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Exact Scaling Law for the Fragmentation of Percolation Clusters: Numerical Evidence
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We perform large-scale numerical simulations to generate and fragment three-dimensional bond
percolation clusters on the cubic lattice. We compute very accurately the standard expoaedtg,
as well as an exponer which characterizes the binary fragmentation of the clusters. Two published
scaling laws which related to = andy are tested. Excellent agreement is obtained with one of these
relations, indicating that it is possibly exact in any dimension, while the other relation is shown to be
in error.  [S0031-9007(97)02946-3]

PACS numbers: 64.60.Ak, 05.40.+j

Fragmentation is a very wide area of science in whichn the following, Egs. (2) and (3) will be referred to as (G)
applications range from subatomic scales, with the fragand (RG), respectively. In two dimensions, the numerical
mentation of atomic nuclei [1], to planetary scales, withvalues of¢ given by (G) and (RG) coincide. Using the
the fragmentation of asteroids [2]. It is of special im-exact values of the critical exponents [9], we have then
portance in materials science, where particular attentiogp = 139/91 = 1.527.... On the other hand, as first
is devoted to the fragmentation of random porous matenoticed by Gouyet [7], the two relations give different
rials [3,4]. Recently, there has been an increasing interresults in three dimensions (3D). As a consequence, one
est in binary fragmentation of percolation clusters [5,6],(or both) of these relations is not exact. Since most
probably because it is a rare example of a model for thapplications of fragmentation are in 3D, this point is of
fragmentation of disordered porous solids providing anapractical importance. However, to our knowledge, there
lytical results. Usually bond percolation clusters are studhas been no numerical test of (G) and (RG) in 3D so far.
ied, since removing a single bond from a cluster produce$he reason is probably that conclusive numerical results
two fragments at most. Thus, fragmentation is automatiare difficult to obtain.
cally binary, which is not true for site percolation. The In this Letter, we will present the results of intensive
bond which is removed can be arbitrarily chosen among athumerical simulations intended to test the validity of (G)
the bonds in the cluster [5]. Alternatively, this choice canand (RG) in 3D. Since the standard critical expongruf
be restricted to the bonds that belong to the cluster externglercolation is not known very precisely in 3D, we begin
surface (the “hull”) [6]. In the latter case, the quantity of by computing it more accurately by constructing bond
interest is the probability, ; that a fragment of’ bonds  percolation clusters on the cubic lattice. Our results are
is obtained when a bond is removed at the hull efteond  then used in conjunction with (G) and (RG) to produce

cluster. This quantity is expected to scale witlas precise estimates fo$p. In parallel, we independently
Pyy ~ (s ?G(s'/s), (1) compute the exponert by fragmenting a large set of

where the scaling functioi(x) is finite and nonzero for percolation clusters. An efficient fragmentation algorithm

x = 0, and is zero for = 1 [5,6]. is designed to perform this task. Our results support

Two analytical expressions relating the fragmentatiorf>0UYet’s relation with remarkable precision, suggesting
exponents to the standard exponents of the percolationtnat (G) is indeed exact Inany dimension. On the other
transition have been recently proposed in the literature’@nd, Roux and Guyon’s prediction [8] is found to be

Considering the time fluctuations of the invaded volumenvalid and we offer an insight into why this is so.
in invasion percolation, Gouyet obtained [7] It has recently been shown that in 3D the hull and

_ s the bulk of percolation clusters have the same fractal
) o ¢ =1+ (dy I/V)/C,lf’ ) (2) . dimension, i.e., thaly = d; [10]. Using in addition
in the_: limit of a perfectly comprt_ess[ble dlsplacgd fluid, {he scaling lawsvd; = 1/ = v/(3 — 7) [9], (G) and
i.e., in the limit of standard kinetic percolation. In (RG), respectively, become

this relation, v represents the critical exponent for the

correlation length of the percolation clusters. The fractal b =2- 3-7 4)

dimensions for the hull and for the bulk of the clusters are

denoted by/y anddy, respectively. The second relation, 5.

