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The evolution of kink pairs on dislocations in Ge single crystals under two-level intermittent loadin
has been studied in order to reveal modes of one-dimensional transport in a random environment.
perimental evidence has been obtained for the anomalous nonlinear kink drift predicted earlier by theo
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The possibility of the anomalous modes of the particle
motion in the random medium has attracted research
attention and has been studied closely during past ye
(for a review see [1,2]). It was shown that at some critic
driving force value Fc the drastic change should b
observed in the dependence of the particle displacem
on time. With driving forceF . Fc the motion should
occur with usual linear driftx  yt and

y  sDykTd sF 2 Fcd . (1)

With F , Fc the sublinear dependence of the path leng
x on time t should be observed with the drift in the fiel
of random forces

x , tdsd , 1d . (2)

HereD is the particle diffusivity,k is Boltzmann constant,
andT is the temperature. We give below the derivation
an expression for the critical forceFc for the dislocation
interacting with point defects.

The transition to the anomalous drift mode first d
clared in [3] was studied theoretically in many works a
appeared with different names: quasilocalization [4,
transition to the creep phase [6] or to the heterogene
dynamics [7], and motion in the field of random force
[8]. In accordance with the theory predictions the syste
with different physical nature should demonstrate the u
versal behavior, Eq. (2). To exemplify let us point o
the dispersive transport in the dopant semiconductors
the motion of the kinks along the dislocation line or of th
domain boundaries in two-dimensional phases [3]. F
more examples see reviews in Refs. [1,2]. The exp
mental evidences of these regularities, however, are ei
absent or rather indirect [5,6].

The chaotic adsorption of the impurities or other po
defects on dislocations makes them a suitable object
the study of the one-dimensional transport in rando
fields. Because of development of the experimental te
nique for the investigation of the individual dislocatio
mobility in semiconducting crystals under two-level inte
mittent loading (TLIL), the possibility has appeared r
cently to study more in depth the modes of movement
the dislocation kinks along a dislocation line [10].
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Dislocation kinks are the direct consequence of t
translational symmetry of crystal lattice determining th
periodic dependence of the energy of a dislocation
its position in the glide plane, i.e., Peierls potenti
relief (Fig. 1). With stresses low enough and nonze
temperatures the dislocation overcomes the Peierls ba
by generation of soliton-type nonlinear excitations a
their further evolution into the kink pairs. The nasce
kink pairs, growing as a result of fluctuations to
collapse-stable configuration, get expanded by me
of a drift motion until annihilation takes place with
antikinks in the neighboring pairs [11], giving rise to th
microscopic mechanism of the dislocation motion.

The TLIL technique is based on the loading of
sample containing individual dislocations by a sequen
of load pulses with the resolved shear stress amplitu
si , which results in driving forceF  siab acting on
kinks. Herea is the kink height, i.e., the period of the
Peierls relief, andb is the magnitude of the Burger
vector of the dislocation. The duration of an individu
pulseti is comparable with a mean time of the dislocatio
displacement by one lattice parameter under conditions
the steady state motionta  ayVst, whereVst is a mean
dislocation velocity under conventional static loading wi
sst  si . The pulses are separated by “pauses” with t
duration tp when either the stress is not applied at a
ssp  0d or small enough stresssp ø si of opposite
sign with respect tosi is applied.

FIG. 1. The sketch of the dislocation kink.WPs yd shows the
Peierls relief, the circles represent randomly distributed po
defects.
© 1997 The American Physical Society 3137
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During the pulse stress action, in addition to therm
dynamically equilibrium kinks, extra kink pairs form an
spread along the dislocation line. As the pulse separa
goes on they become unstable and collapse to the for
tion centers under the action of the external stress app
as well as the forces caused by the mutual attraction
kinks and the interaction of the dislocation and kink w
point defects. In accordance with the Hirth and Lothe t
ory [11] the dislocation velocityV is proportional to the
kink velocity yk,

V  anyk . (3)
With small external stresses the density of kinksn is

close to thermodynamically equilibrium valuen0. When
the directed drift motion of kinks prevails over th
chaotic diffusion, we can estimate the average kink
locity during the cycle of TLIL with sxi 1 xpdysti 1

tpd, where xi and xp are the kink displacements du
ing the pulse loading and pause, respectively. We
ceive for the loading duration

P
sti 1 tpd the dislocation

displacement under TLILl  V
P

sti 1 tpd  an0sxi 1

xpdysti 1 tpd
P

sti 1 tpd. The dislocation displacemen
under static loadinglst  Vtst  an0yktst. Assuming
that kink velocity under pulse loadingxiyti  yk and tak-
ing the active loading duration

P
ti  tst we receive

lylst  1 1 xpyxi . (4)
Equation (4) relates immediately the microscopic ki

displacements and experimentally observable ma
scopic dislocation path lengths. So TLIL presents a t
allowing one to study experimentally different modes
the kink motion.

