are equivalent to percolation clust
[8]. Roux and Guyon [8] then make several assumptio
to arrive at (RG). One of these assumptions is that
probability for a burst ofs sites to grow is proportional to
the number of sites which belong to its hull. Since th
number varies withs like sdH ydf , the termT ­ 2dH ydf

which appears in (RG) is obtained. However, we belie
that this assumption is not correct because only a sub
of all the sites which belong to the hull can be the ro
of the burst. This subset is found by considering only t
configurations where the burst and the front are linked b
singlebond. This bond is thus a red bond for the ensem
composed of the burst and the parent cluster behind
front. Within the region of space occupied by the bur
the number of red bonds is proportional tos1yndf [20]. In
(RG), T should then be replaced withT 0 ­ 2sndfd21, in
agreement with an intermediate result found by Gou
in the derivation of (G) [7]. Since one term appears to
wrong in (RG), the fact that this relation gives the corre
value forf in 2D is probably just a mere coincidence.

In summary, our numerical results confirm the validi
of Gouyet’s scaling law (G) in 3D. Since this law wa
also successfully tested in two dimensions [5,6] and,
addition, is exact in one dimension and on the Bet
lattice [5,19], we conclude that it is very likely exact i
any dimensions.

I thank J. F. Gouyet for discussions which motivate
this work and R. M. Bradley for valuable comments abo
the manuscript.
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