found by Roux and Guyon in a very similar context [8]

reads ¢>=T—1+3 z 5)
=71+ 0 —dy/dy, 3 Y

wherer ando, respectively, are the mass distribution andwherey is the critical exponent associated with the mean
the characteristic mass exponents for regular percolatiomluster mass. The most accurate estimates @d y
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published so far arey = 1.805 * 0.020 [11], obtained error onp. explicitly, we repeated the same calculations
by performing series expansions, ang= 2.188 = 0.003  for p. = 0.248810 and p. = 0.248 817, the lower and
[12], obtained in Monte Carlo simulations [13]. With upper bounds of the error range gn. We obtained
these estimates, Egs. (4) and (5), respectively, give 7 = 2.189 = 0.002 and 7 = 2.188 = 0.003, respec-
1.550 = 0.007 and ¢ = 1.638 = 0.007. The gap be- tively. Our final estimate is thus = 2.188 = 0.003, in
tween the two central values is about 12 standard deviarery good agreement with the estimate quoted above [12].
tions. This is definitely sufficient to allow a conclusive The exponenty was determined by considering 20
comparison with an independent estimate far Let us p values belowp., p; = 0217 < py, < -+ < py =
remark, however, that the main contribution to the erroi0.245 and by constructingl0® clusters for eachp;
on ¢ comes from the estimate for. In the following, (i = 1,2,...,20). All the clusters constructed stopped
we compute a more precise estimate fowhich allows growing before reaching the maximum masgy, so that
us to obtain the exponeuwt even more accurately. no bias was introduced by this cutoff. The average cluster
With this aim, a large number of bond percolation clus-mass,y(p) = >i_| F(s), is expected to scale with as
ters were constructed on the 3D cubic lattice. We used g(p) ~ (p. — p)~?. Finite-size corrections are usually
Leath-Alexandrowicz algorithm [14] which constructs theimportant for y and we found it to be indeed the case
clusters one by one. Starting from a single occupied bondyith our data,y; = x(p;). To minimize these correc-
this algorithm repeatedly adds either a new occupied bontions, a finite-size estimatoyy (p;) = 109,0( xi+x/Xi-k)/
with probability p or a new vacant bond with probability log,,[(p. — pi-x)/(pc — pi+x)], was computed and
1 — p, until the cluster surface is saturated with vacantplotted as a function dfp. — p;). As observed in Fig. 2,
bonds. As new occupied or vacant bonds are added tilie data points forys(p) fall on a straight line. Linear
the cluster, their locations are stored in a list. Using aextrapolation top = p. givesy = 1.794 = 0.004. The
hashing technique [15], only two attempts are necessampbustness of this method was tested by repeating the
on the average to locate a given bond in the list. This alprocedure withk = 3,4,6,7. The same result was
gorithm allows us to get rid of any finite-size effect due tofound in each case. Here again, the same analysis
the underlying lattice and to save computer memory. Thevas repeated fop,. = 0.248810 and p. = 0.248 817,
maximum number of occupied bonds in a cluster is set tavhich gavey = 1.793 = 0.003 andy = 1.796 * 0.004,
smax = 2'% in the simulations. respectively. Altogether, our final estimate ig =
A total of 10° clusters were constructed at the per-1.794 + 0.006. This estimate is in good agreement with
colation thresholdp = p. = 0.248813. This value is the y value quoted above [11] but is significantly more
an average of the estimat@248814 = 0.000003 and precise. As a matter of fact, our estimates foand y
0.248 812 = 0.000002 given in Refs. [12] and [16], re- are very close to unpublished results obtained by Ziff and
spectively. As a preliminary test, the fractiéits) of clus-  Stell [16].
ters containing at leastbonds was computed. A&t = p., With our estimates for and y, Gouyet's and Roux
this quantity is expected to scale withas F(s) ~ s>~ 7.  and Guyon’s relations give = 1.547 + 0.003 and¢ =
In Fig. 1, the finite-size estimatot, = 2 — log,,[F(as)/ 1.641 = 0.003, respectively. These two values &f dif-
F(s)]/10g,,(a) is plotted as a function of, for a = 2!/%.  fer now by more than 30 standard deviations. Compar-
We observe that is roughly constant fos = 50. A  ing them to a value o computed independently should
statistical average of the corresponding data points givethus definitely allow us to discriminate between Egs. (4)
7 = 2.188 £ 0.001. In order to take into account the
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FIG. 1. The finite-size estimator for the exponenplotted as  FIG. 2. The finite-size estimator for the exponenplotted as

a function of the cluster mass The horizontal line is to the a function ofp. — p. The line is a linear least-squares fit to
average value of the data points foe 50. the data points.
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and (5). With this aim, we constructed and fragmented 18— —— 777
exhaustively a set of X 10* clusters with a cutoff mass ‘
smax = 2'®. In order to exhaustively fragment a given 1.7¢ ]

cluster, each of it occupied bonds is replaced in turn ] 6:_ ]

with a vacant bond. A test is then performed to decide m [ 090 P ]
whether this substitution causes a binary fragmentation. ©- 1 5%‘%@%

If it does, the selected bond is called a fragmenting bond. E © o © ]
When the test is completed, the selected bond is replaced 140 3
again by an occupied bond and the next cluster bond is : ]
processed. Itis worth noting that all the bonds in the clus- 13
ter, and not only the bonds in the hull, are tested in our Y 2 4 6 8 10
algorithm. However, since the hull and the bulk fractal di- 10Y%s

mensions are equal in 3'.:)’ this only. [ntroduces a constarEIG_ 3. Extrapolation of the finite-size estimator for the
factor in the fragmentation probability, so that EQs. (4)exponents to the limit 1/s — 0. The solid line is a linear
and (5) apply equally well in both cases. least-squares fit to the data points.