The influence of point defects on the dislocati
mobility is considered usually as the interaction of
dislocation kink with separate obstacles [12,13]. T
additional barriers change the stress dependence o
dislocation velocity but do not modify the linear natu
of the kink drift. However, this approach could descri
experimental data only if dislocation kinks do not collid
on the dislocation line [12]. Later experiments sho
that kink collision case takes place [14]. The alternat
approach [3] deals with the interaction of the who
dislocation with numerous point defects and predicts
anomalous mode of the kink drift, Eq. (2).

This Letter presents the results of experimental stu
with TLIL of the modes of kink motion along the
dislocation lines in Ge single crystals. The data obtain
are compared with the regularities predicted by theo
[3,12].

Let us consider the model of a dislocation kink moti
including the interaction of the dislocation with manifo
point defects. The potential of a kink under drift
determined by the work of driving force2Fx. Here x
is the kink displacement,F  sab, s is resolved shea
stress. The presence of randomly distributed point def
leads to the addition of the random componentuNsxd that
describes the change in energy of the dislocation-p
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defect interaction with the kink motion. Hereu is the
variation of the binding energy of a dislocation to a poi
defect with the displacement for the distancea, Nsxd is
the difference in number of point defects in the first a
the second Peierls valleys. So the potentialUsxd for the
kink motion has the form [3,5]Usxd  2Fx 1 uNsxd.

The anomaly in the kink mobility results from the
influence of fluctuations in point defects distributio
being a collective effect. To understand qualitative
the radical change in the kink mobility with point de
fect concentration increase, let us calculate, followi
Ref. [3], average time delayktl of the kink at the
barriers composed by random pileups of point defec
The time needed to overcome a barrier is given by
expression [15]t ,

R
expfUsxdykT g dx. Then ktl ,R

kexpsuNsxdykTdl exps2FxykTd dx. With independent
defect distribution over the crystal lattice sites with co
centrationsc1 andc2 in the first and the second potentia
valleys (Fig. 1) we receiveø

exp

µ
uNsxd

kT

∂¿


øxyaY
i1

exp

µ
uni

kT

∂¿


Ω
1 1 sc1 1 c2 2 2c1c2d

3

∑
cosh

µ
u

kT

∂
2 1

∏
1 sc1 2 c2d sinh

µ
u

kT

∂æxya

. (5)

Hereni are the occupation numbers of crystal lattices si
i with defectsni  1 with the probability c1s1 2 c2d,
ni  21 with the probability s1 2 c1dc2, and ni  0
with the probabilitys1 2 c1d s1 2 c2d 1 c1c2. It follows
from Eq. (5) that ktl , 1ysF 2 Fcd with Fc  skTy
ad lnh1 1 sc1 1 c2 2 2c1c2d fcoshsuykT d 2 1g 1 sc1 2

c2d sinhsuykT dj. With concentrations of point defect
being small enough the expression for the critical for
Fc simplifies to Fc  skTyadhc1fexpsuykT d 2 1g 1

c2fexps2uykTd 2 1gj. With u , kT this expression
transforms into Fc . F0 1 Fs, with Fs  usc1 2

c2dya  ssab, F0  u2sc1 1 c2dy2kTa  s0ab. The
divergence of average time of climbing over an obsta
means the existence of the threshold in the depende
of the velocity of kink motion on the driving force
Eq. (1). The derivation of Eq. (1) has been made mo
comprehensively in Refs. [2,8].

In fact, with F , Fc the motion of kinks does not
stop completely but is characterized with qualitative
different regularities, Eq. (2); so they say nothing abo
the localization of kinks in the random potential wit
F ! Fc but about quasilocalization mode [4,5] or cree
phase [2] only. In this mode the kink motion is no
described any longer in terms of velocity, and the a
tribute of linearity of kink displacement on time is
violated. At first sight the linearity looks as the sel
evident and follows from (at least statistical) spa
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homogeneity. More detail analysis shows, however, t
with certain conditions (the degree of inhomogeneity b
ing large enough, expressed in the formFc . F) the sta-
tistical homogeneity can be violated, and with the spa
scale increase the larger fluctuations become a factor.
a consequence the time of the displacement is determ
mostly by the probability to overcome the strongest o
stacle taking place on the length, rather than many “ty
cal” ones, and the linear drift changes to the nonlin
one of Eq. (2) type. Let us represent it in more expli
form,

x  x0styt0dd, d  FyF0 # 1, x0 . kTyF0, t0 . x2
0yD .