Fragmentation is usually tested by using a simple burn-
ing algorithm [5]: One end (_)f the select'ed bond is.ran-pc, we finally obtained
domly chosen and an occupied bond adjacent to this end b = 1548 + 0.016 (6)
is set alight. Burning then propagates from bond to bond : -
until none is left unburnt. On the average, this simple al- This direct estimate ofp is in excellent agreement
gorithm needs a total number of operations of ordefior  with the valueg = 1.547 + 0.003 obtained from Eq. (4).
a s-bond cluster. On the other hand, if burning is startedConversely, it definitely rules out Eq. (5) which gage=
and propagatesimultaneouslyn both ends of the selected 1.641 = 0.003. Thus, (RG) is found to be in error in
bond, it can be shown [17] that the order of the algorithm3D. Since this relation does not give the expected mean
reduces tos’~#. Since ¢ is roughly equal to 1.5, the field behavior either [19], its validity can be called into
double-burning algorithm is significantly faster than thequestion. The derivation of (RG) is actually based on
simple one. Qualitatively, this is so because a percolatiothe observation that the bursts which form at the front in
cluster is much more likely to give fragments of very dif- invasion percolation are equivalent to percolation clusters
ferent masses than fragments of comparable masses. T[8. Roux and Guyon [8] then make several assumptions
double-burning algorithm was used to compute the averto arrive at (RG). One of these assumptions is that the
age number of fragmenting bondd,(s)), as well as the probability for a burst of sites to grow is proportional to
average cumulative mass of the smaller fragme¥its) =  the number of sites which belong to its hull. Since this
(su-r2 s’<Nf(s)>PS/’S)(Zﬁ‘f;ll)/z Py,)~'. In these ex- number varies with like s%/%  the termT = —dy /d;
pressions, the angular brackets represent statistical avarhich appears in (RG) is obtained. However, we believe
ages over all the-bond clusters constructed. that this assumption is not correct because only a subset

Our data for(N,(s)) and M (s) were binned, according of all the sites which belong to the hull can be the root
to the method described in Refs. [5,6]. The binned valuesf the burst. This subset is found by considering only the
are denoted bny’(s)) and M2(s), respectively. In 2D, configurations where the burst and the front are linked by a
analytical and numerical results showed ttwg(s)) ~ s singlebond. This bond is thus a red bond for the ensemble
[5,6] and it was argued that this is true in any dimensioncomposed of the burst and the parent cluster behind the
[5,18]. A careful finite-size analysis of our data gavefront. Within the region of space occupied by the burst,
(NP (s)) ~ 100120004 11 7] providing extra support to the the number of red bonds is proportionalstd”s [20]. In
relation(N(s)) ~ s. (RG), T should then be replaced wittl = —(vd;)~!, in

Using this last relation in conjunction with Eq. (1), agreement with an intermediate result found by Gouyet
we find M(s) ~ s> ¢. Figure 3 is a plot of the finite- in the derivation of (G) [7]. Since one term appears to be
size estimatowp, = 3 — log,,[M5(4s)/M?B(s)]/log,o(4)  wrong in (RG), the fact that this relation gives the correct
as a function ofl/s. A linear behavior is obtained and Vvalue for¢ in 2D is probably just a mere coincidence.
extrapolation tos — « gives the estimate = 1.548 = In summary, our numerical results confirm the validity
0.008. Let us remark that a direct fit ofll the data of Gouyet's scaling law (G) in 3D. Since this law was
points forM(s) in the ranges = 10* gave a comparable, also successfully tested in two dimensions [5,6] and, in
though less precise, estimate [17]. Our fragmentatiomddition, is exact in one dimension and on the Bethe
program was run again fop. = 0.248 817, the upper lattice [5,19], we conclude that it is very likely exact in
boundary of the error range op.. The exponent¢  any dimensions.
extracted from the corresponding data was found to be | thank J.F. Gouyet for discussions which motivated
equal tol.545 = 0.009. Assuming a symmetric behavior this work and R. M. Bradley for valuable comments about
for p. = 0.248 810, the lower bound of the error range on the manuscript.
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