(6)

The investigated samples were rectangular rods w
edge orientationsf110g, f112g, f111g, and dimensions
35 3 4 3 0.8 mm. They were cut from dislocation-fre
ingots of an n-type Ge single crystal grown by th
Czochralski method and doped with antimony until
resistivity 0.4 V m was reached. To introduce individu
dislocations stress concentrators were produced ons111d
faces by a diamond indenter. Dislocation half-loo
generated under a subsequent loading were reveale
selective etching. For more details see Ref. [16].

The samples with individual dislocations were load
with four-point bending around thef112g axis by a se-
quence of pulses driven from a function generator w
required pulse ratio through an electromagnetic fo
transducer. The pause stress,sp , was produced with per
manent subloading using a six-point loading jig similar
that described in [17]. As the pulse continues the lo
is applied to the pair of internal supports and exce
the permanent subloading applied to the outermost s
ports. During the pulse separation the subloading ac
remains only.

To study the characteristics of the kink migration t
average glide distances of 60± dislocations were measure
as a function of pulse separationlstpd for fixed durations
of the load pulsesti. The active loading duration

P
ti 

7200 s. The width of the leading edge of the loa
pulses was held constantstf  4 msd. The temperature
was measured with a thermocouple placed next to
sample and was maintained constant and equal toT 
583 6 1 K.

The measurements of the dislocation velocity in Ge
der conventional loading [18,19] have revealed the sh
decrease in the dislocation mobility with stresses
proaching some low threshold. The similar behavior w
observed in our crystals (Fig. 2). We found that disloc
tion velocity near threshold can be described satisfacto
with Eq. (3) with yk being determined from Eq. (1) with
Fc  scab (see inset of Fig. 2).

More information about characteristics of the kin
motion under stresses below the threshold, allow
one to test the hypothesis, could be received in TL
experiments presented in this paper. Figure 3 sh
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FIG. 2. The stress dependence of average 60± dislocations
velocity. The inset shows the data replotted with linear a
to demonstrate the validity of the approximation used. So
lines represent the results of fitting using Eqs. (1) and (3).

how the plots of mean dislocation glide distances on
relative pulse separation change with the shear stres
pauses increase. The data have been obtained with a fi
pulse stress amplitudessi  130 MPad. One can see
that the dislocation glide distances decrease is nonlin
especially for smallsp values. It should be noted tha
prediction of theories [11–13] that kink displaceme
xp in Eq. (4) depends linearly on pulse separationtp is
inconsistent with the results obtained.

Now let us compare the experimental data with the th
ory considering the nonlinear kink drift during the puls
separation. We suppose that kink pair expansion occ
under shear stress being high enough and standard li
drift takes placexi  yi ti with kink velocity renormal-
ized by dislocation-point defects interaction, Eq. (1), wi
F  sab and Fc  scab consequently. The values o
sc were estimated with the fit of the stress dependence
dislocation velocity (solid line in Fig. 2). The path lengt

FIG. 3. The normalized dislocation displacement vs re
tive pulse separation:sp  28 MPa, ti  45 ms (1); sp 
24 MPa, ti  48 ms (2);sp  0, ti  30 ms (3). Solid lines
are curve fits with Eq. (7).
3139
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during the pausexp is determined with Eq. (6) withx0
andt0 being fitting parameters.

Substituting the expressions forxi and xp into Eq. (4)
we reduce it to the form

l
lst

 1 2 K

µ
tp

ti

∂d

, (7)

with d  ssp 1 ssdys0, K  st0ytid12ds0yssi 2

ss 2 s0d. Solid lines in Fig. 3 depict the results o
fitting of experimental data with Eq. (7). One can se
satisfactory agreement of the theory with experiment.

To check the validity of the model the results o
several TLIL experiments have been plotted in coo
dinates d vs ssp 1 ssd (Fig. 4). In accordance with
Eq. (7) the dependence should be linear with the slo
1ys0. One can see good agreement between theory
experimental data.

The second fitting parametert0 allows one to es-
timate the kink diffusivity with Eq. (6) and the kink
migration enthalpy Wm with expression [11] Wm 
kT lns2nDb2yDd, wherenD is the Debye frequency. All
calculated values are in the rangeWm  1 6 0.1 eV,
those are in reasonable agreement with the ones obta
by other methods [14,20].

Using parameters obtained, one may check the valid
of the drift approach used. Say for the curve (3) in Fig.
the displacement of a kink by the drift issxiddr  yi ti .
9.6 nm . 25b and the one by the diffusion issxiddif ,
sDtid1y2 . 7 nm . 18b , sxiddr (fitting parameters are
sc  18.92 MPa andWm  1.01 eV). Mean kink free
path is thenX . 100b, so the linear density of defects
c1 ¿ 1022. Taking c1  1021 we receive the volume
concentration along the dislocation core,1019 cm23.
This value could be achieved due to gathering of po
defects by moving dislocation. The theory is base
on a rather general assumption of short-range po
defects-dislocation interaction, so we do not consid
the details of the dislocation core structure, dislocati
splitting, etc.

The simple model, Eqs. (4) and (7), connects the expe
mental data on dislocation displacements under int

FIG. 4. Stress dependence of the parameterd.
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mittent loading with the values of kink displacement
governed by the pulse and pause duration values. T
provides a promising technique for the investigation
different modes of the kink dynamics at the most el
mental level possible. The parameters’ values obtain
allow one to characterize the dislocation point defect a
mosphere state. The comparison of data obtained
Ge crystals with the theory based on assumption of no
linear kink drift the pulse separation shows their satisfa
tory agreement. Hence theoretical knowledge of existen
in the medium with chaotic distribution of point defects o
anomalous modes of the kink motion gets it s experimen
corroboration.

The research described in this publication was ma
possible in part by Grants No. REB300 and No. REO30
from the International Science Foundation and b
Grant No. 94-03815 from Russian Foundation for Bas
Researches.

*Electronic address: iunin@issp.ac.ru
[1] J. W. Hans and K. W. Kehr, Phys. Rep.150, 263 (1987).
[2] J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127

(1990).
[3] B. V. Petukhov, Sov. Phys. Solid State13, 1204 (1971).
[4] J. Bernasconi and W. R. Schneider, Phys. Rev. Lett.47,

1643 (1981).
[5] B. V. Petukhov, Sov. Phys. Solid State30, 1669 (1988).
[6] J.-P. Bouchaud and A. Georges, Comments Conde

Matter Phys.15, 125 (1991).
[7] B. V. Petukhov, Sov. Phys. Solid State35, 571

(1993).
[8] M. V. Feigel’man and V. M. Vinokur, J. Phys. (Paris)49,

1731 (1988).
[9] H. Sher and E. W. Montroll, Phys. Rev. B12, 2455

(1975).
[10] Yu. L. Iunin, V. I. Nikitenko, V. I. Orlov, and B. Ya.

Farber, Sov. Phys. JETP73, 1079 (1991).
[11] J. P. Hirth and J. Lothe,Theory of Dislocations(Wiley,

New York, 1982).
[12] V. Celli, M. Kabler, T. Ninomiya, and R. Thomson, Phys

Rev.131, 58 (1963).
[13] V. V. Rybin and A. N. Orlov, Sov. Phys. Solid State11,

2635 (1969).
[14] F. Louchet, D. Cochet Muchy, Y. Brechet, and J. Pelissie

Philos. Mag. A57, 327 (1988).
[15] See, e.g., N. G. van Kampen,Stochastic Processes in

Physics and Chemistry(North-Holland, Amsterdam,
1981).

[16] Yu. L. Iunin, V. I. Nikitenko, V. I. Orlov, and B. Ya.
Farber, Fiz. Tverd. Tela (Leningrad)33, 1262 (1991);
[Sov. Phys. Solid State33, 715 (1991)].

[17] V. I. Nikitenko, B. Ya. Farber, and I. E. Bondarenko, Sov
Phys. JETP55, 891 (1982).

[18] M. N. Kabler, Phys. Rev.131, 54 (1963).
[19] V. N. Erofeev and V. I. Nikitenko, Fiz. Tverd. Tela

(Leningrad)13, 300 (1971).
[20] U. Jendrich and P. Haasen, Phys. Status Solidi (a)108,

553 (1988).


